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Abstract

The use of terrestrial laser scanners is becoming increasingly popular. For the ac-
quisition of larger scenes, it is usually necessary to align all scans to a common
reference frame. While there are methods using direct measurement of the orien-
tation, due to simplicity and costs, mostly artificial targets are used. This works
reliably, but usually adds a substantial amount of time to the acquisition process.
Methods to align scans using the scan data itself have been known for a long time,
however, being iterative, they need good initial values.

In this paper, we investigate two different methods targeted at the determina-
tion of suitable initial values. The first one is based on a symbolic approach, using
corresponding features to compute the orientation. The second one is based on an
iterative alignment scheme originally proposed in the robotics domain. To assess the
performance of both methods, a set of 20 scans has been acquired systematically
along a trajectory in a downtown area. Reference orientations were obtained by a
standard procedure using artificial targets. We present the results of both methods
regarding convergence and accuracy, and compare their performance.

Key words: Terrestrial laser scanning; Orientation; Registration; Coarse
alignment; Initial values

1 Introduction

Orientation of measurement data in relative or absolute frames is a fundamen-
tal topic of photogrammetry since its very beginnings. Instead of orientation,
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the term registration has also been used, especially for the alignment of 3D
scan data, putting emphasis on the role of the data itself rather than additional
measurements.

1.1 Orientation of terrestrial laser scanner data

In terrestrial laser scanning orientation, two situations can be distinguished.
In the dynamic case, the scanner is moving and there is no stable exterior ori-
entation across all scan points of one frame. This is the standard case in mobile
mapping, where external sensors, usually GPS and an inertial measurement
unit (IMU), are used for direct georeferencing (Talaya et al., 2004). In con-
trast, the static case is the usual method in surveying, where the instrument
is not moved during the capture of one entire frame. Still, the orientation can
be measured using additional sensors (Asai et al., 2005). However, for reasons
of cost-effectiveness, the scan data of the instrument itself are usually used to
obtain the orientation. There are also mixed cases where the scanner is fast
relative to the the platform movement. This is the usual situation in robotics,
but applications in city model generation have also been reported (Früh and
Zakhor, 2001).

In surveying, artificial targets are typically used for scan alignment. The tar-
gets are optimized for easy automatic detection, using distance (e.g., spheres)
or intensity data (e.g., cylinders or planes covered with retroreflective foil).
After an initial scan and interactive target selection, they are individually
fine-scanned to improve redundancy, and thus, accuracy. Corresponding tar-
gets in other scans can then be selected fully automatically using a search
procedure.

Although this process works reliably, it has several drawbacks. Artificial tar-
gets have to be distributed in the scene and collected later on; target selection
usually requires manual intervention; and a fine scan of every target is re-
quired. According to our experience, the amount of time spent for all this
exceeds the net scanning time by a factor of about five. In addition, since
the number of targets is limited and their placement is often influenced by
ad-hoc decisions or dictated by the site, a poor coverage of the measurement
volume, and thus, an uneven distribution of alignment errors can result. Thus,
methods which use the scan data itself for alignment are more desirable.

1.2 Registration algorithms

Registration is the process of finding the geometric transformation which
makes corresponding locations in the two datasets S1 and S2 coincide. Due to
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the six degrees of freedom to place and orient the acquisition sensor in space,
any two corresponding points x1,x2 ∈ IR3 with x1 ∈ S1, x2 ∈ S2, are related
by an Euclidean (rigid) transformation

x1 = Rx2 + t, (1)

where R is a 3 × 3 rotation matrix, and t ∈ IR3 is the translation vec-
tor. Usually, due to errors, the transformed point of x2, denoted as x′2 (i.e.,
x′2 = Rx2 + t), and its counterpart x1 from S1, do not exactly coincide. Then,
the transformation parameters for R and t can be found by (least-squares)
minimization of the (non-zero) sum

∑ ‖x1 − x′2‖2. Closed form solutions in
the more general case of a similarity transformation have been given by Sansò
(1973) and Horn (1987). Therefore, the major problem is to establish corre-
spondences between the two datasets S1 and S2.

If a good initial guess for the similarity transformation is available, a prox-
imity search can be used to define correspondences, which in turn can be
used to optimize R and t. An iterative scheme, which alternately establishes
correspondences and recomputes the transformation parameters has been in-
troduced as the Iterative Closest Point (ICP) algorithm by Chen and Medioni
(1991) and Besl and McKay (1992). It is nowadays used widely and is also
available in commercial software. Many variants of ICP were proposed, differ-
ing in the selection, matching, weighting and rejection of correspondences, as
well as the employed error metric. ICP is guaranteed to converge, since both
the search for closest points and the optimization of the transformation param-
eters reduce the error. Optimization may however end up in a local minimum.
Therefore, methods to obtain a good initial alignment are of importance. For
a survey of ICP variants and coarse alignment, see (Rusinkiewicz and Levoy,
2001; Gruen and Akca, 2005).

1.3 Structure of the paper

The aim of this paper is to assess two different methods for coarse alignment
of terrestrial laser scans. For this purpose, a test scene has been acquired in
an urban environment, as described in section 2. Section 3 describes the first
method, which uses extraction and assignment of planar patches, and shows
the results obtained. Section 4 introduces the second method, which is based
on the normal distributions transform known from robotics. We describe the
modifications we applied and present the results. Section 5 draws conclusions
and identifies possible future work.
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2 The test scene

Often, synthetic test data are used to evaluate the performance of registration
algorithms (Rusinkiewicz and Levoy, 2001), the advantage being that exact
reference values are available. However, it is our intention to assess what can
be achieved when typical real-world data are used. In order to obtain reference
values, manual alignment using artificial targets has been carried out, leading
to errors generally in the range of a few millimeters. Thus, the reference data
obtained in this manner are sufficiently accurate to evaluate the performance
of coarse registration algorithms.

