
 
XXII International Cartographic Conference (ICC2005)  A Coruña, Spain, 11-16 July 2005 

Hosted by:  
The International Cartographic Association (ICA-ACI)  

ISBN: 0-958-46093-0 Produced by Global Congresos  
 
 
 

CARTOGRAPHIC GENERALIZATION USING PRIMITIVES AND 
CONSTRAINTS 

 
 

C. Brenner,  M. Sester 
 

Institute of Cartography and Geoinformatics, University of Hannover, Germany 
{claus.brenner, monika.sester}@ikg.uni-hannover.de 

 
 
We propose the use of primitives, containers, and constraints as a computational means for cartographic generalization. 
Primitives bundle object geometry and internal constraints, as well as a discrete behaviour. Containers are collections of 
primitives which also exhibit a certain behaviour, such as arranging their children in a linear way or as a regular pattern 
of rows and columns. Together, they form a hierarchy of containers and primitives which is used to lay out a map. This 
layout is ultimately determined by putting together all constraint equations, and finding an overall solution which 
minimizes certain criteria while enforcing strict constraints at the same time. We explore the handling and solution of 
constraint equation systems by looking into constraint graphs, Gröbner bases, and row reduction of Jacobi matrices. 
 
 
INTRODUCTION 

Cartographic generalization has been tackled by many researchers and satisfactory results have been achieved in the 
past. These approaches usually start from geometric representations like polygons or lines. From this, implicit 
relationships are discovered, such as parallel and rectangular structures, distances, protrusions, etc., which are to be 
modified or preserved in the subsequent generalization step. The final outcome is again a description of the objects in 
terms of their geometry only. This approach has the disadvantage that the implicit information about the structure of the 
objects and their relationships is derived, used, and discarded immediately after. Thus, a user typically cannot see what 
structures were discovered, nor can he influence them, except for some general parameter settings. 
 
Recently, in cartography methods are being investigated and developed which aim at the recognition of important 
structures that are needed as a basis for generalization, e.g. parallelism, linear arrangement, clusters (Christophe & 
Ruas, 2002, Anders & Sester, 2000, Neun et al., 2004). Furthermore, there are approaches which try to separate 
generalization processes related to different objects in different hierarchical levels, e.g. when defining generalization 
modules that can be handled independently (Kilpeläinen & Sarjakoski, 1995). A first attempt to explicitly model these 
structures has been done in the AGENT project, where different hierarchical levels of objects have been specified that 
can act independently with a specific dedicated behaviour (Lamy et al., 1999). 
 
In computer aided design (CAD) research, there have been numerous approaches to construct parts by using predefined 
primitive objects, which are combined using construction rules, represented as constraints. For example, constraints 
enforce that planes meet, axes are the same, or dimensions are equal or in a fixed relation to each other. Modeling 
objects this way does not only allow to reuse parts from a parametric part library, but also has the advantage that the 
original design intent of the part designer is represented explicitly in terms of those relationships. Applying this 
approach to cartographic generalization implies that object structures and their relationships are described in an explicit 
manner. This makes it possible to modify the original description, adding or re-weighting relationships as needed, in 
order to change the generalization outcome. This leads to a more elaborate description of the objects, however with the 
benefit of being able to derive fully automatically different generalization levels.  Thus, the use of parts and constraints 
in cartographic generalization goes beyond a ‘single instance’ description: as scale changes, parts and constraints might 
change or vanish, too, i.e. generalization rules for both parts and constraints have to be available. 
 
 
CONSTRAINT EQUATIONS 
 
A geometric constraint problem consists of a set of geometric primitives and a set of constraints between them. 
Geometric primitives are e.g. points, lines, or circles. Constraints may be logical, such as incidence, perpendicularity, 



parallelism, tangency, etc., or metric such as distance, angle, radius, etc. Finding a solution for a given set of constraint 
equations is equivalent to finding a real solution to the corresponding algebraic equation system. 
 
