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ABSTRACT:

The relative orientation of independently acquired terrestrial laser scan point clouds is an important task. If good starting values are
available, well-known iterative algorithms exist to determine the required transformation. In this paper, we describe a method to obtain
such starting values fully automatically, which is applicable to scenes containing planar elements. Our method first extracts planar
patches in each scan individually and then assigns patch triples across scans in order to compute the rotation and translation component
of the relative orientation. We assess the performance of our approach using a set of 20 terrestrial scans acquired systematically at
increasing distance. For each scan, we automatically extract the 50 largest planar patches. We show that, although there are 1.15
billion possible patch triple assignments, we are able to compute efficiently a ranked list of possible transformations where the correct
transformation is usually within the first few positions. For our test data and three test runs, it has been among the first 53 positions,
even for scans with little overlap. Thus, instead of 1.15 billion candidate solutions, the score function needs only to evaluate on the
order of 100 candidate solutions, which is an improvement by a factor of 107.

1 INTRODUCTION

In terrestrial laser scanning, an important problem is to find
the relative orientation of independently acquired datasets, also
called range image registration. This is a very well-known prob-
lem dating back to the first investigations on range images. It
can be divided into two subproblems, coarse registration, which
assumes no previous knowledge about the relative orientation of
the two scans, and fine registration, where the assumption is that
an initial orientation is known and the goal is to refine this in
order to find the most accurate transformation parameters. Fine
registration can be achieved using iterative techniques, usually
based on the iterative closest point (ICP) approach. There is ex-
tensive literature on this subject. Originally described by Chen
and Medioni (1991) and Besl and McKay (1992), many variants
were proposed in the sequel, differing in the selection, match-
ing, weighting and rejection of correspondences, e.g. (Zhang,
1994; Kapoutsis et al., 1999; Greenspan and Godin, 2001; Jost
and Hügli, 2002; Sharp et al., 2002). An overview is given by
Rusinkiewicz and Levoy (2001) and Gruen and Akca (2005). The
ICP algorithm is nowadays also widely available in commercial
software.

Any relative orientation based on the data itself requires two
steps, (i) finding corresponding features in both datasets, and
(ii) determination of the relative orientation which aligns those
features. Iterative schemes like the ICP solve the correspondence
problem by assuming that, applying the known coarse transfor-
mation, any point in the first scene is already close to his coun-
terpart in the second scene. This allows to define corresponding
features solely based on vicinity, with no or only limited interpre-
tation of the scenes.

As for the coarse registration, finding the relative orientation of
two overlapping scans without previous knowledge of the trans-
formation is a hard (and mainly combinatorial) problem. For
practical purposes, it is often solved in software by letting the user
define a number of corresponding point pairs manually, which al-
lows to compute the 3D Euclidean transformation. Automation

of this step is not only interesting in terms of improvement of
laser scan software. It also is related to fundamental problems
such as object recognition (where one of the scans is replaced
by a known model) and the problem of the ‘kidnapped robot’ in
robotics (where the robot has to find its initial pose by determina-
tion of the relative orientation of its scan data and a known map).

Establishing correspondences between datasets without any pre-
vious knowledge requires features ‘stronger’ than points. Fea-
tures should be stable with respect to partial occlusion, and
should carry enough information to recover position and orien-
tation (Faugeras and Hebert, 1986). In this paper, we investi-
gate a coarse registration technique using correspondences of pla-
nar patches. We chose this feature since planar faces are often
present in the vicinity of man-made structures. Furthermore, pla-
nar patches are relatively easy to extract from laser scanner data.
We extend our previous work on that topic (Brenner et al., 2007)
by an improved method to find patch correspondences.

This paper is organized as follows. In section 2, we present the
mathematical background, in section 3 the basic problem and our
approach are stated, and section 4 introduces our test data. Then,
section 5 and 6 introduce and evaluate our solution for the deter-
mination of the rotation and the translation, respectively. Finally,
section 7 draws conclusions and gives an outlook.