The scans have been acquired using a Riegl LMS-Z360I scanner, which has a
single shot measurement accuracy of 12 mm, field of view of 360°×90° and a
range of about 200 m. At 0.12° step width, a full scan takes approximately
four minutes and results in a maximum of 3000×750 = 2.25 million scanned
points, of which in the test scene, 1.9 million are valid on average. A digital
Nikon D100 SLR camera is mounted on the scanner with calibrated relative
orientation. This allows to provide color information for each scanned point.

We selected an area called “Holzmarkt” in the historic district of Hannover,
Germany, as an example for a densely built-up area. Fig. 1 shows the point
cloud, combined from all scans.

For evaluation of the proposed registration algorithms, we placed the scan
positions systematically along a trajectory with a spacing of approximately
5 meters. Due to the short distance, successive scans show a large overlap. In
total, we acquired 20 scans of which 12 were taken (approximately) upright,
and another 8 with a tilted scan head. The tilted scans were acquired at the
same positions as the upright scans. Fig. 2 shows all 12 scan locations in a
cadastral map, where tilted scans are marked with an ‘a’ suffix.

For each scan, reference values for the position and orientation were obtained
using the standard procedure provided by the software RiSCAN PRO. It is
based on the placement of artificial targets (retro-reflective cylinders) in the
scene. High resolution scans of the targets are used to compute the target cen-
ter points with a high redundancy. Center point pairs are then used to compute
the orientation parameters. The original point clouds were not changed by this
and the reference values were only used to assess the results of our registration
algorithms. Table 1 shows the relative positions and orientations of the scans
for those combinations that have been used for the alignment tests. One can
verify that the scanner has been placed at approximate distances of 5 m and
with arbitrary orientation (except being upright).

Using the reference values, we also calculated the overlap between scans. For
each scan pair (S1, S2), points from S2 were transformed to the frame of S1
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Pair X [m] Y [m] Z [m] ω [°] φ [°] κ [°]

01-02 -5.50 0.96 0.02 -1.088 -0.112 51.731

01-03 -10.69 1.87 0.08 0.551 0.419 57.447

01-03a -10.64 1.96 0.05 -25.707 15.540 62.495

01-04 -16.77 2.53 0.14 1.984 0.481 119.261

01-05 -21.05 4.24 0.16 -0.692 0.678 -118.535

01-05a -21.12 4.11 0.09 40.577 -19.379 -111.274

01-06 -24.71 2.74 0.29 -0.154 0.276 29.409

01-06a -24.71 2.71 0.28 13.897 -1.678 79.449

01-07 -30.30 2.46 0.30 -0.838 0.063 178.528

01-08 -31.63 -3.20 0.46 0.836 0.544 166.929

01-08a -31.53 -3.22 0.42 8.467 29.713 164.756

01-09 -33.50 -8.03 0.54 0.001 -0.113 31.594

01-09a -33.91 -8.17 0.49 -38.073 -29.496 -56.814

01-10 -33.48 -11.96 0.58 -1.120 1.491 -106.207

01-10a -33.67 -11.97 0.51 -5.763 -46.751 169.994

01-11 -34.18 -17.32 0.51 0.115 -0.461 -57.484

01-11a -34.00 -17.59 0.47 11.362 28.378 -19.364

01-12 -37.38 -28.76 0.54 0.674 -0.795 169.779

01-12a -37.53 -28.72 0.47 -9.712 -45.053 165.549

02-03 -2.50 4.64 0.08 1.432 -0.958 5.733

03-04 -2.72 5.47 0.01 0.824 -1.174 61.834

04-05 3.58 2.90 -0.08 1.482 2.238 122.148

05-06 3.07 -2.51 0.07 0.096 0.665 147.948

06-07 -5.01 2.50 -0.01 -0.701 0.150 149.118

07-08 1.18 5.69 0.07 -1.661 -0.525 -11.598

08-09 0.73 5.13 0.14 0.664 0.829 -135.342

09-10 -2.04 -3.36 0.04 -0.115 1.954 -137.813

10-11 5.34 0.82 -0.19 1.530 1.731 48.711

11-12 7.92 -8.84 0.08 0.582 0.292 -132.744
Table 1
Reference values for the relative orientation of scan pairs. First part: relative ori-
entation of SP 1 and all other scans. Second part: relative orientation of successive
scans.
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Fig. 1. Point cloud of the test scene (combination of all scans). The structure in the
middle is a fountain. Scene dimensions are approximately 70×70×25 m3 (L×W×H).
The cloud was thinned and points on the ground were removed for better visualiza-
tion.
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Fig. 2. Placement of scan positions along a trajectory, shown in a cadastral map.

using the reference transformation. If a point in S1 was found within a distance
of 0.5 m in any of the coordinates, this was considered to be an overlapping
point. Division of the number of overlapping points by the total number of
points yields the overlap percentages shown in Table 2. Invalid points (such
as points in the sky) do not take part in the computation.
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Pair [%] Pair [%] Pair [%]

01-02 83.1 01-08a 45.7 02-03 82.6

01-03 77.7 01-09 27.3 03-04 81.3

01-03a 73.3 01-09a 28.8 04-05 83.6

01-04 68.8 01-10 16.2 05-06 80.3

01-05 63.0 01-10a 11.4 06-07 81.0

01-05a 59.7 01-11 9.9 07-08 81.3

01-06 50.5 01-11a 12.2 08-09 81.0

01-06a 54.5 01-12 3.6 09-10 82.9

01-07 50.7 01-12a 2.3 10-11 77.2

01-08 43.6 11-12 74.9
Table 2
Overlap percentage for the scan pairs used for the alignment tests. First two
columns: overlap of SP 1 with all other scans. Last column: overlap of successive
scans.

