Data Science - Big Data und Machine Learning

  • Räumliche und räumlich-zeitliche GARCH Modelle
    Das Projekt beschäftigt sich mit einem Teilgebiet der räumlichen Statistik, die sich insbesondere mit der Analyse von Zufallsprozessen im Raum befasst. Bei der Analyse solcher Prozesse lässt sich häufig feststellen, dass Beobachtungen, die sich in räumlicher Nähe zueinander befinden, ähnlich sind. Wenn beispielsweise die Grundstückspreise in einer Gemeinde hoch sind, so lassen sich auch hohe Preise in den umliegenden Gemeinden erwarten. Neben dieser räumlichen Abhängigkeit in der Höhe der Beobachtungen lässt sich auch eine räumliche Abhängigkeit in der Streuung der Beobachtungen sowie der bedingten Heteroskedastizität feststellen. In dem Projekt sollen Modelle hierfür entwickelt und erweitert werden. Die räumlichen Modelle bilden dabei eine Analogie zu dem ARCH-Modell von Robert F. Engle (1982) in der Zeitreihenanalyse, der hierfür 2003 mit dem Nobelpreis für Wirtschaftswissenschaften geehrt wurde.
    Leitung: Prof. Dr. Philipp Otto
    Jahr: 2019
    Förderung: Deutsche Forschungsgemeinschaft
  • Schätzung räumlicher Abhängigkeitsstrukturen
    In spatial econometrics, the classical approach would be to replace the unknown spatial dependence structure with a linear combination of an unknown scalar, which has to be estimated, and a pre-defined matrix of spatial weights. This non-stochastic weighting matrix describes the dependence. One might obtain insight into its structure by examining the spatial covariogram or semivariogram. In practice, however, the true underlying matrix cannot easily be assessed, and therefore has to be estimated by maximizing certain goodness-of-fit measures, such as the log-likelihood, in-sample fits, information criteria, or cross validations over certain classical weighting schemes. In contrast to this classical approach, the project aims to develop methods to estimate the entire spatial weighting matrix. Moreover, the procedures should account for endogenous effects.
    Leitung: Prof. Dr. Philipp Otto
    Jahr: 2019
  • Strukturbrucherkennung bei Zufallsprozessen mit räumlichen Abhängigkeiten
    With growing availability of high-resolution spatial data, like high-definition images, 3d point clouds of LIDAR scanners, or communication and sensor networks, it might become challenging to timely detect changes and simultaneously account for spatial interactions. To detect local changes in the mean of isotropic spatiotemporal processes with a locally constraint dependence structure, we propose a monitoring procedure, which can completely be run on parallel processors. This allows for a fast detection of local changes, i.e., only a few spatial locations are affected by the change. Due to parallel computation, high-frequency data could also be monitored. We, therefore, additionally focus on the processing time required to compute the control statistics.
    Leitung: Prof. Dr. Philipp Otto
    Jahr: 2019
  • Interdisciplinary Center for Applied Machine Learning - ICAML
    Das ICAML (Interdisziplinäres Zentrum für Angewandtes Maschinelles Lernen) hat das Ziel, maschinelles Lernen interdisziplinär zugänglich zu machen. Um dieses Ziel zu erfüllen, werden drei fundamentale Komponenten der Lehre entwickelt und eingesetzt.
    Team: Leichter, Werner, Sester
    Jahr: 2018
    Förderung: Bundesministerium für Bildung und Forschung
    Laufzeit: 11/2017-11/2019
  • Objekterkennung in ALS-Daten mittels Deep Learning
    In Zusammenarbeit mit dem Niedersächsischen Landesamt für Denkmalpflege entwickeln wir ein Verfahren zur automatischen Erkennung archäologischer Objekte in luftgetragenen Laserscandaten. Die Art der Objekte, die entdeckt werden sollen, ist hauptsächlich für Archäologen von Interesse, wie z. B. Haufen, Schächte, Holzkohlepfähle, Gruben, Schubkarren, Bombenkrater, Hohlwege usw. Es kann sich um spitze, lineare oder flächige Objekte handeln. Zu diesem Zweck verwenden wir tiefe Lerntechniken; nämlich Faltungsneuronale Netze (CNNs) zum Klassifizieren von Höhenbildern aus der Region von Interesse. Eine Kombination mehrerer (in den meisten Fällen 5) CNN-Klassifikatoren wird dann verwendet, um interessierende Objekte in einem aus der interessierenden Region erfassten digitalen Geländemodell zu erkennen und zu lokalisieren.
    Team: Kazimi, Thiemann, Sester
    Jahr: 2018
    Förderung: MWK Pro*Niedersachsen
  • Echtzeitvorhersage für urbane Sturzfluten und damit verbundene Wasserkontamination (EVUS)
    Ziel dieses Projektes ist die Entwicklung eines schnellen Prognosemodells für Sturzflut in der Stadt Hannover. Hauptziel des Teilprojekts für das ikg ist die Integration neuer Sensoren für die Hochwasservorhersagemodelle.
    Team: Feng, Sester
    Jahr: 2017
    Förderung: BMBF Georisiken
  • Ja, wo laufen sie denn?
    Für Profi-Trainer oder auch einfache Hobby-Kicker. Vielen Fußballbegeisterten wird der Weg zum Taktikfuchs durch eine automatisierte Spielanalyse am Computer erleichtert. Ausgeklügelte Verfahren ermöglichen eine einfachere Bewertung der Leistung der Akteure.
    Team: Feuerhake, Sester
    Jahr: 2017
  • Szenenanalyse - Mustererkennung in Personentracks
    Ziel des Projektes ist die automatische Erkennung von Mustern in Trajektorien von Personen, die in Videosequenzen detektiert und verfolgt worden sind. Die Grundhypothese ist dabei, dass sich mögliche Gefahrenquellen durch ein auffälliges Bewegungsverhalten erkennen lassen. Im Projekt sollen Individual- und Gruppenmuster, sowie die Feststellung, wann ein Muster als auffällig zu charakterisieren ist, aus den Daten abgeleitet und gelernt werden.
    Team: Fischer, Sester
    Jahr: 2017
  • 3D-Objektextraktion aus hochaufgelösten 3D-Punktwolken
    In den Landesvermessungsbehörden liegen flächendeckende, kontrollierte Airborne Lascerscanning-Datensätze mit unterschiedlichen Punktdichten vor, welche i.d.R. mindestens in die Klassen Boden- und Nichtbodenpunkte differenziert wurden. In der Arbeitsgemeinschaft der Vermessungsverwaltungen (AdV) wird ein Aktualisierungszyklus von 10 Jahren diskutiert. Weiterhin leiten die Landesvermessungsämter auf Basis von digitalen Bildflügen mit hohen Überlappungen 3D-Punktwolken mit dem sogenannten „Dense-Image-Matching“-Verfahren (DIM) ab, welche eine Auflösung im Pixelbereich besitzen. Radiometrische Information aus den Luftbildern ergänzen die Informationstiefe dieser Punktwolken, welche aufgrund der Bildkorrelation in der Regeln auf ein Oberflächenmodell begrenzt sind. Hierbei ist ein 2-3-jähriger Befliegungszyklus die Basis.
    Team: Politz, Sester
    Jahr: 2017
    Förderung: Forschungs- und Entwicklungsvorhaben zwischen den Landesvermessungsämtern Niedersachsen, Schleswig-Holstein und Mecklenburg-Vorpommern