
Cooperative Information Augmentation in a Geosensor Network 
 

Malte Jan Schulze, Claus Brenner, Monika Sester 

Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany 

Appelstraße 9a, 30167 Hannover 

{maltejan.schulze, claus.brenner, monika.sester}@ikg.uni-hannover.de 

 

Keywords: geosensor network, simulation environment, cooperation, data acquisition, distributed processing, mobile, 

mapping quality, meteorology 

 

 
This paper presents a concept for the collaborative distributed acquisition and refinement of geo-related information. The underlying 

idea is to start with a massive amount of moving sensors which can observe and measure a spatial phenomenon with an unknown, 

possibly low accuracy. Linking these measurements with a limited number of measuring units with higher order accuracy leads to an 

information and quality augmentation in the mass sensor data. This is achieved by distributed information integration and processing 

in a local communication range.  

 

The approach will be demonstrated with the example where cars measure rainfall indirectly by the wiper frequencies. The a priori 

unknown relationship between wiper frequency and rainfall is incrementally determined and refined in the sensor network. For this, 

neighboring information of both stationary rain gauges of higher accuracy and neighboring cars with their associated measurement 

accuracy are integrated. In this way, the quality of the measurement units can be enhanced. 

 

In the paper the concept for the approach is presented, together with first experiments in a simulation environment. Each sensor is 

described as an individual agent with certain processing and communication possibilities. The movement of cars is based on given 

traffic models. Experiments with respect to the dependency of car density, station density and achievable accuracies are presented. 

Finally, extensions of this approach to other applications are outlined.  

 

 

1. INTRODUCTION 

Geosensor networks are composed of a possibly large number 

of individual sensors with measuring, positioning and 

communication capabilities. Through local cooperation of 

neighboring sensors the whole network is able to perform 

actions that go beyond an individual sensor’s capabilities and 

achieve a common global goal. In this way the geosensor 

network is able to acquire information about the environment in 

an unprecedented detail. 

 

Geosensor networks mark a paradigm shift in measuring 

systems in two ways: from centralized to decentralized data 

acquisition, and from a separation of measurement and 

processing to integrated acquisition and analysis.  

 

The advantages of geosensor networks lie in their scalability 

and also in their fault tolerance, as the role of individual sensors 

is not crucial - due to the high redundancy. These properties 

lead to a large number of applications of geosensor networks 

e.g. in environmental monitoring or in military. 

 

From a computational and geoinformatics point of view, the 

challenge is to devise algorithms that are able to work locally 

and still achieve a common global solution. There are many 

spatial algorithms that operate in a centralized manner, 

presuming access to all the information; however, in the case 

where a local processing unit only has a limited view of the 

surrounding information, existing algorithms have to be adapted 

or new ones have to be devised to achieve a decentralized 

processing. 

 

1.1 Prerequisites of our approach 

Sensors can have different capabilities. In our approach, we 

start with the assumption that the cooperation of a large number 

of sensors of similar, but limited, quality and a few sensors with 

higher quality can lead to an enrichment of the poor quality 

measurement of the limited sensors. The measurements are 

integrated and accumulated in a Kalman Filter and thus – over 

time – lead to a higher accuracy of the sensed information.  

 

1.2 Problem statement 

Rainfall is the most important information source for 

hydrological planning and water resources management. 

Especially the modelling of high dynamic processes like floods 

and erosion rely on high resolution rainfall information. For this 

measurement, non-recording stationary gauges exist, which 

measure with a daily observation interval. These instruments are 

typically available in a high density (e.g. in Germany 1 station 

per 90 km2). The density of recording rain stations is still 

inadequate (e.g. in Germany 1 station per 1800 km2).  