3 Registration using planar patches

3.1 Registration based on primitives

Single points x1 ∈ S1, x2 ∈ S2 do not carry enough information to assess
if they form a valid point pair which is related by Eq. 1. A standard ap-
proach, especially for finding an initial alignment, is therefore to extract more
meaningful, attributed, higher level features from both scenes S1, S2, and to
estimate the transformation using pairs of those features. This has several ad-
vantages. First, as compared to the original point sets, there are much fewer
pair candidates. Second, attributes of features can be used to prune the search
tree (as long as they are invariant under the considered transformation). And
third, depending on the kind of features, fewer feature pairs may be required
to fix all degrees of freedom of the transformation. All this helps to reduce
the size of the search tree. In general, this approach is equivalent to the one
in feature-based object recognition, where S1 is the scene and S2 is a given
model (Grimson, 1990).

What kind of features make sense depends strongly on scene contents. Espe-
cially for free-form surfaces, local surface attributes like normal vector and cur-
vature (Bae and Lichti, 2004), oriented point pairs (Winkelbach et al., 2006),
or more complex representations like spin images (Johnson and Hebert, 1997)
have been used. In industrial environments, standard shapes, especially pla-
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nar and cylindrical surfaces, have been proposed for model-based registration
(Rabbani et al., 2007). In city modelling, polyhedral objects can be expected,
and consequently, planar patches have been employed (von Hansen, 2006; Dold
and Brenner, 2006).

3.2 Planar segmentation

Segmentation of laser scans is a very extensive research field. We can narrow
this down in our special case. First, we are interested in planar patches only.
Second, each scan is segmented separately, so that neighborhoods imposed
by the regular scanning raster can be exploited (usually called range image
segmentation). There are many different strategies for segmentation, using
top down (e.g., split and merge), bottom-up (e.g., region growing) or global
(e.g., Hough transform) approaches. Regarding bottom-up strategies, scanline
grouping (Jiang and Bunke, 1992) is fast and has been shown to yield good
results in a comparative study (Hoover et al., 1996). On the other hand, its
anisotropic working principle often leads to jagged region borders. For this
reason we used standard region growing, working on the regular raster of scan
points.

Region growing iterates the two steps of seed region selection and region ex-
pansion. Seed regions are prioritized according to their local planarity, which
is computed using the residuals of a local best-fit plane. Once a seed region
is selected, scan points along the region border are added if they lie in the
plane (within a threshold). After this, the plane equation is updated. The re-
gion is grown until no more points can be added, in which case the algorithm
proceeds by picking the next seed region.

Both the selection of seed regions and the update of the plane equation during
region growing requires the determination of a best-fit plane, given k points
x(i), 1 ≤ i ≤ k. Using least squares minimization, the desired plane 〈n,x〉−d =
0, defined by (unit) normal vector n and distance to origin d minimizes

k∑
i=1

(
〈n,x(i)〉 − d

)2
(2)

under the condition ‖n‖ = 1 (〈·, ·〉 denotes the scalar product). It is well known
from principal component analysis (Duda and Hart, 1973), that the solution
normal vector n is the eigenvector belonging to the smallest eigenvalue of the
3×3 matrix

∑k
i=1 x̃(i)x̃(i)T, where x̃(i) = x(i)− x̄ are point coordinates reduced

by the center of gravity x̄ =
∑k

i=1 x(i)/k. The solution plane also includes the
center of gravity, such that d = nTx̄, and the minimum eigenvalue is equal to
the sum of squared distances in Eq. 2.
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3.3 Determination of the transformation parameters

If three correspondences of planar patches are known, all parameters of the
Euclidean transformation in Eq. 1 can be determined. We denote the three
plane equations as

〈ni,x〉 − di = 0 (3)

〈mi,x〉 − ei = 0 (4)

〈pi,x〉 − fi = 0 (5)

where ni, mi, pi are normal vectors of unit length, di, ei, fi are the plane
distances from the origin, and for each of the equations, i = 1 and i = 2
form a pair. Note that more than three plane pairs can be used to improve
the result, however, when using schemes such as random sampling consensus
(RANSAC), it is often desired to compute the transformation from a minimum
number of correspondences.

3.3.1 Rotation

For the rotational component, two normal vector pairs, for example (n1,n2)
and (m1,m2), are required. Since each pair fixes two degrees of freedom but R
has only three degrees of freedom, one constraint is redundant. In the presence
of noise, however, the angles ∠(n1,m1) (in S1) and ∠(n2,m2) (in S2) are
usually different so that the normal vectors cannot be aligned perfectly. The
methods proposed differ in how they distribute the residuals.

Grimson and Lozano-Perez (1984) propose a geometric approach. First, the
(unit vector) rotation axis r is obtained from

r̃ = (n1 − n2)× (m1 −m2), r = r̃/‖r̃‖ .

To compute the rotation angle φ, let w = 〈n2, r〉r be the projection of n2

onto r. Adding u = n2 −w and v = r× u yields a local Cartesian coordinate
frame {u,v,w}. Using this frame, the rotation of n2 around r by the angle φ
is given by

n′
2 = u cos φ + v sin φ + w. (6)

Conversely, if n′
2 is required to be equal to n1 (the rotation of n2 should

align with n1) and φ is sought for, Eq. 6 can be used to obtain φ, since
〈n1,u〉 = 〈n′

2,u〉 = ‖u‖2 cos φ, and 〈n1,v〉 = ‖v‖2 sin φ. Expanding u and v,
noting that 〈n1, r〉 = 〈n2, r〉 and normal vectors are unit vectors,

9



cos φ =
〈n2,n1〉 − 〈n2, r〉〈n1, r〉

1− 〈n2, r〉〈n1, r〉

sin φ =
〈r× n2,n1〉

1− 〈n2, r〉〈n1, r〉
.