Constraint equations can usually written as algebraic equations of the form 0)( =xif , where  is the parameter 
vector describing the scene. For example, x can directly contain coefficients describing primitive objects such as points 
and lines but can also describe “higher level” parameters such as the transformation parameters of a substructure. 
Putting all the functions , 

nR∈x

if mi ≤≤1  together, the problem is to find a parameter vector x which satisfies the implicit 
(and, usually, nonlinear) constraint equation 
 
  (1) 0xf =)(
 
This equation can be either underconstrained, well constrained, or overconstrained, depending on the number of 
unknowns and constraints. In the latter case, the system has either no solution at all or it is consistently overconstrained, 
i.e. there are more equations than needed, which are however not independent. As opposed to linear systems, a zero 
dimensional solution space can still involve a large number of individual solutions x, exponential in the number of 
equations. Also, the idea that each “independent” equation reduces the “dimension” of the solution space by one is more 
involved, for example (Cox et al., 1997), given the two nonlinear equations 01 == xzf  and 02 == yzf  with 

, the solution space is the union of the z-axis with the (x,y)-plane, i.e. the union of a one- and two-
dimensional subspace. 

nzyx R),,( T ∈=x

 
In CAD research, a common problem is as follows: given a sketch of an object, annotated with dimensional 
information, construct an instance of that object. The sketch gives information about the involved geometric primitives 
and their relationships, while the annotation gives the dimensions, which together allows to set up the constraint 
equations. In this case, it is desirable that the system is well constrained or consistently overconstrained. Typically, 
relationships derived from the sketch or additional user input are used to pick out the individual solution. 
 

 

  

 

 
(a) (b) (c) 

Figure 1: Change of a linear row of objects during generalization. (a) Original state, (b) when linearity is not enforced, (c) with 
linearity enforced. 

 
When generalization problems are written as equation systems, there are usually two equation types present: equations 
that should be fulfilled “as best as possible”, and constraint equations which must hold. For example, in Figure 1(a), 
suppose the situation of a linear row of objects was detected. If those objects get “under pressure” by a scale change 
(illustrated by the two arrows), they will escape as shown in Figure 1(b) if they are forced to keep their distances. 
However, if an additional linearity constraint is introduced, they are forced to lie on a line, as shown in Figure 1(c), 
although the goal of keeping the distances cannot be met. For the equation system, this means that there are two 
equations, 
 

 min)(
!
=xg , subject to 

 , (2) 0xf =)(
 
where g subsumes the possibly contradictory, “weak” constraints, whereas f represents the “hard” constraints. As 
opposed to the mentioned case in CAD, f will be normally underconstrained (as else the hard constraints would 
determine the layout completely), whereas g will be often overconstrained (when multiple requirements compete 
against each other), which leads to a system which is both locally overconstrained and globally well- or 
underconstrained. The globally underconstrained case is interesting since it leaves room for interactive manipulation of 
objects which are not fixed by either weak or hard constraints. 
 
As f is usually nonlinear, it cannot be solved analytically in general. However, one can try to (i) exploit the special 
structure of the equations, (ii) exploit the type of the equations, which are often polynomial, or (iii) linearise the 
equations and solve them iteratively. These cases are briefly discussed in the following section. 
 

 
 



ANALYSIS OF CONSTRAINT EQUATIONS 

Exploiting Structure 

When a drawing is constructed using compass and ruler, a step-by-step procedure is usually applied. That is, objects are 
added one-by-one as soon as there are enough constraints which allow to place them unambiguously. (Instead of 
successively adding single elements, it might also happen that complete “subgroups” have to be constructed separately 
which are assembled only at the end.) Approaches which exploit this are called constructive constraint solvers. Their 
goal is to decompose the original constraint system into small, manageable subsystems, solve them, and recombine the 
solutions to an overall solution. The decomposition should be optimal in such a way that the size of the largest 
subsystem is minimized. A decomposition-recombination (DR) plan can be made as a preprocessing step before 
actually starting to solve the equation system. Two major types of DR plans are constraint shape recognition (Owen, 
1991, Fudos & Hoffmann, 1997) and generalized maximum matching (Kramer, 1992, Ait-Aoudia et al., 1993), see 
(Hoffmann et al., 2001) for an overview. In the following, the basic principles of the latter are sketched. 
 