2 MATHEMATICAL FORMULATION OF THE
PROBLEM

This section is based on the notation used in (Brenner et al.,
2007), briefly repeated here to keep the paper self-contained.
Two scenes (point clouds) S1 and S2 are given, each consist-
ing of a set of points in 3D space. Any two corresponding points
x1,x2 ∈ IR3 with x1 ∈ S1, x2 ∈ S2, are related by an Euclidean
(rigid) transformation

x1 = Rx2 + t, (1)

84

ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland



where R is a 3 × 3 rotation matrix, and t ∈ IR3 is the transla-
tion vector. Usually, due to errors, the transformed point of x2,
denoted as x′

2 (i.e., x′
2 = Rx2 + t), and its counterpart x1 from

S1, do not exactly coincide. Then, the transformation parameters
for R and t can e.g. be found by (least-squares) minimization
of
P

‖x1 − x′
2‖2. Given three or more point correspondences,

closed form solutions exist to compute R and t (Sansò, 1973;
Horn, 1987).

If no previous information is available, point correspondences
cannot be established easily, since single points do not carry
enough information. One way to solve this problem is to define
descriptors (Johnson and Hebert, 1999). In contrast, we use a fea-
ture based approach which relies on planar patches. We assume
the patches are given by their plane equations

〈ni,x〉 − di = 0 (2)
〈mi,x〉 − ei = 0 (3)
〈pi,x〉 − fi = 0 (4)

where ni, mi, pi are normal vectors of unit length, di, ei, fi are
the plane distances from the origin, and for each of the equations,
i = 1 (plane in scene S1) and i = 2 (plane in scene S2) form a
pair.

Three such plane pairs suffice to determine all six degrees of free-
dom of R and t in two steps. First, R can be found in closed-form
by eigenvector analysis (actually part of the solutions in (Sansò,
1973; Horn, 1987)). Then, assume that scene S2 has already been
rotated, so that only the translation component t in Eq. 1 has to
be determined. From Eq. 2,

〈n1,x〉 − d1 = 0

〈n′
2,x− t〉 − d2 = 0.

Since n′
2 is already rotated, n1 = n′

2 = n, and x can be elimi-
nated to obtain 〈n, t〉 = d1 − d2. Doing the same for Eqs. 3 and
4 and stacking the equations yields

2
4 nT

mT

pT

3
5 t =

2
4 d1 − d2

e1 − e2

f1 − f2

3
5 (5)

from which t can be determined.

Note that the determination of the full transformation is done in
two steps, first the rotation, then the translation. While at least
three plane pairs are required to obtain the translation, only two
plane pairs are sufficient to determine the rotation. This will be
exploited below to reduce search space. In fact, a plane normal
vector (of unit length) has two degrees of freedom, so that two
plane pairs fix four degrees of freedom, one more than what is
required to determine R. As a result, given two corresponding
normal vector pairs n1, m1 from S1 and n2, m2 from S2, due
to measurement errors, the angle ∠(n1,m1) and ∠(n2,m2) are
usually slightly different. Then, one can choose to determine R
such that either n1 and n2 or m1 and m2 align perfectly. Using
the eigenvector solution mentioned above, a preferable rotation
R is found, which distributes the angle error equally to both cor-
responding vectors.

Noting that the determination of the rotation is a time-critical op-
eration, the following alternative can be used, which achieves the
same result without the need for an eigenvector analysis (based on
(Horn, 1987)). Using n1 and m1, a Cartesian coordinate frame
{u1,v1,w1} is constructed by

ũ1 = n1 + m1, u1 = ũ1/‖ũ1‖ (6)

ṽ1 = m1 − 〈m1,u1〉u1, v1 = ṽ1/‖ṽ1‖ (7)
w1 = u1 × v1,

where Eq. 7 uses standard Gram-Schmidt orthonormalization.
Due to Eqs. 6 and 7, u1 and v1 span the same plane as n1 and
m1. Then, M1 = [u1v1w1], writing u1, v1, w1 as column vec-
tors, is an orthogonal matrix by construction. Doing the same for
M2, one can see that

R = M1MT
2 (8)

is orthogonal and in fact is the desired rotation matrix (since
MT

2n2 gives the components of n2 along the axes {u2,v2,w2}
and M1 maps this back to the first coordinate frame). Adding n1

and m1 in Eq. 6 ensures that the angle error is equally distributed
to both corresponding vectors.