Substitution into Eq. 6 then yields

n′
2 =n2 cos φ + 〈n2, r〉r(1− cos φ) + r× n2 sin φ

=
[
I cos φ + rrT(1− cos φ) + [r]× sin φ

]
n2

=Rn2 ,

where R is the desired rotation matrix. Although the computation of the
rotation axis r is symmetric, the determination of φ is not, since only the pair
(n1,n2) is used. Thus, in the presence of noise (when ∠(n1,m1) and ∠(n2,m2)
are different as noted earlier), the solution will exactly align n1 and n2, but
not m1 and m2. As the authors note, this can be alleviated by averaging φ
over several normal vector pairs.

A simpler solution is obtained by selectively discarding constraints (Horn,
1987). Using n1 and m1, a Cartesian coordinate frame {u1,v1,w1} can be
constructed by

u1 =n1 (7)

ṽ1 =m1 − 〈m1,u1〉u1, v1 = ṽ1/‖ṽ1‖ (8)

w1 =u1 × v1,

where the computation of v1 uses standard Gram-Schmidt orthonormalization,
i.e., u1 and v1 span the same plane as n1 and m1. The vector w1 is constructed
to be normal to this plane. Then, let M1 = [u1v1w1], writing u1, v1, w1 as
column vectors. In the same way, M2 can be obtained from n2 and m2. Since
both M1 and M2 are orthogonal by construction,

R = M1M
T
2 (9)

is orthogonal and in fact is the desired rotation matrix (since MT
2 n2 gives the

components of n2 along the axes {u2,v2,w2} and M1 maps this back to the
first coordinate frame). As the mi are only used in Eq. 8 to define the plane,
the solution is not symmetric (Eq. 8 discards one constraint). Again, it will
align n1 and n2 and leave all residuals at (m1,m2). However, the error can be
distributed evenly by a simple modification, using the bisector ũ1 = n1 + m1,
u1 = ũ1/‖ũ1‖ instead of Eq. 7.

If more than two plane correspondences are to be used to obtain R, the solu-
tions given by Sansò (1973) or Horn (1987) can be applied. Denoting the i ≥ 2
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normal vectors in S1 and S2 now with n1,i and n2,i, respectively, the goal is
to find the rotation R which minimizes the quadratic error

∑
i ‖Rn2,i − n1,i‖2

or, equivalently, maximises the sum over the dot products,∑
i

〈Rn2,i,n1,i〉. (10)

Using unit quaternions q̇, a rotation Rn is expressed as q̇ṅq̇∗, where ṅ is
the (purely imaginary) quaternion representation of vector n, and q̇∗ is the
conjugate of q̇. Manipulating Eq. 10,

∑
i

〈q̇ṅ2,iq̇
∗, ṅ1,i〉=

∑
i

〈q̇ṅ2,i, ṅ1,iq̇〉

=
∑

i

〈N̄2,iq̇,N1,iq̇〉

=
∑

i

q̇TN̄T
2,iN1,iq̇

= q̇TNq̇ (11)

where N1,i, N̄2,i are matrix representations of their respective ṅk,i (for details,
see (Horn, 1987)) and

N =
∑

i

N̄T
2,iN1,i. (12)

It is well known that the quadratic form in Eq. 11 is maximized under the
condition ‖q̇‖ = 1 when q̇ is the eigenvector of N belonging to the largest
eigenvalue. After q̇ is determined, the desired rotation matrix R can be ob-
tained as the Rodriguez matrix. To summarize, given both sets of normal
vectors {n1,i}, {n2,i}, N is computed from Eq. 12, and the eigenvector of N
belonging to the largest eigenvalue is converted to a rotation matrix R using
the Rodriguez matrix. Note that if only two normal vector pairs are used, the
result is identical to the bisector variant of Eq. 9.

3.3.2 Translation

To determine the translation, three plane pairs are required. Assume S2 has
already been rotated, so that only the translation component t in Eq. 1 has
to be determined. Then, Eq. 3 becomes

〈n1,x〉 − d1 = 0

〈n′
2,x− t〉 − d2 = 0.
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Assuming a correct rotation, n1 = n′
2 = n. Eliminating x yields 〈n, t〉 =

d1 − d2. Doing the same for Eqs. 4 and 5 yields

At =


nT

mT

pT

 t =


d1 − d2

e1 − e2

f1 − f2

 = l (13)

where A consists of n, m, p written as row vectors. In accordance with intu-
ition, t can only be determined if n, m, p span 3D space, in which case A is
nonsingular. If more than three plane pairs are available, Eq. 13 can be used
to determine t using least squares adjustment,

t = (ATA)−1ATl. (14)

3.4 Search for corresponding patches

As noted, at least k ≥ 3 corresponding patches are required to establish an
Euclidean transformation. Suppose a total of p1 and p2 patches are extracted
from S1 and S2, respectively. Then the number of possible selections of k pairs
is  p1

k

 ·

 p2

k

 · k!

where the first two terms are due to the possibilities to pick k patches and
k! is due to pair permutation. In the case of k = 3, the absolute number
can be reduced by a factor of two due to chirality, nevertheless asymptotic
algorithmic complexity remains O(p3

1p
3
2).

A standard technique to deal with complexity is to compute feature vectors
for the extracted patches, compare them or their relations during patch as-
signment and prune the search tree accordingly (Grimson, 1990). The basic
drawback is that if the feature computation is not sufficiently reliable, the
correct solution may be pruned as well. We tried patch features such as area,
circumference, height-to-width ratio of the bounding box and mean intensity
value in an earlier investigation (Dold and Brenner, 2006). However, those
features were not as reliable as we had hoped. Especially if scan positions
are further apart, occlusions and differences in sampling density can lead to
different feature values. Also, if many buildings stand in a row, with facades
forming (approximately) one plane, it may happen that the plane is subdi-
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vided into patches differently so that the borders of the patches are not very
reliable.