 

The idea of our approach is to densify the number of stations 

using unconventional sensors, which are massively available 

and can measure rainfall (at least approximately), namely cars: 

when it rains, car drivers start their wipers in order to clean the 

windshields. Thus, starting the wipers is an indication for liquid 

on the windshield; the frequency of the wiper is related to the 

amount of rainfall. The exact relation between wiper frequency 

and rainfall is unknown, however, it can be calibrated on-the-fly 

using measurements from the environment: on the one hand, if 

a car passes by a recording rain station; on the other hand, if a 

car passes by another car, which has been calibrated at a rainfall 

station recently. Thus, by locally exchanging and accumulating 

the measurements, the quality of the a priori unknown 

information, namely the amount of rainfall, can incrementally 

be determined and refined.  

 

1.3 Approach 

We simulate traffic and rainfall using a real road network. 

Traffic is simulated by generating random routes on the road 
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network; the rainfall is simulated by generating a raincloud. 

Cars move in this environment and measure rainfall with their 

wipers. The initial coarse rainfall measurement quality of each 

car is iteratively improved through local cooperation of moving 

cars and rainfall stations. 

 

1.4 Overview of the paper 

After a description of related work, we will introduce our 

approach to the above described problem in section 3. We 

describe our simulation environment and the implementation of 

the Kalman filter. In section 4, examples are shown which 

verify the results. Section 5 gives a brief summary and an 

outlook on future work. 

 

 

2. RELATED WORK 

A general overview of wireless sensor networks is given in 

(Akyildiz et al., 2002). Geosensor networks for the observation 

and monitoring of environmental phenomena are a recent trend 

in GIScience. Traditional geodetic networks consist of a fixed 

set of dedicated sensors with a given configuration and 

measurement regime. The processing of the data is usually done 

in a centralized fashion. The advent of geosensor networks 

brings about the chance to move from a centralized approach to 

an approach using distributed sensors with computation and 

communication capabilities (Stefanidis & Nittel 2004). 

 

The advantages as opposed to a centralized system are its 

scalability, and its high spatial and temporal resolution. In order 

to fully exploit a geosensor network in the way described, 

methods for local information aggregation have to be devised. 

Such methods have to take the neighbourhood and the 

communication range of the individual sensors into account. 

There are many application areas for geosensor networks, e.g. 

environmental observations (Duckham & Reitsma, 2009),  

surveillance, traffic monitoring and new multimodal traffic 

(Raubal et al., 2007). 

 

Decentralized algorithms for geosensor networks have been 

investigated by several researchers and for different 

applications. Laube et al. (2008) describe an algorithm to detect 

a moving point pattern, namely a so-called flock pattern. A 

flock is described as a group of objects that moves in a certain 

distance over a certain time. In a similar spirit, Laube & 

Duckham (2009) present a method for the detection of clusters 

in a decentralized way. Depending on the communication 

range, clusters of a certain size (radius) can be detected. 

 

Walkowski (2008) presents an approach for the optimal 

arrangement of geosensor nodes in order to correctly describe 

an underlying temporally varying phenomenon, like a toxic 

cloud. He assumes to have sensors that are able to move; 

however, the determination of the locations of lacking 

information has to be determined in a centralized fashion. Zou 

& Chakrabarty (2004) describe an approach to optimally cover 

an area with a given set of sensors. Sester (2009) presents an 

approach for cooperative detection of a boundary of a spatial 

phenomenon using a mobile geosensor network.  

 

For traffic simulation there are programs that simulate not only 

the movements of the traffic objects on the infrastructure, but 

also the behaviour and the decisions of the users. For a 

consistent modelling of these aspects agent based approaches 

are used, where each traffic participant is modelled individually 

(Raney & Nagel, 2006).  

 

In terms of fusing measurements in an optimal way, Kalman 

filtering is a widely employed technique, which is described in 

standard textbooks (Brown & Hwang, 1997, Simon, 2006). 

 

The principle applicability and suitability of our approach has 

been investigated earlier by Haberlandt & Sester (2009). There, 

the main focus was to explore the quality of the interpolation 

taking different traffic densities and given wiper-rainfall-

relationships into account. 

 

 

3. APPROACH 

3.1 Basic concept of simulation environment 

The main objective in our work is to describe the quality of rain 

measurement using cars as rain gauges. In opposition to rain 

measurement stations that can record the rainfall data directly 

by using dedicated rainfall sensors, the cars in our approach do 

not have such sensors. We consider the wiper frequencies of a 

car as correlated to the rainfall intensity. When the intensity is 

high, one would switch the wiper frequency of the car to a high 

value in order to have a better visibility. When there is no 

rainfall at all, the wipers of the car would not be used. 