Suppose, upon closer examination of (1), it turns out that 0f =  consists of the following equations (Ait-Aoudia et al., 
1993): 
 
 , , 0),( 211 =xxf 0),( 212 =xxf 0),,( 4323 =xxxf , , 0),,( 4314 =xxxf
 , 0),,( 7535 =xxxf 0),,( 6546 =xxxf , 0),( 767 =xxf .  (3) 
 
From this, a constraint graph can be derived, which contains a node for each constraint and unknown, and an edge if an 
unknown appears in a constraint, see Figure 2(a). This bipartite graph G captures structural properties of the equation 
system. G is said to be structurally well-constrained if there are as many constraint nodes as unknown nodes and for no 
subset of constraints, there are less unknowns than constraints. If )(⋅U  returns the set of unknowns for a given set of 
equations, i.e. if , then , then, in the example graph, },,{ 71 ffF K= },,{)( 71 xxFU K= )(7 FUF == , and for any 

subset , FF ⊆' )'(' FUF ≤ . If for a well constrained graph the property )'(' FUF <  holds for any true subset 
FF ⊂' , the graph is said to be irreducible. Any well constrained graph is either irreducible or contains an irreducible 

subgraph. One is interested in irreducible subgraphs, since they correspond to smaller size subproblems which are easier 
to solve. 
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Figure 2: Constraint graph for Eq. (3). (a) Original graph, (b) perfect matching, (c) strongly connected components, (d) collapsed 

graph H. 
 
The irreducible subgraphs of a graph can be computed from a perfect matching (a set of edges where no two distinct 
edges share a vertex and all vertices are covered, Figure 2(b)) by finding strongly connected components, Figure 2(c). 
By collapsing the irreducible subgraphs to single nodes, and replacing the edges between them by single, directed 
edges, a new graph H is obtained, which is acyclic, Figure 2(d). It induces a partial order which can be used to solve the 
equation system. In the example,  can be solved first, since it contains two equations , , 
dependent on two unknowns , . Then, 

),( 211111 xxHH = 1f 2f

1x 2x ),,( 43111212 xxHHH =  can be solved, since there are two equations , 
, which depend on four unknowns, however, ,  are known already, so ,  are obtained. Finally, 

 can be solved using the values for , . 

3f

4f 1x 2x 3x 4x
),,,( 765121313 xxxHHH = 3x 4x

 
It has to be noted that since G captures only structural properties, there is not always a one-to-one relationship between 
G and the original equation system E: G can be overconstrained, while E still has a finite (or infinite) set of solutions (in 
case of consistent overconstraints); G can be underconstrained but E can still have a finite set of solutions (consider 
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1 =+ xx over the reals); or G can be well-constrained but E has an infinite set of solutions (when the Jacobian C of f 

does not have full rank). If G is not well-constrained, the method above will find subgraphs , , , which are 
well-, over-, underconstrained, respectively. 

1G 2G 3G

 
Polynomial Equations 

Constraints between objects can often be expressed using bilinear equations. For example, in the two-dimensional case, 
with , T

11 ),( yx=p T
22 ),( yx=q 2R∈  denoting points and ,  representing lines in 

Hesse normal form 

T
111 ),,( cba=l T

222 ),,( cba=m
0=++ cbyax , 

 
 , (4) 012

1
2
1 =−+ ba

  (5) 011111 =++ cybxa
  (6) 011111 =−++ dcybxa

  (7) 0)()( 2
21

2
21 =−−+− dyyxx

  (8) 02121 =+ bbaa
  (9) 01221 =− baba
 0sin,0cos 12212121 =−−=−+ ρρ bababbaa  (10) 
 
are equations for (4) l having a unit length normal vector, (5) p incident l, (6) p having (signed) distance d from l, (7) p 
having Euclidean distance d from q, (8) l perpendicular m, (9) l parallel m, (10) oriented lines l and m enclosing the 
fixed angle ρ . (See e.g. (Heuel, 2004) for a more complete list of relationships.) 
 