Therefore, we adopted a priority scheme instead. A sensible criterion for opti-
mal plane triples would be that the error to determine t in Eq. 14 is minimized.
As is well known, the corresponding covariance matrix is Σt = (ATA)−1. Let
USVT be the singular value decomposition of A, with U, V orthogonal and
S = diag(s1, s2, s3) containing the singular values, then ATA = VS2VT, or

Σt = (ATA)−1 = V diag(1/s2
1, 1/s

2
2, 1/s

2
3) VT. (15)

The variance along any axis 1 ≤ i ≤ 3, and also the sum of variances along
all axes is bound by

1

s2
i

≤ 1

s2
1

+
1

s2
2

+
1

s2
3

≤ 3

s2
1s

2
2s

2
3

,

since trace(ATA) = trace(AAT) = 3 = s2
1 + s2

2 + s2
3 (note that normal vectors

in Eq. 13 have unit length). Thus, large values of s2
1s

2
2s

2
3 = det2(A) guarantee

small values for the sum of variances (and also, the variance 1/s2
i along any

axis). In accordance with intuition, the error is minimized when |det(A)| is
largest, or equivalently, the absolute value of the triple product of m, n, p is
largest. This happens when all normal vectors are perpendicular (s1 = s2 =
s3 = 1).

To find good matches first, we compute the triple products of all plane triples
from S1 and S2 separately and sort them in decreasing order. From the list,
triple pairs are selected with large triple products first, plane pairs are assigned
and the transformation is computed. This transformation is then accepted or
rejected based on a score computed using all planar patches. The score is de-
fined as the count of patches having similar plane parameters. Two planes are
considered similar if the directions of their normal vectors and their distances
to the origin are similar. Using Eq. 3, this can be expressed as

〈n1,n
′
2〉 ≥ cos θ, |d1 − d′2| ≤ δ, (16)

where θ is the normal vector angle threshold and δ is the distance threshold.
Since the best score is not known in advance as it depends on the (unknown)
overlap, we implemented a voting scheme. Instead of testing all triple com-
binations, iteration stops as soon as the same transformation is found for a
predefined number of times. This reflects the assumption that correct triple
assignments lead to one and the same transformation, whereas wrong assign-
ments lead to many different transformations. In the voting, only transfor-
mations with a minimum score take part, which is usually 40% of the total
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number of planes.

3.5 Experiments

As described in section 3.2, the first step is the planar segmentation of both
scans. As an example, Fig. 3 shows the segmentation results for scan positions
SP 1 and SP 2. The numbers shown in the figure are the patch numbers, which
are assigned independently in each scan. The threshold defining the maximum
deviation of a point from the patch during region growing was set to 6 cm.
With smaller thresholds, we observed a tendency towards oversegmentation.
Only the 30 largest patches are shown in Fig. 3. In general, n largest patches
are kept for further processing, with n = 50 typically. For scans known to have
little overlap, n can be set higher to increase the chance to find the correct
transformation, however this increases the processing time also.

Fig. 3. Planar segmentations computed for SP 1 (top) and SP 2 (bottom).

In order to evaluate the segmentation result, we compared the extracted planar
patches using the reference orientation. The overlap is quantified by counting
points in the overlapping patch areas. As a result, approximately 50% of the
segmented area in SP 1 has no correspondence in SP 2, although the scans are
overlapping by 83% (Table 2). This difference is due to points not belonging
to any patch as well as too small patches, which have been discarded. An addi-
tional 40% of the corresponding patches belong to the ground. Consequently,
there are approximately only 10% of the scan left to identify other patch cor-
respondences required to define the remaining two spatial directions. Table 3
shows some correspondences for the largest patches of Fig. 3.

After segmentation, the algorithm proceeds by computing all patch triples,
then examining triple correspondences in decreasing order of their triple prod-
uct, and computing a score based on the angle θ and distance δ thresholds
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Patch number Patch numbers Overlap

in SP 1 in SP 2

1 1,2,3,6,8,9 28.7%

2 2,3,9 9.9%

8 22 1.5%

16 14 1.5%

4 2,4,5 2.3%

27 25,26 0.5%

14 14 0.8%

13 16 0.7%
Table 3
Patch correspondences between SP 1 and SP 2 for the largest patches. Overlap is
the percentage of overlapping points relative to the total number of points.

(Eq. 16). In order to analyze how those thresholds should be selected, we var-
ied θ and δ over a large range and evaluated the score for each setting. Fig. 4
shows the dependency of the score on θ and δ for two example transformations,
one being correct and one being wrong. One can see that in case of a correct
transformation, even small thresholds will lead to a high score. In contrast,
the wrong solution leads to a low score for all reasonable thresholds. On the
basis of our analysis, we used 2° to 3° for θ and 0.2 m to 0.4 m for δ.
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Fig. 4. Dependency of the score function on normal vector angle (θ) and distance
(δ) threshold. Left for a correct, right for a wrong transformation.

We applied the registration algorithm to the test scene. The first scan is treated
as the reference and all other scans are registered to it. Because of the place-
ment of the scan positions along the chosen trajectory (Fig. 2), the overlap
with the first scan decreases with increasing scan number.

As a result of our evaluation, we found a quite stable and accurate alignment.
Of the 20 scans, in 14 cases (positions 2 to 10) the correct transformation
parameters were found, failing only for cases 10a (tilted scan) and larger. All
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the failed scans have an overlap area with the first scan which is smaller than
12.2%. The last scan we were still able to register overlaps by approximately
16%. Table 4 shows the deviation from the reference orientation for all suc-
cessful alignments. One can see that the differences are less than 20 cm in the
plane, 40 cm in height, and 0.5° in orientation, which is certainly good enough
for a successive iterative alignment.