 

The cars are considered as sensor nodes that can measure their 

position (for example via GPS) and their wiper frequency. In 

addition, they can perform calculations based on the locally 

collected data and share them with other cars using a wireless 

communication device (see Fig. 1). 

 

 

 
Fig. 1: Communication between cars and stations, with 

communication ranges CRc and CRs, respectively. 

 

In order to determine the intensity of the rainfall from the wiper 

frequency information, we need a functional relationship 

between the wiper frequency and the rainfall intensity, 

otherwise the collected wiper frequency data of a car leads to a 

very uncertain estimation for the rainfall intensity. To simulate 

this case, we give cars without any information about the 

functional relationship a high standard deviation. 

 

To provide high quality rain measurement data, a few weather 

stations, that can measure the rainfall intensity with a very high 

certainty, are distributed across our road network. The cars can 

use those high quality data, to improve their own certainty 

about the rainfall measurement. 
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Fig. 2: Improvement of the certainty of a car by communication 

with a weather station. 

 

As shown in Fig. 2, the standard deviation decreases rapidly, 

when the car enters the communication range of a weather 

station, leading to a high certainty of rainfall measurements 

from the car. When the car leaves the communication range, the 

certainty gently decreases until it reaches the original level. 

While decreasing, the car can still share its information with 

other cars that are not in the range of a weather station, helping 

to improve their level of certainty. 

 

 

3.2 Implementation of simulation environment 

Car movement 

The simulation environment describes an agent based system, 

where each car is considered as an agent that follows a certain 

trajectory through a road network. We determine the movement 

of the cars by randomly selecting start- and endpoint of each 

trajectory. The movement through the road network is 

calculated using the A*- algorithm to determine the shortest 

path. The visited nodes of the road network are saved together 

with a timestamp. The simulation itself is based on a central 

start- and end time with constant time steps of 10s. For each 

step, the position of all cars is calculated by using a linear 

interpolation between two nodes. 

 

Rainfall simulation 

The rainfall intensity in our simulation environment is modelled 

by a mixed Gaussian with randomly distributed centers. The 

calculated field is normalized. The calculation of the Gaussian 

is based on (1). The result for the simulated raincloud is shown 

in Fig. 3. For this simulation, the rainfall intensity is considered 

to be stationary. 
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Fig. 3: Simulated distribution of rainfall intensity. 

Observation of rainfall and communication strategy 

For each car, a Kalman filter is implemented to describe the 

system state x and its quality 
,xx k


Σ  (2). 
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The system state consists of two variables x  and x . The 

rainfall intensity is described by x , which can be considered as 

the rainfall speed, having the unit 2mm m s . It can be 

determined from the wiper frequencies of a car and is directly 

observed by a weather station. As the cars move underneath the 

stationary rainclouds, a second parameter x  is estimated, which 

describes the change of the rainfall intensity, having the unit 
22mm m s . The certainty of the system state is described by 

the covariance matrix ,xx k


Σ . The covariance increases with the 

time passed, as the system noise 
wwΣ  accumulates. To make a 

statement about the quality of the rainfall measurement, we 

focus on the standard deviation ,x k   of the rainfall intensity. To 

predict the system state in the next epoch k+1, the transition 

matrix 1k

kΦ  is used. This is a standard transition matrix usually 

employed for the estimation of object positions using the 

assumption of constant speed. To update the system state with 

observations, three different cases of communication are taken 

into account: 

 

1. The car is located outside the communication 

range of other cars and stations. In this case, there is 

no data exchange. The car determines the rainfall 

intensity 1

own

kl   with a high standard deviation , 1

own

l k   

due to the uncertainty of the wiper-rainfall 

relationship. Only one observation is used to update 

the system state. 

