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ABSTRACT: 
 
For communication tasks adapted types of information are needed. In navigation, for example, landmarks play an essential role. In 
order to be able to recognize these landmarks immediately also from larger distances, unimportant details have to be simplified and 
relevant and characteristic features have to be visible. Thus, these characteristics should be highlighted or enhanced, which is a 
generalization function. We concentrate on building landmarks. In order to simplify and emphasize 3D buildings, the idea in this 
research is to use a generic set of templates for typical 3D-buildings and replace the original 3D shape with the most similar of those 
templates. In this paper, we briefly describe the whole workflow, but concentrate on the adaptation. For this adaptation process we 
propose optimization techniques. Depending on the target function to optimize, different approaches can be chosen, which will be 
described in the paper. The results using Least Squares Adjustment are presented.  
 
 

1. INTRODUCTION AND RELATED WORK 

Generalization of 3D objects is being tackled in Computer 
Graphics and many methods have been proposed to solve it; 
however, typically, the methods do not take specific object 
properties into account (Heckbert & Garland, 1997). In recent 
years, the generalization of 3D urban scenes has gained 
considerable interest and a variety of approaches has been 
proposed. The proposed methods mainly focus on the 
generalization of individual buildings, usually beginning from a 
highly detailed CAD models. For individual building 
generalization they use concepts borrowed from 2D-
generalization attempting to reduce the geometric complexity of 
the 3D-shapes replacing their shapes by simpler versions. 
Forberg (2004) unites the advantages of mathematical 
morphology and curvature space in one process. The approach 
is based on “parallel shifts” and merge of two neighboring 
parallel facets whose distance falls below a predefined 
threshold. Such a “parallel shift” may lead to the simplification 
of all parallel structures including the split or merge of different 
object parts, the elimination or adjustment of local protrusions, 
step structures as well as box structures. Thiemann (2002, 2005) 
proposes segmenting complex buildings into their main parts 
and then interpreting and generalizing these parts in an object 
dependent way. Kada (2005) also starts from a segmentation of 
the whole building space into the parts defined by the faces of 
the building in a similar fashion as Thiemann (2002). However, 
Kada (2005) includes a flexible threshold that directly allows 
for a generalization and adaptation of faces of similar pose and 
direction. Lal and Meng, (2004) implemented an algorithm 
based on a hierarchical neural network to automatically 
recognize planar-structured building types. The recognized 
building type is further used as one of the input parameters of a 
classification of neighborhood relationships and thus the 
detection of building clusters. For groups of buildings, only 
very simple approaches like selective omission of some 
buildings are implemented, e.g., by Google Maps. More 
advanced recent approaches take context and scale into account 
to select what buildings to present (Omer et al. 2005). 
 

The review of the state of the art reveals that generalization of 
3D buildings is a relatively new research area where the focus 
was put on the generalization of individual buildings that try to 
preserve as much as possible the original shape. In contrast to 
this, we will concentrate on the generation of adaptive 3D 
templates that serve as a kind of 3D symbol, which, however, 
still resembles the original object in its important properties 
(e.g., a church with two towers should be represented with a 
template church that has this property).  
 

2. 3D-ADAPTIVE TEMPLATES 

The research presented in this paper concentrates on a specific 
generalization process, namely the emphasis of important 
individual 3D buildings (landmark objects), with their 
characterizing features in a way that they can be immediately 
recognized and understood. The idea is, that buildings can be 
categorized into a limited number of classes with characteristic 
shapes. Instead of presenting a specific building, a most typical 
representative of that class will be presented. In order to do so, 
the idea in this research is to use a generic set of templates for 
typical buildings and replace the 3D shape with the most similar 
of those templates. A comparable approach has been presented 
by Rainsford & Mackaness (2002) for the generalization of 2D-
buildings. In contrast to their work, however, we are dealing 
with 3D objects, and we will not rely on a fixed alphabet of 
templates that only have to be scaled, but we have to define 
generic templates that can be composed of an arbitrary number 
of parameters (e.g. church is composed of n towers; each of 
them can be described by a cuboid with parameters a, b, c). 
Thus the challenge is the definition of the generic templates and 
the adaptation or matching process. For the adaptation, methods 
from homogenization will be applied, e.g. ICP (Besl and 
McKay, 1992) or 3D adjustment. The process is similar to an 
earlier work of building simplification in 2D (Sester, 2000).  
 