Scan ∆X ∆Y ∆Z ∆ω ∆φ ∆κ

pairs [m] [m] [m] [°] [°] [°]

01-02 -0.022 -0.033 -0.002 0.132 -0.082 0.050

01-03 0.025 -0.018 0.054 0.089 -0.185 -0.075

01-03a 0.045 -0.043 -0.046 -0.155 -0.122 -0.161

01-04 0.090 -0.039 0.091 -0.080 -0.237 -0.049

01-05 -0.073 -0.006 -0.038 0.039 0.083 0.023

01-05a -0.143 0.103 -0.008 0.086 -0.389 0.069

01-06 0.052 0.056 0.040 -0.029 -0.307 0.400

01-06a 0.077 0.091 0.013 0.073 -0.006 0.440

01-07 -0.050 -0.035 0.017 -0.145 0.149 0.031

01-08 -0.080 -0.006 0.269 -0.053 -0.502 0.420

01-08a -0.098 0.154 0.259 -0.196 0.042 -0.469

01-09 -0.163 0.026 0.343 -0.286 -0.052 -0.109

01-09a -0.076 -0.021 0.398 -0.303 0.487 0.430

01-10 -0.097 -0.006 0.240 -0.420 0.004 -0.258
Table 4
Deviation of the translation and rotation parameters from the reference values for
the registration based on planar patches.

Considering the required computation time, segmentation of one scan takes
around 14 to 26 seconds with an average of 19 seconds on a standard 2 GHz
Pentium PC. Matching took an average of 35 seconds when n = 50 planes
were kept. Thus, in total, 72 seconds were required on average to match two
scans.
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4 Registration using the normal distributions transform

4.1 The normal distributions transform (NDT)

The NDT is a method originally proposed by Biber (2003) for the purpose of
robot navigation. In robotics, a well-known problem is to navigate a robot in
an unknown environment, and to build a map of this environment at the same
time (called simultaneous localization and mapping (SLAM), see Thrun et al.
(2005)). In this context, major concerns are convergence radius and speed. The
original method applies to 2D laser scan data (acquired in a single plane), as
follows.

The NDT converts the original point cloud of the first scan S1 into an alterna-
tive representation, which captures the distribution of the points, rather than
individual points. For this, the area covered by S1 is subdivided into a regular
grid of cells. It is assumed that the distribution of points inside each cell is
characterized to a sufficient extent by a normal distribution. Thus, for each
cell Ci the mean qi and the covariance matrix Σi are calculated, using

qi =
1

ni

∑
x∈Ci

x,

Σi =
1

ni − 1

∑
x∈Ci

(x− qi)(x− qi)
T

where ni is the number of points in cell Ci. The probability of measuring a
point x in cell Ci is then modeled by the normal distribution N(qi,Σi),

p(x) = c · exp
(
−1

2
(x− qi(x))

TΣ−1
i(x)(x− qi(x))

)
,

where i(x) is the index of the cell the point x falls into. For the purposes of
the NDT, c is set to 1. Fig. 5 shows an example of original scan points and
the corresponding NDT.

In order to register two scans, the original points x2 of the second scan are
transformed using Eq. 1 in two dimensions with R = R(κ) being a 2 × 2
rotation matrix and t ∈ IR2. This is fully described by its three parameters
a = (tT, κ)T. Using the transformed points x′2, a score

score = score(a) =
∑
x′

2

p(x′2) (17)

is assigned. The parameters a are to be estimated so as to maximize the score
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Fig. 5. Example for a 2D scan (left) and corresponding NDT (right). White pixels
represent a high, black pixels a low probability.

function in Eq. 17. Since the optimization algorithms usually minimize values,
the function f = −score(a) is used. The following steps are iterated until a
convergence criterion is reached.

(1) Transform each point x2 of the second scan according to Eq. 1, using the
current transformation parameters a.

(2) Compute the cell index i = i(x′2) in which each point x′2 lies and retrieve
the parameters qi and Σi.

(3) Calculate the score value, score(a), according to Eq. 17.
(4) Compute new parameters by optimizing the function f = −score(a) using

Newton’s algorithm

∆a = −H−1∇fT, (18)

with anew = a + ∆a, where H is the Hessian of f .

4.2 Modifications of the original NDT

4.2.1 Slicing 3D scans

As noted, the NDT has originally been applied to 2D laser scan data, which
is a reasonable assumption in the area of robot positioning. In case of object
reconstruction, however, full 3D laser scan data are available. It would be
straightforward to extend the NDT to the 3D case, using voxels instead of grid
cells. However, the processing involved would possibly negate the advantages
of the NDT.

Considering the typical application, though, it is reasonable to assume that
the laser scanner is set up approximately upright for each scan. Also, the
approximate distance to the ground will be always the same or, if it varies, it
will be technically simple to measure it. Therefore, the 2D NDT can be applied
directly by cutting out a slice from the 3D data parallel to the ground.

However, a single slice may not contain enough data. As compared to the
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case in robotics, where highly structured indoor environments prevail, natural
scenes may lack the desired amount of information. Therefore, instead of a
single slice, we extract a stack of n slices (see Fig. 6). Each slice leads to an
independent NDT. The total score is defined as the sum of the individual
scores,

score(a) =
n∑

k=1

scorek(a), (19)

where scorek(a) is the score function in Eq. 17, taken for slice k and parameters
a. Equation 19 is optimized in the same way as the single score solution of
Eq. 17.

Fig. 6. Top: single scan with four slices. Bottom row: Top view of each slice.

