Cheng - Research Projects

Mobility

  • Deep learning of user behavior in road space - particularly in shared spaces
    The project aims to investigate the behaviour of different road users in unregulated spaces, i.e. spaces open to all road users. Existing approaches are based on a given movement model, which describes the individual behaviour as well as the interactive behaviour of different road users.
    Team: Cheng, Sester
    Year: 2018
    Sponsors: DFG-Graduiertenkolleg SocialCars

Research Projects

  • Extracting Relevant Features That Determine Collision Avoidance in Shared Spaces
    In distinction to classic traffic designs which, in general, separately dedicate road resources to road users by time or space division, an alternative solution—shared space—has been proposed by traffic engineers. Pedestrians, cyclists, and vehicles interact with each other and self-organize to give or take right-of-way. The safety of shared spaces need to be thoroughly investigated, namely, how road users adapt their speed and/or orientation in the interactions with others in their vicinity to avoid collisions. In order to extract the most relevant features that reflect how a road user adjust his/her motion to avoid potential collisions with others in shared spaces, real-world trajectories will be analysed using statistical and machine learning approaches. For instance, the safe distance may differ significantly across different types of road users. Can we quantify such differences and impacts? Currently, however, user attributes are not yet available in the dataset, which will be incorporated in future work.
    Leaders: Cheng
    Year: 2018
    Sponsors: DFG Graduiertenkolleg SocialCars

Master Theses

  • Multi-Path Prediction of Mixed Traffic Trajectories in Shared Spaces
    In shared spaces, road signs, signals, and markings are removed to allow mixed traffic directly interact with each other. The traffic engineer Reid defined it as a street encouraging pedestrian movement and reducing the dominance of vehicles without explicit traffic rules. All users have to follow informal social protocols and negotiation to use the road resources, and avoid any potential collisions. The lack of regulations makes interactions between multimodal road users more complex compared with conventional designs. With the availability of large scale datasets and the development of deep learning techniques in sequence modeling and prediction, deep learning approaches are widely used for trajectory prediction.
    Leaders: Hao Cheng, Prof. Sester and Prof. Fidler
    Team: Xinlong Han
    Year: 2019
  • Scene Context-Aware Trajectory Prediction in Shared Space
    In shared spaces, road signs, signals, and markings are removed to allow mixed traffic directly interact with each other. At a micro level, understanding how they behave and how we can foresee their behavior after a short observation time are crucial to intent detection and autonomous driving, and traffic management in shared spaces.
    Leaders: Hao Cheng, Prof. Sester and Prof. Fidler
    Team: Rui Liu
    Year: 2019
  • Residual Learning for Mixed Traffic Prediction in Shared Space
    In recent years, with the increased availability of computational power and large-scale datasets, data--driving approaches, especially Deep Learning approaches, have been largely used for trajectory modeling. Nevertheless, predicting mixed traffic trajectories in shared space is not trivial.
    Leaders: Hao Cheng, Prof. Sester and Prof. Fidler
    Team: Yuhao Zhang
    Year: 2019
  • A Study of State-of-the-Art DL Methods for Mixed Traffic Trajectory Prediction
    In recent years, with the increased availability of computational power and large-scale datasets, data-driving approaches, especially Deep Learning (DL) approaches, have been largely used for trajectory modeling. The performance for pedestrian trajectory prediction in crowded spaces has been improved year by year, such as the state-of-the-art Social-LSTM (Alahi et al., 2016) CVAE (Lee et al., 2017), and Social-GAN (Gupta et al., 2018). The goal of this master thesis is to apply such stat-of-the-art DL approaches in a more challenging environment—shared space—for trajectory prediction with mixed traffic agents and compare their performance.
    Leaders: Hao Cheng, Prof. Sester and Prof. Fidler
    Team: Xin Xu
    Year: 2019