3 FUNDAMENTAL PROBLEMS AND APPROACH OF
THIS PAPER

The foremost problem of coarse registration is the combinatorial
complexity. If p plane patches are extracted in S1 and S2 in-
dependently and then all possible transformations are evaluated
based on plane triples (k = 3), as described above, there are

�
p
3

�
·
�

p
3

�
· 3!/2 (9)

possible combinations. The first two terms are due to picking
three planes (the triple) out of p, while the last factor reflects the
possible permutations when assigning the triple from S1 to S2,
reduced by a factor of two, since only triples of the same chi-
rality need to be considered (i.e., a right-handed normal vector
triple from S1 can only match a triple in S2 which is also right-
handed). For p = 50 planes, which we use regularly, this yields
1.15 billion possible combinations which need to be tested.

Noting the positive effect of chirality in Eq. 9 (reduction by
a factor of two), one may wonder if picking more planes
may have a positive effect. If k = 4 planes are picked,
the chirality can be computed for any sub-combination of
3 planes picked out of those four. That is, for k = 4
planes, four ‘chirality numbers’ ±1 are obtained. Any
pick of k = 4 planes in S1 is thus one case in the set
{(+1, +1, +1, +1), (+1, +1, +1,−1), . . . , (−1,−1,−1,−1)}
(all of which may occur). Instead of all 4! = 24 permutations
of a plane quadruple picked from S2, only those with the same
four chirality numbers need to be considered. Depending on
the actual sign combination, either 3 (8 cases), 4 (6 cases) or
12 (2 cases) permutations need to be considered, which yields
an expectation of 1.5 cases on average (which is also obtained
from 6!/24). Thus, comparing the cases k = 3 and k = 4, one
sees that k = 4 has an advantage only if the number of planes is
relatively small (p < 9), in which case the computational cost
is anyhow so low that one would not consider using the more
complex approach. In summary, increasing k does not reduce the
number of cases (for practical p), even if chirality is considered.

The second important problem is the rating of a solution. Ideally,
a score function would be desirable which attains its maximum
when the correct solution is found. If exhaustive search would
be possible, the best solution would then be obtained by simply
picking the transformation with the highest score. A candidate
for this score function is the overlap of S1 with the transformed
S2, for example based on counting the points in S1 with close
neighbors in S2. While this works well when the scene contents
of S1 and S2 are similar (e.g., scan positions are close together),
it usually fails when they are very different (e.g., scan positions
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far apart, occlusions, tilted scan). In the latter case, the score of
the true transformation is low, and it may well be that a larger
score can be achieved by using a wrong transformation.

Using additional criteria (such as point normals) to make the
score function more selective is possible, however comes at an
additional computational cost. While it is practicable to compute
the score for hundreds of cases, it is usually not feasible to do so
for 1.15 billion cases. Thus, the main idea is to build up a hier-
archy of tests which cuts down search space and has the property
that (i) the most inexpensive tests are applied first, (ii) the more
expensive tests are only applied after a large number of false solu-
tions has been ruled out already, and (iii) the tests, though simple,
do not erroneously rule out the correct solution.

The goal of this paper is not to elaborate on the score function, but
on this test hierarchy. Thus, we do not show that our algorithm
finds and indicates the correct transformation (which requires a
search and a score function which has a maximum at the correct
transformation). Instead, we show that we are able to reduce the
set of solution candidates substantially, while still retaining the
correct solution in this set.