4.2.2 Coarse-to-fine strategy

Just as with the ICP algorithm, the NDT may yield the wrong solution in
case of poor initial values. In fact, since the score function in Eq. 17 relies
on points hitting cells of the NDT, no estimation will take place at all if the
second data set does not overlap any non-empty cells of the NDT of the first
data set. If only a few cells overlap, which easily happens in case of a wrong
initial rotation, the distribution in these cells strongly affects the ability of the
algorithm to converge to the correct solution. Especially if the cells are small,
their distribution (particularly, their covariance matrix Σi, which is crucial to
obtain the orientation) may not be meaningful.

In order to address this problem, the original NDT algorithm was extended
to include a coarse-to-fine strategy. The cell size of the NDT is chosen large
in the beginning and decreases in the course of the iteration (Fig. 7). For any
cell size, the algorithm performs a fixed number of iterations, then it proceeds
with the next smaller size.
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Fig. 7. Coarse to fine strategy used for the cell sizes of the NDT (all for SP 8, lowest
slice). From left to right and top to bottom: 250, 125, 62, 31, 16, 8 meters cell width.

4.3 Experiments

To test the NDT approach, we cut four horizontal slices of 40 cm width, at
heights 0 m, 4.5 m, 9 m and 13.5 m where 0 m is the height of the scan head.
Slices one and two contain an average of 30,000, slice three 15,000, and slice
four 5,000 points. The number decreases because there are not many high
buildings in the scene. We ran the tests with one, two, three and four slices in
all possible combinations.

The initial grid size is 250 m × 250 m decreasing in eight steps down to 2 m
× 2 m. For each cell size we iterate 1,000 times. Regarding scan positions, we
perform two different tests. The first test is the same as in section 3.5 and
aligns all scans to the first scan, i.e. scan pairs SP 1-SP 2, SP 1-SP 3, SP 1-
SP 4, etc. The second test aligns successive scans, i.e. scan pairs SP 1-SP 2,
SP 2-SP 3, SP 3-SP 4, etc. Due to the slicing principle, the tilted scans are
not used.

We explored the convergence radius by modifying the orientation κ from -180°
to +180° in 100 steps. For each κ, the NDT alignment is run, and it is deter-
mined if the algorithm finally reached the correct solution by comparison with
the reference values. Using the results, the convergence radius is determined,
which is the maximum interval of κ values which converge to the correct so-
lution. The result of this test is shown in Fig. 8 for the alignment with the
first scan and in Fig. 9 for the alignment of successive scans. In the figures,
the given convergence radii are averaged over all combinations of slices. In
Fig. 8, scan positions larger than seven are not shown because there was no
convergence.

When looking at the convergence radius, a decrease is seen in Fig. 8, and
there is no convergence at all for scan positions beyond SP 7. Note that from
Fig. 2, SP 7 is approximately in the center of the intersection, with positions
SP 1 to SP 7 being along one, and SP 7 to SP 12 being along another of
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the intersecting streets, so that SP 7 can be considered as a bisecting point.
Note also that while no convergence is obtained beyond SP 1-SP 7, Fig. 9
shows that the convergence radius for successive scans gets smaller at the
SP 5-SP 6, SP 6-SP 7, SP 7-SP 8 combinations, but gets larger again at later
combinations.

SP 1-2 SP 1-3 SP 1-4 SP 1-5 SP 1-6 SP 1-7

1 slice
2 slices

3 slices
4 slices

0°

50°

100°

150°

200°

250°

Fig. 8. Convergence radii for the alignment of SP 1 with SP 2 to SP 7.

SP 1-2 SP 2-3 SP 3-4 SP 4-5 SP 5-6 SP 6-7 SP 7-8
SP 8-9

SP 9-10
SP10-11

SP11-12

1 slice
2 slices

3 slices
4 slices0°

50°

100°

150°

200°

250°

300°

Fig. 9. Convergence radii for the alignment of successive scans.

To investigate this, we compared two cases in detail, the alignment of SP 5-
SP 6 and SP 2-SP 3. Fig. 10 shows the error of the final orientation κ (as
compared to the reference orientation) and the final score for all 100 tested
start orientations in the range -180°≤ κ <+180° for SP 5-SP 6. As can be seen
from the figure, there are essentially four results, corresponding to orientations
90° apart. This is due to the characteristics of the data. At the intersection
(Fig. 10, bottom), two streets cross in an approximately right angle, and thus
there is a fourfold symmetry. Consequently, with wrong start angles κ, the
method leads to local minima. Comparing this to the results in Fig. 11 shows
that in contrast, a mainly linear scene leads to only two different solutions.
Note that in any case, the score gives a valid indication of when the correct
solution is obtained. Note also, that a convergence radius of 90° or even 180°
is rather large. The results indicate that in order to prevent wrong solutions,
one can run the algorithm with a few (say, four) start orientations, distributed
evenly over the -180°≤ κ <+180° range. Since the score proved to be a reliable
indication for a correct solution, one can also start with the given orientation
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Fig. 10. Convergence (top) for all start orientations -180°≤ κ <+180° for SP 5-SP 6
(bottom left, right), located near an intersection of two streets. Shown is the error
of the final orientation (∆κ, red) and the final score (blue).

0°

20°

40°

60°

80°

100°

120°

140°

160°

180°

200°

-180° -144° -108° -72° -36° 0° 36° 72° 108° 144° κ
0

0,2

0,4

0,6

0,8

1

1,2

Δ κ
score

Fig. 11. Convergence (top) for all start orientations -180°≤ κ <+180° for SP 2-SP 3
(bottom left, right), located in a street corridor.

and add successively additional orientations spread over the -180°≤ κ <+180°
range until a high score is obtained.