 

2. The car is located inside the communication 

range of a weather station. The weather station 

determines the rainfall intensity and transmits the 

data to the car. Once the data exchange is done, the 

car uses the observation 1

1

station

kl 
 and its small 

standard deviation 1

, 1

station

l k   to update its own system 

state. The weather station does not update its 

measurements with the car measurements, because 

the weather station is measuring with highest 

accuracy and the improvement by the cars is not 

significant. The small standard deviation helps to 

improve the certainty of the system state (as shown 

in Fig. 2). If the car is in communication range of 

two or more stations, the observations are put 

together in a vector and their standard deviations are 

used to build a covariance matrix for the observation 

vector. 

 

3. The car is located outside the communication 

range of a weather station, but inside the 

communication range of another car. It receives the 

rainfall intensity and its standard deviation from the 

system state of the other car and uses it as an 

2

mm

m

s  



 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XX, Part XXX 

observation together with its own observation, if its 

system state is more uncertain than the system state 

of the other car. The rainfall intensities can be 

considered as equal, as the communication range of 

a car is very small. If more cars with a smaller 

standard deviation are in communication range, all 

observations are put together in an observation 

vector lk+1 and its covariance matrix , 1ll kΣ . 
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Mapping of the rainfall 

In order to map the rainfall data, the area of the road network is 

converted from vector to raster data. Each cell from the road 

network is a possible candidate to receive information about the 

rainfall once a car passes by. We consider two factors that will 

have influence on the quality of the mapped data. The quality of 

the information in a cell is decreasing with the elapsing time, 

but it will increase with the number of cars that pass this cell. In 

order to model this fact, a second Kalman filter for each cell 

that can be passed by a car is implemented. Its system state is 

described as follows: 
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As in our case the simulated raincloud is static, we do not need 

the parameter kx , which was implemented in the Kalman filter 

for the cars (2). The decay in quality is modelled with the 

system noise 
wwΣ , which is added to the system state at every 

time step as a part of the prediction. 

 

Once a car passes by, the system state of the cell is updated, 

using the system state of the car about the rainfall intensity and 

its standard deviation as an observation. 

 

After the simulation run, we are able to make a statement about 

the quality of the rainfall mapping by looking at the following 

statistics: 

 

 The difference between the mapped data and the 

simulated values. 

 The standard deviation of each cell. 

 The number of times a cell has been visited. 

 The coverage of the area. 

 

They will be presented in the following chapter, where we 

discuss the first experiments that we have done in the presented 

simulation environment. 

 

 

4. EXPERIMENTS 

We took road data as well as the locations of the weather 

stations from a study area of approx. 3300 km2 in the Bode river 

basin located in the Harz Mountains in Northern Germany 

(Haberlandt & Sester, 2009).  Our results are based on a given 

car density and station distribution. Some parameters are 

chosen identical for every run of the simulation: The 

communication range for a car-car system is set to 200 m and 

for a station-car system to 2000 m. The simulation time is 1.5 h 

for each run and the cars are driving with an average speed of 

70 km/h. The size for each cell is set to 200 m. The relation 

between the system noise and the measurement uncertainty, 

which controls the abatement of the car’s certainty, is identical 

for each run. 

 

Simulation run with 50 cars 

As a result of this run, we reached a standard deviation based 

on differences between the mapped rain values and the given 

ones of 6 %, which is acceptable. In total, 25 % of all reachable 

cells were mapped during the simulation. As some of them were 

visited twice or more often, an average visiting rate of 0.69 for 

each of them was reached. 

 

An example for the improvement of the system state of a single 

car is given exemplarily in Fig. 4. It shows that the certainty of 

the system state of a car improves rapidly when it 

communicates with a weather station. After the communication 

range is left, it decreases slightly until it reaches the initial value 

again. Similarly, the communication with a car leads to an 

improvement of the quality, although it is not as high as in 

comparison with the weather station. An interesting fact is 

shown in the third break of the curve. The system state can 

improve even more, when two cars communicate several times 

in a row. 

 

 
Fig. 4: Improvement of the system state by communication with 

other participants. 