Thus, f from (1) consists of a set of polynomial equations 0)( =xif , for mi ≤≤1 . The set of all solutions x which 
satisfy all those equations is called the affine variety (Cox et al., 1997) , i.e. ),,( 1 mff KV
 
 . }10)(:R{),,( 1 mifff i

n
m ≤≤∀=∈= xxV K

 
The corresponding algebraic object is the ideal I, which is a subset of all polynomials over a field which satisfies 
(i) I∈0 , (ii) II ∈+⇒∈ 2121, ffff , (iii) I∈1f , h polynomial I∈hf . I.e., I always contains the zero polynomial, 
the sum of two polynomials from I is also in I, and the product of a polynomial from I with any polynomial (not 
necessarily from I) is also in I. Now given the set of polynomials , the set mff K,1
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with  being arbitrary polynomials over the field is indeed an ideal, the ideal generated by . Interestingly, it 
turns out that the variety  does not depend on the particular basis functions chosen, but rather only on the 
ideal generated by them, i.e. 

ih mff ,,1 K

),,( 1 mff KV

 
 ),,(),( 11 mm ffff KK VV = . 
 
The consequence of this is that if we are given a set of polynomial equations  and are looking for their 
solution space , we can replace the original set of polynomials by any other set  for which 

mff ,,1 K

),,( 1 mff KV shh ,,1 K

sm hhff KK ,,, 11 = , i.e. which spans the same ideal. 
 
A particularly useful set is the Gröbner basis of an ideal I, a finite set  for which shh ,,1 K

 
 )(LT)(LT,),(LT 1 I=shh K , 
 

 
 



where  denotes the leading term of the polynomial h under a given monomial order and )(LT h )(LT I  is the ideal 
spanned by all leading terms of I. The Gröbner basis can be systematically obtained from any given set of polynomials 
using Buchberger’s algorithm. It is the generalization of the familiar row reduction for linear matrices, and in fact it will 
yield the row reduced form of a matrix if applied to a linear equation system. 
 
Gröbner bases can be used to solve polynomial equation systems, since they can successively eliminate variables. That 
is, as linear equations can be solved using row reduction followed by back substitution, a polynomial equation system 
can be solved by computing a Gröbner basis { }shh K,1 , then solving the “last” equation , which contains the 
“last” variables (according to the given monomial order), and successively back substituting and solving , , …, 

. Unfortunately, not only the number s of polynomials in the Gröbner basis can be very large, but also the order of the 
polynomials. It has been shown that the construction of a Gröbner basis from polynomials of degree of at most d can 
involve polynomials of degree proportional to , and thus even if a Gröbner basis can be obtained, the polynomials 
can usually only be solved numerically. 

0=sh

1−sh 2−sh

1h

d22

 
However, Gröbner bases have also the property that the ideal membership problem can be solved using polynomial 
division. That is, the question if a given polynomial f is member of the ideal I can be answered easily by dividing f by 
the polynomials  of the Gröbner basis of I. If there is no remainder, shh ,,1 K I∈f . For the corresponding varieties, 
this means that for any solution , also )(IVx∈ 0)( =xf  holds. 
 
In the context of generalization, this can be used as follows. Given a partially constrained scene, involving variables x 
and constraints , the relation to another constraint  is to be checked – e.g. since it is to be added or 
removed from the set of constraints. Now this additional constraint can (i) really add information (which is what usually 
is intended), (ii) be superfluous (since the constraint is actually already enforced by some combination of ), 
or (iii) can render the system unsolvable. These cases can be distinguished as 

11 ,, −shh K sh

11 ,, −shh K

11 ,, −=∈ ss hhIh K   case (ii), ⇒

{}1,,1 =shh K  ⇒  case (iii), and else case (i) holds. 
 
Altogether, this approach can be used to identify redundant as well as conflicting constraints. However, the caveat is 
that computing a Gröbner base can take substantial time and space, so that its computation is not feasible in an 
interactive environment. The question here is if the special nature of the equations involved, such as (4)-(10), can 
somehow lead to lower time and space bounds. 
 
Linearisation of Equations 

The linearisation of (2) results in an equation system of the form 
 

 min
!
=− bAx ,  subject to (11) 

 . (12) dCx =
 
where A and C are the design and constraint matrices, respectively (a weight matrix is omitted for clarity). If ⋅  in 
(11) is the  norm, this can be solved in numerous ways (Lawson & Hanson, 1995), (i) by weighting 2L
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with some “large” ε , and minimizing bxA ~~

−  using the normal equations 

 
 bAxAA ~~~~ TT =  (13) 
 
(ii) by introducing Lagrange multipliers k and solving 
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or (iii) by an explicit parametrisation of the null space of C: since all solutions to (12) can be parameterized as 