The process of generating 3D adaptive templates consists of the 
following steps:  

- Definition of elementary building types and their 
characterizing features  



 

- Definition of a set of 3D templates (e.g. church 
towers, church body).  

- Development of methods to recognizing the template 
features in the objects. 

- Development of methods for adapting and optimally 
fitting the templates to the real object. 

 
In the paper we will concentrate on the last step, namely the 
adaptation and optimal fitting of the given 3D model template 
to the original detailed building shape. 
 

3. ADAPTATION PROCESS 

3.1 Determination of 3D templates 

The determination and selection of the templates can be pursued 
in two ways: on the one hand, an appropriate template can be 
selected based on the attributes of the object. This is similar to 
the 2D-map case, where, e.g. churches are assigned a certain 
building symbol in a given scale. On the other hand, if such a 
semantic assignment is not available or, if a lesser degree of 
generalization is searched, the templates can be generated based 
on a simplified form of the original object.  
 
In our previous work we presented an approach to segment a 
3D building into different parts based on geometric criteria 
(Thiemann, 2002). In a subsequent step, these parts can be 
assigned a meaning using a set of rules (Thiemann & Sester, 
2005). The result of such a segmentation and interpretation step 
is a simplified version of a building, which is reduced to its 
main geometrically dominant shape. Thus, the coarse object is 
structurally and topologically similar to the original object, but 
geometrically there are large deviations. In order to fit this 
coarse shape – which can be interpreted as a simplified template 
– to the original building, an adaptation process has to be 
performed.  
 
3.2 Representation of building model 

The building is given in terms of a boundary representation. It 
is modelled as complex building, including details like roof 
structure, windows, doors, porches, chimneys, etc. An example 
for such a building is given in Figure 1. 

Figure 1: Example for original building modelled in 
full detail.  

In our approach the individual boundary surface elements are 
represented with the plane parameters in Hessian Normal Form 

, where  is the normal vector and d is the distance 
from this plane to the origin of the coordinate system.  
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3.3 Adaptation process 

The goal of the adaptation process is a optimal fit of the coarse 
template building (or prototype building) to the original object. 
An optimal fit can be defined as an adaptation where the 
differences in volume between the two shapes is minimized, or, 
the sum of the distances between the individual facades 
between the two representations is minimized.  
 
The adaptation can be achieved by shifting (i.e. moving) of the 
individual planes. As the whole building is given in boundary 
representation, the topology between the adjacent planes is also 
preserved. However, to a certain degree also a change in 
topology can be achieved, e.g. when a general hipped roof is 
adapted to a saddleback roof: the general hipped roof consists 
of two inclined faces and a horizontal face on the top, whereas 
the saddleback roof is only composed of the two inclined faces. 
In this case, the horizontal face is reduced to a nearly vanishing 
face. For the adaptation, we experimented with two approaches, 
which will be described in the following.  
  
3.3.1 Approach 1: Minimizing the symmetric volume 
difference 
 
This approach aims at reducing the volumes that are different in 
the corresponding objects, leading to the fact that volumes 
extruding ( ) and intruding ( ) the objects are 
minimized. The functional is the following: 

PO \ OP \

  POOPOP \\ ∪=Δ  
namely, the difference between prototype  (P) and object (O) 
united with the difference of original and prototype. Depending 
on the functional goal, two different results can be achieved:  
 

a) Minimizing the maximum of both volumes leads to an 
adapted object with the same volume. 

b) Minimizing the sum leads to a body with least 
differences.  

 
The functional dependencies between the volume differences 
and the plane parameters can not be differentiated continuously. 
The differentials can only be determined numerically. 
Therefore, the optimum was calculated using the Downhill-
Simplex-Algorithm.  
 
The drawback of this approach is the bad convergence 
behavior. Furthermore, there can be several local minima that 
need not be an optimum. Therefore, we applied the strategy, 
that after a number of iterations, new start values were used for 
the next iterations steps. This sequence was repeated, until a 
minimal threshold was reached.  
 
