Sester - Research Projects

  • Visual communication to control route choice behavior
    The individual choice of transport modality and route depends on a number of factors. In particular, information about the expected traffic situation is considered important. It should therefore be examined whether the mediation of the current and the anticipated situation on site (including the indication of certain securities) leads to the choice of a different route or even a different modality.
    Team: Fuest, Sester
    Year: 2018
    Sponsors: DFG-Graduiertenkolleg SocialCars
  • Deep learning of user behavior in road space - particularly in shared spaces
    The project aims to investigate the behaviour of different road users in unregulated spaces, i.e. spaces open to all road users. Existing approaches are based on a given movement model, which describes the individual behaviour as well as the interactive behaviour of different road users.
    Team: Cheng, Sester
    Year: 2018
    Sponsors: DFG-Graduiertenkolleg SocialCars
  • Object detection in airborne laser scanning (ALS) data using deep learning
    In partnership with the Lower Saxony State Office for Preservation of Historic Monuments, we are developing a method for automatically detecting archaeological objects in airborne laser scanning data. The type of objects to be detected are mainly those of interest by archaeologists such as heaps, shafts, charcoal piles, pits, barrows, bomb craters, hollow ways, etc. They could be point, linear, or areal objects. To this end, we are using deep learning techniques; namely, convolutional neural networks (CNNs) to classify height images from the region of interest. A combination of multiple (in most cases 5) CNN classifiers are then used to detect and localize objects of interest in a digital terrain model acquired from the region of interest.
    Team: Kazimi, Thiemann, Sester
    Year: 2018
    Sponsors: MWK Pro*Niedersachsen
  • Traffic-sign Recognition from Street-level Photos: a Deep Learning Approach
    The scope of this thesis is the recognition of traffic-signs from street-level images. A state-of-the-art deep learning detection algorithm is used, the Single Shot Multi-box detector (SSD) and within the thesis its performance is validated experimentally by examining different training strategies.
    Leaders: Prof. Dr. Bernhard Roth, Co-advisor: Prof. Monika Sester, Supervisor: Stefania Zourlidou
    Team: Qifa Bao
    Year: 2018
    Lifespan: 2018
  • Interdisciplinary Center for Applied Machine Learning - ICAML
    The ICAML (Interdisciplinary Center for Applied Machine Learning) aims at increasing the accessibility of machine learning across disciplines. Therefore, three fundamental components are developed and used.
    Team: Artem Leichter
    Year: 2018
    Sponsors: Federal Ministry of Education and Research
    Lifespan: 11/2017-11/2019
  • RainCars
    This idea would be easily technically feasible if the cars are provided with GPS and a small memory chip for recording the coordinates, car speed and wiper frequency. This initial research will explore theoretically the benefits of such an approach. For that valid relationships between wiper speed and rainfall rate (W-R relationship) are assumed and derived from laboratory and field experiments. Different traffic models are developed to generate motorcars on roads in a river basin. Radar data are used as reference truth rainfall fields. Rainfall from these fields is sampled from the conventional rain gauge and dynamic car networks. Areal rainfall is calculated from these networks for different scales using geostatistical interpolation methods and compared against truth radar data. The car sensors can be considered as a geosensor network. It allows to measure and process information locally in a decentralized way and thus has benefits with respect to scalability, which is crucial when large areas have to be covered with large amounts of measurement units.
    Team: Fitzner, Sester
    Year: 2017
  • Scene analysis - pattern recognition in person tracks
    The project deals with the automatic recognition of conspicuous movement patterns from given trajectories as (x, y, t) sequences of objects. For this purpose, patterns are defined that indicate conspicuous behavior for which automatic extraction methods are to be researched. This includes, among others, the qualitative description of the recognition rates of patterns.
    Team: Fischer, Sester
    Year: 2017
  • Real Time Prediction of Pluvial Floods and Induced Water Contamination in Urban Areas (EVUS)
    This project aims at developing a fast forecast model for pluvial floods in the city of Hannover. The main goal of the subproject for ikg is to integrate new sensors for the flood prediction models.
    Team: Feng, Sester
    Year: 2017
    Sponsors: BMBF Georisiken