 

The quality of the mapped data is shown in Fig. 5. It gives an 

overview over the simulation area, the distribution of the 

weather stations and shows the standard deviation of each 

mapped cell. 

 

 
Fig. 5: Standard deviation of each reached cell with a 

distribution of four stations and 50 cars. 

[ 2mm m s ] 
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It confirms the statement of Fig. 4, as it shows dark blue areas 

around the station, which stands for a low standard deviation. 

The standard deviation on roads, that are chosen more often, 

seems to be on a lower level than on other roads that fork from 

them. This effect can be explained by the number of visits, as 

shown in Fig. 6. 
 

 
Fig. 6: Number of times a cell has been visited using 50 cars. 

 

It shows that these roads are more often visited, than the other 

ones. In fact, the correlation between visiting time and variance 

of a cell is calculated to -0.73, which means, that the quality of 

mapping is not only affected by the weather station information, 

but also by the number of visits. 

 

The following example shows the mapping quality results with 

the original station distribution. The original station distribution 

leads to a better mapping in the area where they are placed, 

although some of them are never reached by a car. It confirms 

the dependency of the mapping quality on the number of 

visiting times, because the standard deviation between Fig. 5 

and Fig. 7 is nearly identical for roads, which have been chosen 

more often, and therefore nearly independent from the station 

distribution. 

 

In order to improve the mapping quality, we did another 

simulation run with 100 cars. The results of this run are 

presented in the next section. 

 

 
Fig. 7: Standard deviation of each visited cell, using the original 

distribution of stations. 

 

Simulation run with 100 cars 

As a result of this test run, we reached a standard deviation 

based on differences to the original rain values of about 7 %, 

which is the same order as the simulation above has shown. The 

coverage of the area is slightly higher with about 35% of all 

reachable cells. On average, each cell was visited 1.4 times. The 

standard deviation of each mapped cell is shown in Fig. 8. 

 

 
Fig. 8: Standard deviation of each visited cell with a ficticious 

distribution of four stations and 100 cars. 

 

The main roads of a low standard deviation are much the same 

as in the tests runs that are described before, but they reached a 

higher level of system certainty, which can be even at the same 

level as the area, that is covered by the rain stations. According 

to the results already mentioned, this indicates that a small 

number of roads are chosen more often than others, these are 

the main roads in the network which connect the towns. This 

leads to the conclusion that weather stations to improve the 

system state of a car are much more needed at roads that are not 

so highly frequented, as the main roads. As the chance is high 

that a car, which receives information from a weather station on 

a low frequented road, will continue its journey on a main route 

is much higher than the other way around, the whole area will 

be mapped with a higher quality. 

 

 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented an approach to use a sensor network 

in order to predict rainfall intensities over a large area. Our 

sensor network is made of two different sensor types – highly 

accurate, but stationary, rain stations, and moving cars, which 

measure the rainfall only indirectly (and inaccurately) via their 

wiper frequencies. Although we concentrate on the rainfall 

application here, the basic principle can be easily adapted to 

other scenarios which involve moving low-budget sensors 

which improve their accuracy by communication with other 

(possibly more accurate) sensors. 

 

In order to evaluate our approach, we used a real street network 

and real weather station locations. We then simulated rainfall 

intensity using a mixture of Gaussians as well as the positions 

of cars over time. From this, we derived results regarding the 

standard deviation of the estimated rainfall intensity, which is 

considered to be a measure of the system’s certainty about the 

estimated state. 

 

[ 2mm m s ] 

[ 2mm m s ] 

[ 2mm m s ] 
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There are a number of improvements possible, which we will 

consider in future work. First, we assumed some constants in 

our simulation, especially the system and measurement noise in 

the Kalman filters. These constants should be verified using real 

data. Second, we used a rather simple model for the relationship 

between the wiper frequency and the rainfall intensity. 

However, ideally, this relationship should be more complicated 

and the filter should include calibration parameters, such as an 

offset and bias. Finally, the assumption of static rainfall could 

be replaced by a moving rain field and simulated traffic could 

be replaced by real (measured) traffic frequencies and speeds. 
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