4 THE TEST DATA SET AND INITIAL PROCESSING

We selected an area called ‘Holzmarkt’ in the historic district of
Hannover, Germany, for the evaluation of our algorithms. Twenty
scans were acquired, of which 12 were taken (approximately) up-
right, another 8 with a tilted scan head. Throughout the text, the
scan positions and datasets are denoted by ‘SP01’, ‘SP02’, etc.
for the upright and ‘SP03a’, ‘SP05a’, etc. for the tilted scans.
Fig. 1 shows all 12 scan locations in a cadastral map. The scan
positions were chosen systematically along a trajectory with a
spacing of approximately 5 meters. All scans were acquired us-
ing a Riegl LMS-Z360I scanner, which has a single shot measure-
ment accuracy of 12 mm, field of view of 360°×90° and a range
of about 200 m. Reference orientations for the scans were ob-
tained by placing artificial targets in the scene, which were man-
ually identified in the scans. The procedure yields errors in the
range of a few millimeters, thus the reference is considered to
be sufficiently accurate for our tests on coarse registration. We
used the reference orientations to compute an approximate value
for the overlap of scan pairs, ranging from 83.1% for scan pair
SP01-02 down to 2.3% for SP01-12a, see (Brenner et al., 2007).

��

��

����

��

����

������
��������

����

��������

����

����

�������

���	

���
�
�
�������

����
�����

�������

������������������
���������

���������

Figure 1: Placement of scan positions along a trajectory, shown
in a cadastral map. Tilted scans are marked with an ‘a’ suffix.

For the extraction of planar patches, we used standard region
growing, working on the regular raster of scan points. Region
growing iterates the two steps of seed region selection and region

expansion. Seed regions are prioritized according to their local
planarity, which is computed using the residuals of a local best-
fit plane. Once a seed region is selected, scan points along the
region border are added if they lie in the plane (within a thresh-
old of 6 cm), and the plane equation is updated. Fig. 2 shows an
example segmentation.

Figure 2: Planar segmentation of SP01, using random colors for
the segments.

5 DETERMINATION OF THE ROTATION
COMPONENT

5.1 The triple product and pairwise enclosed angles

For our test scene, we exhaustively computed all 1.15 billion
plane triple combinations and the resulting transformations (this
took several hours on a standard PC for each scan pair). Trans-
formations were considered to be correct if the deviation from
the reference is less than 5° in rotation and 1 m in translation.
From table 1, one can see that at most, 0.212h of the triple
combinations lead to a correct transformation, and this number
even decreases rapidly with increasing distance between the scan
standpoints.

Triples with 
compatible 

angles
# ‰ # # ‰

SP 01-02 244635 0,212 1022507 42945 42,00
SP 01-03 208970 0,181 1020667 38947 38,16
SP 01-03a 153111 0,133 684729 20283 29,62
SP 01-04 147045 0,128 1091474 19043 17,45
SP 01-05 55116 0,048 698353 9681 13,86
SP 01-05a 41353 0,036 557906 4955 8,88
SP 01-06 48721 0,042 949832 8361 8,80
SP 01-06a 47843 0,042 1041477 8562 8,22
SP 01-07 14776 0,013 880668 3034 3,45
SP 01-08 15576 0,014 791156 2609 3,30
SP 01-08a 11372 0,010 840829 1048 1,25
SP 01-09 6306 0,005 605209 1125 1,86
SP 01-09a 11545 0,010 513071 778 1,52
SP 01-10 13372 0,012 754447 1357 1,80
SP 01-10a 4584 0,004 438870 596 1,36
SP 01-11 4232 0,004 758084 593 0,78
SP 01-11a 11160 0,010 653320 1572 2,41
SP 01-12 0 0,000 552271 0 0,00
SP 01-12a 0 0,000 402779 0 0,00

Triple assignments 
leading to correct 

transformation

Triples with compatible 
angles leading to 

correct transformation

Table 1: Triple assignments leading to the correct transformation,
angle compatible triple assignments, and angle compatible triple
assignments leading to the correct transformation (for all scan
pairs).

