Data Science - Big Data and Machine Learning

  • Szenenanalyse - Mustererkennung in Personentracks
    Ziel des Projektes ist die automatische Erkennung von Mustern in Trajektorien von Personen, die in Videosequenzen detektiert und verfolgt worden sind. Die Grundhypothese ist dabei, dass sich mögliche Gefahrenquellen durch ein auffälliges Bewegungsverhalten erkennen lassen. Im Projekt sollen Individual- und Gruppenmuster, sowie die Feststellung, wann ein Muster als auffällig zu charakterisieren ist, aus den Daten abgeleitet und gelernt werden.
    Team: Fischer, Sester
    Year: 2017
  • Real Time Prediction of Pluvial Floods and Induced Water Contamination in Urban Areas (EVUS)
    This project aims at developing a fast forecast model for pluvial floods in the city of Hannover. The main goal of the subproject for ikg is to integrate new sensors for the flood prediction models.
    Team: Feng, Sester
    Year: 2017
    Sponsors: BMBF Georisiken
  • Ja, wo laufen sie denn?
    Für Profi-Trainer oder auch einfache Hobby-Kicker. Vielen Fußballbegeisterten wird der Weg zum Taktikfuchs durch eine automatisierte Spielanalyse am Computer erleichtert. Ausgeklügelte Verfahren ermöglichen eine einfachere Bewertung der Leistung der Akteure.
    Team: Feuerhake, Sester
    Year: 2017
  • 3D-Objektextraktion aus hochaufgelösten 3d-Punktwolken
    In den Landesvermessungsbehörden liegen flächendeckende, kontrollierte Airborne Lascerscanning-Datensätze mit unterschiedlichen Punktdichten vor, welche i.d.R. mindestens in die Klassen Boden- und Nichtbodenpunkte differenziert wurden. In der Arbeitsgemeinschaft der Vermessungsverwaltungen (AdV) wird ein Aktualisierungszyklus von 10 Jahren diskutiert. Weiterhin leiten die Landesvermessungsämter auf Basis von digitalen Bildflügen mit hohen Überlappungen 3D-Punktwolken mit dem sogenannten „Dense-Image-Matching“-Verfahren (DIM) ab, welche eine Auflösung im Pixelbereich besitzen. Radiometrische Information aus den Luftbildern ergänzen die Informationstiefe dieser Punktwolken, welche aufgrund der Bildkorrelation in der Regeln auf ein Oberflächenmodell begrenzt sind. Hierbei ist ein 2-3-jähriger Befliegungszyklus die Basis.
    Team: Politz, Sester
    Year: 2017
    Sponsors: Forschungs- und Entwicklungsvorhaben zwischen den Landesvermessungsämtern Niedersachsen, Schleswig-Holstein und Mecklenburg-Vorpommern
  • Interdisciplinary Center for Applied Machine Learning - ICAML
    Das ICAML (Interdisziplinäres Zentrum für Angewandtes Maschinelles Lernen) hat das Ziel, maschinelles Lernen interdisziplinär zugänglich zu machen. Um dieses Ziel zu erfüllen, werden drei fundamentale Komponenten der Lehre entwickelt und eingesetzt.
    Team: Leichter, Sester
    Year: 2018
    Sponsors: Bundesministerium für Bildung und Forschung
    Lifespan: 11/2017-11/2019
  • Object detection in airborne laser scanning (ALS) data using deep learning
    In partnership with the Lower Saxony State Office for Preservation of Historic Monuments, we are developing a method for automatically detecting archaeological objects in airborne laser scanning data. The type of objects to be detected are mainly those of interest by archaeologists such as heaps, shafts, charcoal piles, pits, barrows, bomb craters, hollow ways, etc. They could be point, linear, or areal objects. To this end, we are using deep learning techniques; namely, convolutional neural networks (CNNs) to classify height images from the region of interest. A combination of multiple (in most cases 5) CNN classifiers are then used to detect and localize objects of interest in a digital terrain model acquired from the region of interest.
    Team: Kazimi, Thiemann, Sester
    Year: 2018
    Sponsors: MWK Pro*Niedersachsen
  • Räumliche und räumlich-zeitliche GARCH Modelle
    Das Projekt beschäftigt sich mit einem Teilgebiet der räumlichen Statistik, die sich insbesondere mit der Analyse von Zufallsprozessen im Raum befasst. Bei der Analyse solcher Prozesse lässt sich häufig feststellen, dass Beobachtungen, die sich in räumlicher Nähe zueinander befinden, ähnlich sind. Wenn beispielsweise die Grundstückspreise in einer Gemeinde hoch sind, so lassen sich auch hohe Preise in den umliegenden Gemeinden erwarten. Neben dieser räumlichen Abhängigkeit in der Höhe der Beobachtungen lässt sich auch eine räumliche Abhängigkeit in der Streuung der Beobachtungen sowie der bedingten Heteroskedastizität feststellen. In dem Projekt sollen Modelle hierfür entwickelt und erweitert werden. Die räumlichen Modelle bilden dabei eine Analogie zu dem ARCH-Modell von Robert F. Engle (1982) in der Zeitreihenanalyse, der hierfür 2003 mit dem Nobelpreis für Wirtschaftswissenschaften geehrt wurde.
    Leaders: Prof. Dr. Philipp Otto
    Year: 2019
    Sponsors: Deutsche Forschungsgemeinschaft
  • Schätzung räumlicher Abhängigkeitsstrukturen
    In spatial econometrics, the classical approach would be to replace the unknown spatial dependence structure with a linear combination of an unknown scalar, which has to be estimated, and a pre-defined matrix of spatial weights. This non-stochastic weighting matrix describes the dependence. One might obtain insight into its structure by examining the spatial covariogram or semivariogram. In practice, however, the true underlying matrix cannot easily be assessed, and therefore has to be estimated by maximizing certain goodness-of-fit measures, such as the log-likelihood, in-sample fits, information criteria, or cross validations over certain classical weighting schemes. In contrast to this classical approach, the project aims to develop methods to estimate the entire spatial weighting matrix. Moreover, the procedures should account for endogenous effects.
    Leaders: Prof. Dr. Philipp Otto
    Year: 2019
  • Strukturbrucherkennung bei Zufallsprozessen mit räumlichen Abhängigkeiten
    With growing availability of high-resolution spatial data, like high-definition images, 3d point clouds of LIDAR scanners, or communication and sensor networks, it might become challenging to timely detect changes and simultaneously account for spatial interactions. To detect local changes in the mean of isotropic spatiotemporal processes with a locally constraint dependence structure, we propose a monitoring procedure, which can completely be run on parallel processors. This allows for a fast detection of local changes, i.e., only a few spatial locations are affected by the change. Due to parallel computation, high-frequency data could also be monitored. We, therefore, additionally focus on the processing time required to compute the control statistics.
    Leaders: Prof. Dr. Philipp Otto
    Year: 2019