3.3.2 Approach 2: Minimizing distances between surface 
points  
 
The idea of this approach is to discretisize the individual 
surfaces by points, find closest distances to the second surface 
and minimize these distances. In order to have a good 
representation of the original face by the point sample, the 
number of points have to be of an adequate size. Furthermore, 
the points have to be randomly distributed over the surface in 
order to reduce systematic effects. In order to achieve an equal 
distribution, however, without sampling the points evenly, we 
laid a raster over the surface and created a random point in each 
raster cell (see Figure 2). As we are using only a sub sample of 



 

potentially all surface points, the solution will only be an 
approximation. The higher number of sample points used, the 
better the accuracy will be, however, also the higher are the 
computational costs.  
 

 

Figure 2: Equally distributed random sample points 
of the prototype and the original building 

Convergence is guaranteed only when the surfaces of the 
prototype are attracted by the corresponding surfaces of the 
original object. This is the case, when approximate start 
position of the prototype lies within the 3D-middleaxis of the 
original object (see Figure 3).  
 

  

Figure 3: 3D-middleaxis (source: Sherbrooke, 
Patrikalakis & Brisson 1995) 

As the functional dependencies between surface and 
corresponding point are straightforward, this approach can be 
solved with Least Squares Adjustment (Lawson & Hanson, 
1974). The observations are the distances (see Figure 4), 
whereas the unknowns are the plane parameters, in this case 
only the distances of the plane from the origin (plane parameter 
d).  
 
The dimension of the Jacobian matrix A is therefore 
corresponding to the number of surfaces of the prototype. No 
weights are used, leading to the simple form of the normal 
equation 

 ( ) lAAAxd TT
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The elements of the A-matrix are determined by the derivative 
of the distance to the closest point from the prototype surface.  

The derivative (d’) is the quotient of the distance in normal 
direction of the plane (dn) and the slope distance (d). The square 
of derivative of points with vertical distance is 1, points with 
horizontal distance have a derivative of 0. In the case, that 
prototype plane and the face of the original are coplanar, we 
have to consider if distance is 0 than the square of derivative is 
set to 1, in all other cases the derivative is 0. 
 

prototype

original

d‘= dn/d d‘=-1
d‘=0

d‘=1

dn

 
 

Figure 4: Distances and their derivatives. 

lAT
r

describes the sums of the distances of the surfaces along 
the normal direction.  
 
As every measurement (distance) is a function of  only one 
unknown plane parameter, the normal equation matrix ( ) 
has only diagonal structure..  Therefore, the equation is 
simplified furthermore, leading to a direct solution: 
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There are two ways to use this approach: either the prototype 
can be discretized and the shortest distances to the original 
object are calculated or vice versa.  
 
The advantages discretizing the prototype are twofold: on the 
one hand, each distance is directly linked to a surface and its 
corresponding parameters, therefore, the distances do only have 
influence on this parameter. On the other hand, this approach 
also has a generalizing effect, as it does not respect small 
extruding volumes that stick off the original object (see Figure 
5) 
 
 

original

prototype

ignored part

Figure 5: Generalizing effect due to distance 
measurement. 

There are, however, also disadvantages: as the prototype and its 
surfaces are modified in each iteration step, the sampling has to 
be repeated in each step also. This leads to noise effects 
between the iterations. Furthermore, the point density has to be 



 

high enough on order to compensate for the noise effect. The 
solution we took was to densify the sampling in each iteration – 
leading also to higher computational costs.  
The (positive) generalization effect that reduces extended 
protrusions of the object, can also have a negative effect, as it 
leads to different local minima depending on the influence 
range of the distance operation.  
 
The second option of discretizing the original object has the 
positive effect that the points have only to be determined once, 
as the original object does not change its shape during the 
iterations. Therefore, also no noise effects during the iterations 
will occur. However, it can happen, that there is not a unique 
correspondence of the point to the prototype surface (e.g. when 
the shortest distance is to an edge or a vertex of the object). 
Also, oblique faces have a higher influence on the result as 
parallel faces - in order to compensate for this, weights have to 
be introduced, leading to a more difficult structure of the 
normal equation system. 
 