In order to raise this percentage, we used in (Brenner et al., 2007)
the triple product to only consider plane triples above a threshold.
A large triple product is desirable, since it leads to a good matrix
condition number on the left hand side of Eq. 5. However, it
is also problematic, since the appropriate value depends on the
scene contents. If the scene does not contain planes leading to
triple products above the threshold, no candidates are found. In
this case, the threshold has to be lowered, which however quickly
increases the number of false combinations as well.

In order to form a more selective and scene independent criterion,
we investigated the use of the three angles enclosed by the three
normal vectors instead of their triple product. To evaluate how ac-
curate the angles between any two pairs of plane normal vectors
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Figure 3: Histogram and cumulated histogram of the angle dif-
ferences of manually selected plane pairs.

are, we manually identified a small set of corresponding planes
between scans. For any possible plane pair in one scan S1, we
computed the angle between the plane normal vectors. Knowing
the corresponding vectors in S2, we computed the enclosed angle
as well and derived the difference. In total, 328 pairs were con-
sidered. From Fig. 3, one can see that for more than 90% of the
normal vector pairs from S1, the corresponding pairs in S2 form
the same angle within a 1° tolerance. This leads to the conclu-
sion that tight bounds can be imposed on the angles when search-
ing for corresponding plane triples. Table 1 shows that out of the
1.15 billion triple combinations, only between 400,000 and 1 mil-
lion compatible combinations remain. The rate of triple combi-
nations which lead to correct transformations is as high as 42h.
Thus, for SP01-02, by using angle constraints, we can reduce the
amount of search required by a factor of 42h/0.212h ≈ 200.
This is also the average factor over all scans.

5.2 Searching for the correct orientation

As noted in section 2, the rotation is fully determined by two nor-
mal vector pairs, using Eq. 8. Thus, only p over 2 pairs need to
be picked, and (c.f. Eq. 9 for k = 2) a total of p2(p−1)2/2 plane
pair combinations exist. For p = 50, this yields 1,225 pairs in
each scan, and 3 million combinations. If only vector pairs in-
cluding the same angle (tolerance 1°) are regarded, this reduces
to 140,000 compatible combinations, or 4.8%, on average. From
table 2 one can see that the number of compatible normal vector
pairs is relatively stable. However, if the rotation matrix is com-
puted for each of the compatible combinations and compared to
the (known) reference orientation (allowing a 2° tolerance), one
can see that the number of those pairs leading to a correct orienta-
tion decreases with increasing scan numbers, from 8,034 (5.5%)
down to almost zero. Thus, even scans far apart yield a large num-
ber of compatible normal vector pairs, but the percentage leading
to the correct transformation decreases. Note that there is no need
to test the 3 million cases by exhaustive enumeration. Instead, all
1,225 angles between pairs in S2 can be sorted into angle bins
(we used 1° bins for this purpose). Then, for each plane com-
bination in S1, the subset of candidates in S2 can be retrieved
quickly.

In the next step, the goal is to pick a correct orientation from the
approximately 140.000 candidates – or more precisely, to rank
the candidates in such a way that the correct solution is among the
first few proposals. Since the percentage of correct solutions can
be around only 1% (for the cases we wish to be able to succeed),
random picking would imply that we can expect only one correct
solution among (the first) 100 picks.

In order to improve this rate, we computed the rotation matrix for
all compatible combinations. Note that using Eq. 8, this does not
require matrix inversion or eigenvalue analysis, so it is computa-
tionally inexpensive, even for 140.000 candidates. For each can-
didate rotation matrix, we recovered the three rotation angles ω,
φ, κ. Fig. 4 shows a plot of all rotation candidates, in (ω, φ, κ)