Considering the number of slices, on can see from Figs. 8 and 9 that taking
more slices does not generally improve the convergence radius. Adding slices
may potentially also add NDTs that do not represent their slices very well, and
thus, may actually deteriorate the result. In a few cases, namely SP 5-SP 6,
SP 6-SP 7, SP 7-SP 8, higher slices apparently helped to reduce the number
of symmetries and thus enlarged the convergence radius (Fig. 9).
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Scan ∆X ∆Y ∆κ

pairs [m] [m] [°]

1-2 0.102 0.100 0.192

1-3 -0.064 -0.078 0.176

1-4 -0.053 -0.214 0.636

1-5 0.315 0.000 0.179

1-6 0.022 0.410 1.586

1-7 0.524 0.652 -1.140

2-3 0.025 -0.034 -0.001

3-4 -0.015 0.272 -0.341

4-5 -0.022 0.380 -1.806

5-6 0.064 -0.014 0.007

6-7 -0.195 -0.091 0.438

7-8 -0.068 0.119 -0.018

8-9 0.360 0.475 -0.310

9-10 0.659 -0.460 1.016

10-11 0.278 -0.178 -0.300

11-12 0.138 -0.077 -1.455
Table 5
Deviation of the translation and rotation parameters from the reference values for
the NDT registration.

The resulting position and orientation errors for all NDT experiments are
shown in Table 5. Note that due to the horizontal slicing scheme we adopted,
in contrast to Table 4, only two translations and one rotation are determined
and all the tilted scans are missing. Comparing the results, we see that the
orientation by planar patches was able to still align SP 1-SP 10 which has an
overlap of only 16%. In contrast, the NDT fails after SP 1-SP 7, which has a
considerably larger overlap of 51%. On the other hand, the distance between
SP 1 and SP 7 is 30 m, which is probably anyhow beyond the distance between
two scans one would prefer to obtain a dense city scan with few occlusions.
Also, the NDT has the advantage of being algorithmically simple and does
not rely on the presence of planar structures. Considering accuracy, note that
although the NDT leads to slightly worse results, the maximum error is below
1 m in the plane, and 1.8° in orientation, which is below what is required for
coarse orientation.

Regarding execution time, one run takes about 30 seconds on a standard
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2 GHz Pentium PC (one slice, one start orientation, eight cell sizes with 1,000
iterations each). Using four start orientations, as we proposed, requires about
120 seconds. Using more slices also increases the time required, however only
linear in the number of added points rather than in the number of slices. It
is obvious that the arbitrarily chosen fixed number of 1,000 iterations per cell
size should be replaced by a more elaborate termination scheme. In order to
assess by how much the number of iterations can be reduced, we decreased
the number of iterations and found that we were still able to align all scans
SP 1-SP 2 to SP 1-SP 7 using only 300 iterations. Then, only 30 seconds are
required per alignment (one slice, four start orientations).

5 Conclusions and further work

In this paper, we compared two different methods for finding the coarse ori-
entation of terrestrial laser scans without usage of artificial markers. For eval-
uation, we acquired a test scene in downtown Hannover, Germany, with 20
terrestrial scans placed systematically along a trajectory. Reference orienta-
tions were obtained by the standard orientation procedure using retroreflective
targets and manually assisted target selection.

The first method we investigated follows the classical feature-based object
recognition approach. Planar patches are extracted in two scans independently,
plane triples are assigned, transformations are computed and scored, and the
transformation with the highest score wins. As a first result, we found that
although the scene is in a dense built-up area, there are surprisingly few (large)
planar patches which can be assigned. In our scene, around 50% of the scan
points are not part of a patch or cannot be assigned to a patch in the other
scan. A further 40% belong to the ground, so that only 10% are facade patches.
Note, however, that 10% still represent approximately 200,000 scan points. For
our scene, we observed correct solutions for scan pairs with an overlap as low
as 16%. All solutions were quite accurate, with a maximum deviation from
the reference of about 20 cm in the plane, 40 cm in height, and 0.5° in the
rotation angles.

The second method is a non-symbolic approach based on the normal distribu-
tions transform (NDT). Assuming the scanner is set up approximately upright,
horizontal slices are cut, and slices from one scene are iteratively matched to
the NDT of the slices of the other scene. The iteration is guided by the mini-
mization of a score function. Unlike to what we expected, adding slices did not
consistently improve the convergence radius for the rotation angle. Matching
of scenes worked down to an overlap of 51% only. The iterative estimation
is also susceptible to symmetries in the scene, however the score function re-
liably indicated the correct solution so that starting with a few orientations
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evenly distributed over the full 360° range is considered a feasible approach.
Regarding accuracy, the maximum deviation from the reference was around
1 m in the plane, and 1.8° in orientation.

Comparing both methods, the planar patch approach was able to register
scans farther apart with a very small overlap. Also, it seems that the NDT
alignment is more influenced by scene contents. Moreover, in our slice-based
implementation, the NDT can only handle upright scanner setups with con-
stant height. On the other hand, we did not assess how both methods compare
when the number of planes in the scene is smaller, in which case the NDT may
become superior. Also, the NDT is conceptually simple and fast. Thus, which
method is to be preferred depends strongly on the application. Comparing ac-
curacy, the planar patch approach proved to be more accurate. However, it is
our opinion that both methods are accurate enough for the intended purpose
of coarse orientation.

For the future, several issues are worth investigating. Especially for the planar
patch approach, the influence of different (faster) segmentation methods, such
as the one by Jiang and Bunke (1992), on the results can be assessed. In
addition to planar patches, other primitives can be used. Other properties
than the triple vector product can probably be used for the prioritization of
the correspondences. And finally, since many scanners include a camera with
known relative orientation, image data can be used for the alignment as well
(Dold and Brenner, 2006).
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