The advantage of using Least Squares Adjustment is that also 
additional constraints can easily be integrated in terms of 
observations. So one could think of including as additional 
constraint that the volume should be preserved. The 
disadvantage is, however, that the volume depends on all 
parameters, leading to a full equation system; furthermore, 
volume differences will be distributed equally to all surfaces – 
even to those that are coincident with each other.  
 

4. EXPERIMENTS AND EXAMPLES 

In the following, examples will be shown that were achieved 
using the Approach 2, namely minimizing the distances 
between prototype and original object. In all the examples, the 
original building is given in transparent blue, the adapted 
prototype is colored in yellow. 
 
Figure 6 shows a simple building with windows, chimney and a 
gable roof with overhang on all sides. The prototype is also a 
gable roof, however without roof overhang. The result nicely 
shows the effect of the adaptation: the roof is fitted to the main 
roof parts, the short side walls are slightly moved outside – due 
to the roof overhang; also the front side is slightly moved 
inside, due to the effect of the windows, that sit back in the 
façade.  

Figure 6: Adaptation of saddleback roof building. 

Figure 7 shows the result when using a different prototype, in 
this case the generic hipped roof, consisting of three parts. In 

the adaptation process the two roof faces are adapted to the two 
original faces, leading to the earlier described effect that the 
horizontal top surface is nearly reduced to a line and thus 
vanishes.  
 

  

Figure 7: Generic template: original situation 
(above); after adaptation (lower left); enlarged detail 
of roof ridge - the top side is reduced to a width of 6 
cm (lower right). 

Figure 8 shows the adaptation of a U-shaped building: it is 
clearly visible, that the generalization effect in this case leads to 
the effect that one of the building sides is totally ignored, as the 
distance is no longer measured and taken into account.  
 

 

Figure 8: U-Shaped building 

 



 

Figure 9 shows the result of a more complex building, that is 
nicely adapted to the given L-shaped template. The averaging 
effect of the adaptation process can be seen at the front part 
(lower left): the porch leads to the effect, that the prototype 
front is shifted in front of the original main part of the building. 

Figure 9: Complex building 

In all the examples, the start situation was chosen in a way that 
the location of the prototype was within the original object 
according to Figure 3. Slight modifications of the start position 
did not have an effect on the final adapted model, in the case 
that there no local minima in consequence of the generalization 
effect.  
 

  

Figure 10: Modifications of the start position have no 
effect on the result (see figure 6) 

The run-times for calculating the adaptation were as follows. 
For the simple building in Figure 6, the time was 4  seconds, for 
the building in Figure 8 it was 10 minutes, the building in 
Figure 9 it was 6 minutes. The runtime primarily depends on 
the complexity of the original object and the number of sample 
points. Secondly, it depends of the similarity of prototype and 
original.  
 

5. SUMMARY AND FUTURE WORK 

In the paper an approach has been presented that is able to 
optimally fit a template or prototype object to an original 3D 
building shape. Using the templates instead of the original 
object leads to a more compact, as simpler representation of the 
3D object, and to a higher recognition rate, thus a more efficient 
communication of 3D objects. 
 
There are several issues for future work. First of all, we will 
investigate, if the different optimization approaches described 
in the paper can be combined to yield a optimal solution. This 

will be achieved by minimizing the distances of all surface 
points by the error volume (instead of the distance alone). 
  
Secondly, the generation of templates can be extended:  

- Similar to the approach of Mackaness and Mackenzie, 
1998, a (small) set of typical templates could be 
provided. In the adaptation process, all these 
templates would have to be fit to the original building 
and the one with the best fit (i.e. smallest deviations) 
would be selected. 

- Another issue relates to a more sophisticated 
interpretation step in the beginning, leading to a 
semantic annotation of the object. Based on this 
semantic annotation, appropriate templates can be 
selected (e.g. L-shaped building, church, church with 
two towers, …). 

 
Furthermore, we will use the approach to adapt models to laser 
scan data. For that case we use a discretized object – which is 
given by the laser points – and calculate the distances to the 
prototype.  
Finally, we will investigate how certain constraints within the 
building template will be preserved or enforced, e.g. the fact 
that opposite facades of a building will have to be parallel or the 
same size.  
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