Pair Compatible % Correct %

SP01-02 145202 4,84 8034 5,53
SP01-03 147944 4,93 7497 5,07
SP01-03a 115260 3,84 5566 4,83
SP01-04 164200 5,47 5852 3,56
SP01-05 145098 4,83 3496 2,41
SP01-05a 121400 4,04 2885 2,38
SP01-06 166238 5,54 4218 2,54
SP01-06a 165922 5,53 4414 2,66
SP01-07 173934 5,80 2513 1,44
SP01-08 167550 5,58 2639 1,58
SP01-08a 168050 5,60 2728 1,62
SP01-09 141868 4,73 1651 1,16
SP01-09a 140498 4,68 926 0,66
SP01-10 157464 5,25 2115 1,34
SP01-10a 113540 3,78 1007 0,89
SP01-11 138768 4,62 929 0,67
SP01-11a 147310 4,91 1642 1,11
SP01-12 105978 3,53 2 0,00
SP01-12a 94758 3,16 148 0,16

Table 2: Angle compatible normal vector pairs, percentage rela-
tive to total number of combinations (3 million), number of cor-
rect rotations computed from the pairs, and percentage relative to
the compatible cases.

space, for the scan pair SP01-02. For the figure, the rotations
were normalized using the known reference orientation, so that
the correct rotation is at (ω, φ, κ) = (0, 0, 0). At this point (cen-
ter in Fig. 4), one can see a dense point cloud (according to ta-
ble 2, 5.53% of the points should be located there). In order to
test this, we sorted all candidate rotations (ω, φ, κ) into bins (us-
ing a bin size of 2°). After this, the bins are extracted highest
count first. Similar (ω, φ, κ) values are merged during this step if
they differ in all angles by less than 2° (this operation is similar
to histogram smoothing considering neighboring cells).

Figure 4: Plot of all rotation candidates for the scan pair SP01-
02, in (ω, φ, κ) space. Each orientation is represented by a point.
The correct orientation is at the center of the figure, where the ω
and φ axes can be seen. The κ axis points upward.

As a result of this procedure, we obtain a list of orientations,
sorted in descending order of bin hits. Fig. 5 shows the num-
ber of hits for the 20 bins with highest count, for the scan pair
SP01-02 and SP01-09a. In the case SP01-02, the first bin (8,034
hits) has a much higher count as the second bin (1,752 hits). In
fact, the first bin represents the correct orientation and the bin
count is equal to the value in table 2. This situation is not always
as clear. For example, in the case SP01-09a, the counts are gen-
erally lower and there is no clear peak at the first bin. In this case,
the correct orientation corresponds to the 8th largest bin.

To give a better overview, Fig. 6 shows a plot of the 20 bins with
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Figure 5: Histogram of the first 20 (orientation) bins with largest
bin count for the scan pairs SP01-02 and SP01-09a.

highest count, for all scan combinations. As can be seen, for low
scan numbers, there is a clear peak at bin 1, which is also the
reference orientation. For SP01-04 and up, the peak gets wider,
but still the correct orientation is at the first bin. The first ex-
ception to this is SP01-07 (which has 51% overlap), where the
correct transformation is in the second bin (count 2,332). Closer
examination reveals that the first bin (similar count of 2,362) rep-
resents a turn by κ=180° around the up- (Z-) axis with respect
to the reference orientation. SP01-09a (29% overlap) is the first
case where the correct orientation is not among the first two bins.
SP01-11 is still worse, but note this pair has only 9.9% overlap.
SP01-11a has 12.2% overlap and the correct solution is in bin 1.
For SP01-12 and SP01-12a, the reference orientation was not part
of the first 100 bins, however their overlap is only 4% and 2%,
respectively.
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Figure 6: Bins with highest count for all scan combinations.
White corresponds to a count of 3,000 or more, black is 0. The
small rectangles indicate the bin which corresponds to the refer-
ence rotation. For example, the lowest line represents the first
20 bins for scan pair SP01-02 and is the equivalent of Figure 5.
It has a clear peak (white) at the first (leftmost) bin, which also
represents the true rotation (small rectangle).