, where the columns of N span the null space of C and  is the Moore-Penrose pseudoinverse, instead 

of minimizing (11) over all x, one can minimize 

NydCx += + +C

bNydCA −++ )(  with respect to y, which yields (Lawson & Hanson, 

1995) 
 
 . (15) )())( n dACbCCA(IdCx ++++ −−+=
 
A problem arises with (13), since it enforces the constraint equations (12) only to a certain degree, dependent on ε . As 
constraint equations might compete against observation equations, ε  has to be set very high, running the risk that A~  
gets poorly conditioned. One can think of situations where the requirement to exactly fulfil the constraints (12) can be 
relaxed. For example, it might be not so important that a right angle is exact to 8 decimal places. However, C usually 
also contains incidence relations which must be satisfied in order for subsequent CAD operations, such as Boolean 
union or intersection, to succeed. 
 
Care must also be taken considering the rank of the matrices. Problem (11,12) has only a unique solution if  
has full rank. If not, solutions based on normal equations and inversion (13), (14) are not suitable, but pseudoinverse 
(15) or SVD solutions are. As noted earlier, in the context of generalization, scenes are usually underconstrained. 

][ TT C,A

 
 
AN EXAMPLE 
 
Consider the left polygon in Figure 3(a), which is to be simplified to a four-sided polygon as the result of a 
generalization operation. In Figure 3(b), only the relevant part of the object is shown. The generalization operation will 
remove the “intrusion” consisting of points , ,  and lines , , while  and  are kept and intersected to 
form the new point p. All the points must lie on their corresponding lines, and the lines must have normal vectors of 
length one, which yields the following constraints: 

1p 2p 3p 2l 3l 1l 4l

211 , llp ∈ , 322 , llp ∈ , 433 , llp ∈ , i.e. 6 equations of type (5) plus 2 
equations of type (4), for a total of 8 equations. When the generalization operation removes the points and lines, all 
those constraints will vanish, too. 
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Figure 3: Removing an intrusion as result of generalization. (a) Illustration of the operation, (b) lines and points along the intrusion, 
(c) the situation when the removed part includes geometric constraints. 

 
However, consider the case in Figure 3(c), where additional constraints hold between the objects which are removed. In 
addition to the 8 equations from above, there are now three right-angle constraints 21 ll ⊥ , , . In this 
simple example, it is easy to see that these three constraints actually force  to be perpendicular to , by the chain 

. This means that if the generalization operation takes out the geometry and the constraints as well, the 
information  will be lost. In the following, it is discussed how this can be detected using the methods from the 
previous section. 

32 ll ⊥ 43 ll ⊥

1l 4l

4321 llll ⊥⊥⊥

41 ll ⊥

 
Structural Detection Using the Constraint Graph 

Figure 4 shows the bipartite constraint graph for the situation in Figure 3(c). There are a total of 8+3=11 constraints as 
laid out above, unknowns for the points  and lines , for a total of 18 unknowns (degrees of 
freedom). As there are only 11 constraints and 18 unknowns, the graph is underconstrained and there is no perfect 
matching. In order to find out if the constraints impose any condition on  and , we fix them (shown in grey). Now 
there are still 11 constraints and 12 unknowns, however the structure reveals that the graph is nevertheless 
overconstrained: it is impossible to match all of the three rectangularity nodes, leaving one of them unmatched (e.g. the 
rightmost, as shown in 

T),( iii yxp = T),,( iiii cbal =

1l 4l

Figure 4). Thus, from the constraint graph, it becomes clear that  and  are related. Note, 1l 4l

 
 



however, that the constraint graph is unable to tell whether the corresponding equation system is solvable or not: if 
 is enforced by some other equations (e.g. when all angles in the polygon 41 ll ⊥ Figure 3(a) are right angles), the 

unmatched rectangular node is an consistent overconstraint which can be removed. 
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Figure 4: Bipartite graph representing the objects and constraints of Figure 3(c), with maximum matching shown as bold lines. Upper 

row: i, r, n are incidence (Eq. 5), rectangularity (Eq. 8), normal vector (Eq. 4) constraints, respectively. Lower row: 
unknowns for the four lines and three points. Unknowns in grey circles are held fixed. 