6 DETERMINATION OF THE TRANSLATION
COMPONENT

The translation is determined according to Eq. 5, using three
plane pairs. Note that it is not necessary to actually rotate S2,
because Eq. 5 requires only d2, e2, f2 from S2, the plane dis-
tances from the origin, which are not affected by rotation. Also,
instead of picking all triple pairs, one can work on the rotation

candidates one after the other, so that not only the rotation matrix
is known, but also a set of combinations of two plane pairs which
led to this rotation (i.e., a quadruple of plane indexes). For ex-
ample, for SP01-02, the first rotation considered corresponds to
a bin with 8,034 hits, meaning that 8,034 cases of assigned plane
pairs are known already. This compares favorably to the 140,000
compatible (and the 3 million total) pairs.

Both pairs, of S1 and of S2, need to be extended by a third plane,
picked from the remaining p − 2 planes. For example, for the
mentioned case, this would mean on the order of 8,034·48·48 =
18,510,336 possible picks. However, when imposing angle con-
straints (of 1°) for the angles between the already picked pair and
the newly picked plane, and considering chirality, a much smaller
number remains. In the example, only 188,732 picks are left.

However, we chose a conceptually simpler approach. Instead of
picking a third plane, we simply pick pairs of quadruples from the
bin. Thus, for each pick, we have 4 plane pairs, and solve Eq. 5
for the translation in a least squares manner. Fig. 7 shows the
translations corresponding to 100,000 of such picks, where each
translation vector is represented by a point in 3D space. The cor-
rect translation vector is at the center of the figure, where several
‘linear structures’ intersect. There are many candidates along the
Z axis, indicating a correct lateral position, but a varying height.
Perpendicular to this, there are several linear structures which we
believe are due to the arrangement of the facades in the ‘Holz-
markt’ scene: if one moves the point cloud SP02 further apart
from SP01, the distance between the right and left building fa-
cades increases and there are two choices for the translation, ei-
ther matching the ‘right’ or the ‘left’ facades.

Figure 7: Plot of all translation candidates for the first orientation
bin of the scan pair SP01-02. Z axis points upward.

Picking two quadruples from the bin yields 8,034·8,033/2 possi-
ble picks for the example bin (way too many). Instead, we apply
the RANSAC principle at this point (Fischler and Bolles, 1981).
We only pick a subset of m pairs of quadruples. For each pick,
we compute the translation and then count the number of planes
in S1 for which a matching plane in S2 exists. Planes were con-
sidered to match if their normal vectors agree within 1° and their
distance from the origin agrees within 1 m. Note this compari-
son is computationally inexpensive, since it uses only the plane
parameters, rather than original scan points.

To derive the necessary number of picks m, we picked 10,000
quadruple pairs and determined the percentage of picks which
lead to the correct translation (within 1 m along each axis).
We found that for close scan positions, such as SP01-02, this
is around 20%, decreasing with increasing scan position dis-
tance, for a minimum of 3% (not considering SP01-12 and SP01-
12a). Following Fischler and Bolles (1981), if we want to ensure
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SP01- 02 03 03 04 05 05 06 06 07 08 08 09 09 10 10 11 11 12 12
a a a a a a a a

Run 1 1 1 1 1 1 2 3 2 2 15 23 11 5 12 33 14 12 - -
Run 2 1 1 1 1 1 2 6 5 12 4 20 53 6 35 15 13 12 - -
Run 3 1 1 1 2 1 2 2 5 12 7 28 13 5 27 13 21 11 - -

Table 3: Ranking of correct transformations. The value ‘1’ in row
‘Run 1’ and column ‘02’ means that for the scan pair SP01-02,
and the first run, the first transformation returned by the algorithm
also was the correct one.

with probability z to find at least one correct solution among m
picks, where the probability to draw a correct solution is b, then
m = log(1 − z)/ log(1 − b). For z = 99%, b = 3%, it follows
that m ≈ 150 picks are required.

The number of corresponding plane pairs is also used to rank the
entire transformation (rotation and translation). Table 3 shows
the results obtained for three separate runs of the algorithm. The
rankings indicate at which position in the result list the algorithm
returned a correct transformation (defined by as most 2° off in
rotation and 1 m off in translation, for each axis). As one can see,
for most of the close scan pairs, the algorithm returned the correct
solution in the first place or within the first few ranks. For all runs
except SP01-12 and SP01-12a, the solution was ranked among
the first 53. For SP01-12 (overlap 3.6%) and SP01-12a (overlap
2.3%), we obtained no solution. However, for those cases, we
were even unable to manually select suitable plane pairs.

7 CONCLUSIONS AND OUTLOOK

In this paper, we addressed the problem of finding good initial
values for the relative orientation of two laser scans when no pre-
vious information is available. Our method is based on the auto-
matic extraction and assignment of planar patches. For a set of
terrestrial laser scans, with 50 extracted planar patches per scan,
we showed that there is a large number of 1.15 billion possible
assignments, however only 0.2h or less (one in 5000) of them
lead to a correct transformation. Thus, it was our goal to devise
an efficient method which cuts down search space and produces
a ranked list of possible transformations, where the correct trans-
formation is among the top entries. The general idea behind this
is to built a hierarchy of tests, where the most elaborate test (the
score function) needs only to be performed for very few cases.

We showed that the relative angles between patch normal vectors
are a good (and scene independent) criterion to eliminate false
assignments. For the determination of the rotation matrix, we
started from the assignment of two patch pairs. Using a cluster-
ing of orientations by way of bins, we obtained a ranking, where
the correct solution is at the top for the majority of scan pairs and
ranked among the first 18 in all cases. As for the translation, we
used a RANSAC based approach, where the sampling consists of
picking two patch pairs, and the consensus set is the total number
of compatible patch pairs. Overall, we obtained an efficient algo-
rithm which computes a ranked list of transformation candidates,
where the correct transformation is at rank one for scans with
a high overlap, and ranked among the first 53 for all scan pairs
with an overlap larger than 3.6%. We conclude that the number
of candidates for which a more elaborate score function needs to
be evaluated is on the order of 100, which is, compared to a total
of 1.15 billion possible cases, a massive reduction by a factor of
107.

In the future, we plan to test the algorithm on other scenes as well,
and to work on an efficient yet selective score function.

ACKNOWLEDGEMENTS

This work has been supported by the VolkswagenStiftung, Ger-
many.

References

Besl, P. J. and McKay, N. D., 1992. A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence 14(2), pp. 239–256.

Brenner, C., Dold, C. and Ripperda, N., 2007. Coarse
Orientation of Terrestrial Laser Scans. ISPRS Jour-
nal of Photogrammetry and Remote Sensing (in press,
doi:10.1016/j.isprsjprs.2007.05.002).

Chen, Y. and Medioni, G., 1991. Object modeling by registra-
tion of multiple range images. In: International Conference on
Robotics and Automation, pp. 2724–2729.

Faugeras, O. D. and Hebert, M., 1986. The representation, recog-
nition, and locating of 3-D objects. International Journal of
Robotics Research 5(3), pp. 27–52.

Fischler, M. A. and Bolles, R. C., 1981. Random sample con-
sensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Comm. ACM 24(6),
pp. 381–395.

Greenspan, M. and Godin, G., 2001. A nearest neighbor method
for efficient ICP. In: Proceedings of the Third International
Conference on 3D Digital Imaging and Modeling, Quebec
City, Canada, pp. 161–168.

Gruen, A. and Akca, D., 2005. Least squares 3D surface and
curve matching. ISPRS Journal of Photogrammetry and Re-
mote Sensing 59(3), pp. 151–174.

Horn, B. K. P., 1987. Closed-form solution of absolute orienta-
tion using unit quaternions. Optical Society of America 4(4),
pp. 629–642.

Johnson, A. E. and Hebert, M., 1999. Using spin images for ef-
ficient object recognition in cluttered 3D scenes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 21(5),
pp. 433–449.
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