 
Detection using Gröbner Bases 

In order to detect if the 11 equations impose any constraint, all unknowns have to be eliminated except for the 
unknowns of  and . This can be achieved by specifying the variable order > > …> > > > > > 

> > > > > > >  (with the unknowns of  and  being last) and computing a Gröbner basis. With 
lexicographic monomial ordering, the basis contains 34 terms, 

1l 4l 1x 1y 3y 2a 2b 2c 3a

3b 3c 1a 1b 1c 4a 4b 4c 1l 4l
,yyycbycbxxxcaxca 3132213331322133{ +++++  …, 

, . The last equation is the only one involving unknowns from  and  only, and one sees 
that  is exactly of type (8), . Thus, the Gröbner basis reveals that there is a constraint indeed, 
enforced by the constraints of the intrusion, and moreover that it is a rectangularity constraint. 
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In contrast to the structural analysis of the previous subsection, the Gröbner basis will reveal consistent overconstraints. 
If by some other constraints, the three equations 41 ll ⊥ 04141 =+ bbaa , ,  hold for the situation 

without the intrusion. This leads to the Gröbner basis , 
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2
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2
1{ baB +−= 4411 baba −− , , , 

, . On the other hand, when the 11 equations from above are combined with these three 
equations, and all unknowns except those for  and  are eliminated, exactly the same Gröbner basis is obtained. This 
means that the additional constraint imposed by the equations of the intrusion is not independent; rather, it is a 
consistent overconstraint. Alternatively, it may be checked that 

4141 bbaa + 2
414141 babbaa +−−

2
4

2
11 bb −− }1 2

4
2
4 ba ++−

1l 4l

4141 bbaaf += , obtained from the analysis of the 
intrusion constraints, is in the ideal spanned by B, i.e. Bf ∈ , which is obviously the case since in fact, . Bf ∈
 
Detection using Linearisation 

A similar result can be obtained if the 11 equations are linearised and all unknowns except the ones for  and  are 

eliminated. Suppose the linearisation point is , , , , , 

, , then the Jacobi matrix of the partial derivatives with respect to the variables , , , 
, , , , , , , , , , , , , ,  (in that order, with variables to be eliminated first) is  

1l 8l
T

1 )0,0(=p T
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2y 3x 3y 2a 2b 2c 3a 3b 3c 1a 1b 1c 4a 4b 4c
 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 −1 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0
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after it has been row reduced. Then, from the last line of this matrix, it can be seen that  and  are not independent 
(this is the equivalent to the equation  remaining in the nonlinear case). As in the nonlinear case, one can 
check if the intrusion changes anything when 

1l 4l

4141 bbaa +

41 ll ⊥  is enforced by some other constraints. The three equations (one for 
 and two for unit normal vectors) lead to the row reduced Jacobi matrix 41 ll ⊥
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which is in fact also the last part of the row reduced Jacobi matrix of the 14 equations. That is, the same result is 
obtained, no matter if (a) only the three equations are used, describing 41 ll ⊥  and unit normal vectors, or (b) these three 
equations plus all 11 constraints from the intrusion are used and all variables except the ones for ,  are eliminated. 1l 4l
 
 
PRIMITIVES AND CONTAINERS 

From the previous example, it can be seen that tools are available which can discover implicit or contradictory 
constraints. Constraint graphs show structural dependencies, Gröbner bases reveal dependencies of polynomial 
equations, and the Jacobi matrix shows similar results for the linearised equations. This can be either used when 
constraints are inserted manually or after they have been inferred automatically from a given scene. However, up to 
now, we have considered constraints to be “flat”, i.e. not being tied to some hierarchy. For example, modelling the 
polygon as shown in Figure 5(a), with all angle constraints being between pairs of successive segments, leads to the 
constraint graph in Figure 5(b). One angle constraint has been omitted in order to keep it well constrained. If ,  are 
removed, the situation discussed in the previous section is encountered, where the removal of the intrusion leads to the 
loss of an angle constraint to  unless the implicit constraint is uncovered and made explicit (

2l 3l

1l Figure 5(c)). 
 
However, the orientation of all the segments in the polygon can also be seen as a higher-level object constraint. 
Introducing an “object orientation”, all the segments can be tied by constraints to it, as shown in Figure 5(d). Then, the 
constraint graph (Figure 5(e)) does not expose long dependency chains, and removing parts does not cause implicit 
angle constraints to be lost, Figure 5(f). 
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α
 

(d) (e) (f) 
Figure 5: A polygon where all angles are fixed, modelled either as angle constraints between successive segments (a,b,c) or 

dependency on a general orientation (d,e,f). 
 
In order to introduce constraints in a systematic manner, they can be “packaged” into primitives. That is, instead of 
attempting to set up an object by first specifying the geometry and then introducing all appropriate constraints, it comes 
“pre-wired” with all constraints automatically established. In fact, primitives are only one part of an object-oriented 
concept with the following properties: 
 

1. objects may be primitives, in which case they contain explicit geometry, or they may be containers, which 
recursively contain other objects, 

2. objects exhibit a discrete behaviour: a primitive may generalize its outline polygon by leaving out minor 
structures; a container may leave out some of its children according to some specified pattern, 

3. objects exhibit the ability to place constraints automatically: for example, all the orientation constraints for the 
segments of a polygon will be inserted automatically, 

4. objects offer an interface which allows to connect primitives to containers, or containers to containers. 
 
Part of this concept has been introduced earlier as “weak primitives” in another context (Brenner, 2004). The basic idea 
behind weak primitives is to provide objects looking like constructive solid geometry (CSG) entities with implicitly 
enforced properties, however being internally boundary representations with explicitly formulated constraints. This 
concept has the advantage that it is possible – in contrast to CSG – to relax constraints when needed. Moreover, external 

 
 



constraints which force objects to meet, be rectangular, have a certain distance, etc. integrate seamlessly with internal 
constraints in a common constraint framework. 
 
Weak primitives are extended here with respect to discrete behaviour. As primitives and containers might undergo a 
discrete change as result of a generalization operation, constraints must be established automatically. For example, in a 
linear row of evenly spaced objects, removing one of the objects needs to automatically establish a constraint between 
the two new neighbours. Figure 6 shows examples of primitive and container objects, examples for their discrete 
behaviour and internal constraints. 
 

Object type Discrete behaviour examples Internal constraint examples 

 
Polygon 
(primitive) 

    
Boundary simplification. 

Angle and distance constraints between 
polygon parts. 

 
Linear 
(container) 

 
Remove single elements. 

Centres on a line, front along a line, even 
spacing, same orientation. Minimum 
distance to left/right neighbour set up 
automatically. 

 
Regular 
(container) 

 
Remove rows and/or columns, 
but not single elements. 

Even spacing, same orientation. Minimum 
distance to left/right/up/down neighbour 
set up automatically. 

 
Irregular 
(container) 

 
Remove single elements, 
approximate density. 

Keep spacing/spacing ratio. Minimum 
distance to adjacent objects set up 
dynamically. 

Figure 6: Examples for object types, their discrete behaviour, and typical internal constraints. 
 
 
CONCLUSIONS 
 
In this paper, we have proposed to use primitives, containers, and constraints as a means for cartographic generalization. 
A primitive bundles geometry, constraints, and discrete behaviour. It is like a CSG primitive, however the boundary is 
not given implicitly but rather explicitly with additional constraints enforcing regularity, which is termed a “weak CSG 
primitive”. In addition, discrete behaviour allows a primitive to change its representation and set up modified 
constraints automatically. Primitives expose an interface, which essentially allows to “connect” them to other objects. 
There is no difference between internal constraints and external constraints defined by such connections. Usually, 
primitives will be connected to containers, which do not carry geometry themselves, but rather only by the objects they 
contain. Just like primitives, containers imply a certain discrete behaviour and expose an interface which can be used to 
connect them recursively. 
 
Determining a map representation of a certain generalization level amounts to finding a solution which optimises a 
function under a set of constraints. That is, a part of the equations has to hold in a “best possible” way, whereas the 
other part is required to be exactly fulfilled. For that purpose, we have looked into how constraint equations can be 
handled and solved. We have explored three major approaches: structurally, using the constraint graph and maximum 
matchings; nonlinear, limited to polynomial constraints, using Gröbner bases; and linear, using the Jacobi matrix and 
row reduction. The application of those techniques has been shown for a simple example where an intrusion was 
removed from a polygon. 
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