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ABSTRACT

When complex scenes are modelled using measured data, such as mass data from laser scanners, the objects generated do
not only have to fit the data, but also have to fulfill additional constraints, like incidence, distance, or angle relations. Weak
primitives have been proposed as a means to automatically introduce larger numbers of constraints into the modelling
process. In this article, several aspects of constraint modelling are discussed, in particular constraint graphs and maximum
matchings, polynomial constraints and Gröbner bases, and linearization. The application to the problem of interactively
modifying constrained geometries is shown.

1 INTRODUCTION

Constraints play an important role in the modelling of com-
plex scenes, such as three-dimensional city models. If
models are built from primitives, constraints have to be
provided in order to enforce regularity conditions. For
example, walls should be upright and form right angles
with other walls, gables should be horizontal and four roof
planes should meet in a single point.
In the building reconstruction community, constraints have
been proposed, but not used to a larger extend. Regular
structures have sometimes been enforced by using con-
structive solid geometry (CSG). However, this does not
solve the problem how constraints can be enforced across
primitives. In (Brenner, 2004), this situation is discussed,
several existing reconstruction approaches are compared,
and weak primitives are suggested as a means to model ob-
jects.
Although weak primitives would hide constraints in the
first place, the ability to remove and add individual con-
straints would expose the user to constraint modelling.
Therefore, this paper reviews some general machinery to
handle constraints as well as how this can be applied to
interactive modelling.

2 MODELLING USING CONSTRAINTS

A geometric constraint problem consists of a set of geo-
metric primitives and a set of constraints between them.
Geometric primitives are e.g. points, lines, circles in two
dimensions or points, lines, planes, cylinders, spheres,
cones in three dimensions. Constraints may be logical,
such as incidence, perpendicularity, parallelism, tangency,
etc., or metric such as distance, angle, radius, etc. Finding
a solution for a given set of constraint equations is equiv-
alent to finding a real solution to the corresponding alge-
braic equation system.
Constraint equations are usually written as algebraic equa-
tions of the form fi(x) = 0, where x ∈ IRn is the pa-
rameter vector describing the scene. For example, x can
directly contain coefficients describing primitive objects
such as points, lines, planes or other surfaces, but can also
describe “higher level” parameters such as the transforma-
tion parameters of a substructure. Putting all the functions

fi, 1 ≤ i ≤ m together, the problem is to find a parameter
vector x which satisfies the implicit (and, usually, nonlin-
ear) constraint equation

f(x) = 0 . (1)

This equation can be either underconstrained (solution
space is more than zero-dimensional), well constrained
(zero dimensional solution space), or overconstrained (no
solutions). The distinction can also be made structurally
based on the number of unknowns and equations, under-,
well-, or overconstrained meaning m < n, m = n, or
m > n, respectively. When m > n, but still the solu-
tion space is nonempty, the system is said to be consis-
tently overconstrained. There is no simple relationship be-
tween the two characterizations except that the dimension
of the solution space is larger or equal to n −m (over the
complex numbers). As opposed to linear systems, a zero
dimensional solution space can still involve a large num-
ber of individual solutions x, exponential in the number
of equations. Also, the dimension of the solution space is
more involved, for example (Cox et al., 1997), given the
two nonlinear equations f1 = xz = 0 and f2 = yz = 0
with x = (x, y, z)T ∈ IR3, the solution space is the union
of the z-axis with the (x, y)-plane, i.e. the union of a one-
and two-dimensional subspace.
When objects are reconstructed using measurements, the
task can typically be formulated as

‖g(b,x)‖ !
= min, subject to

f(x) = 0, (2)

where g subsumes the (possibly contradictory) constraints
imposed by some measurement data b, whereas f repre-
sents the “hard” constraints imposed by the model. As op-
posed to the mentioned case in CAD, f will be normally
underconstrained (as else the measurements will have no
effect on the solution), whereas g will be typically over-
constrained (since redundant measurement data is used),
which leads to a system which is both locally overcon-
strained and globally well- or underconstrained. The glob-
ally underconstrained case is interesting since it leaves
room for interactive manipulation of object parts which are
not fixed by either measurements nor model constraints.



As f is usually nonlinear, it cannot be solved analytically
in general. However, one can try to (i) exploit the spe-
cial structure of the equations, (ii) exploit the type of the
equations, which are often polynomial, or (iii) linearize the
equations and solve them iteratively. In the following sec-
tion, some well-known techniques are discussed.
2.1 Exploiting Structure
In computer aided design (CAD), a common problem is
as follows: given a sketch of an object, annotated with di-
mensional information, derive an instance of that object.
When a drawing is constructed using compass and ruler,
a step-by-step procedure is usually applied. That is, ob-
jects are added one-by-one as soon as there are enough
constraints which allow to place them unambiguously. (It
might also happen that complete “subgroups” have to be
constructed separately which are assembled only at the
end.) Approaches which exploit this are called construc-
tive constraint solvers. Their goal is to decompose the
original constraint system into small, manageable subsys-
tems, solve them, and recombine the solutions to an overall
solution. The decomposition should be optimal in such a
way that the size of the largest subsystem is minimized.
A decomposition-recombination (DR) plan can be made as
a preprocessing step before actually starting to solve the
equation system. Two major types of DR plans are con-
straint shape recognition (Owen, 1991, Fudos and Hoff-
mann, 1997) and generalized maximum matching (Kramer,
1992, Ait-Aoudia et al., 1993), see (Hoffmann et al., 2001)
for an overview. In the following, the basic principles of
the latter are sketched.
Suppose, upon closer examination of (1), it turns out that
f = 0 consists of the following equations (Ait-Aoudia et
al., 1993):

f1(x1, x2) = 0 f2(x1, x2) = 0
f3(x2, x3, x4) = 0 f4(x1, x3, x4) = 0
f5(x3, x5, x7) = 0 f6(x4, x5, x6) = 0
f7(x6, x7) = 0 .

(3)

From this, a constraint graph can be derived, which con-
tains a node for each constraint and unknown, and an
edge if an unknown appears in a constraint, see Fig. 1(a).
This bipartite graph G captures structural properties of
the equation system. G is said to be structurally well-
constrained if there are as many constraint nodes as un-
known nodes and for no subset of constraints, there are
less unknowns than constraints. If U(·) returns the set of
unknowns for a given set of equations, e.g. U({f5, f6}) =
{x5, x6, x7}, then, in the example graph with F =
{f1, . . . , f7}, 7 = |F | = |U(F )|, and for any subset
F ′ ⊆ F , |F ′| ≤ |U(F ′)|. If for a well constrained graph
the property |F ′| < |U(F ′)| holds for any true subset
F ′ ⊂ F , the graph is said to be irreducible. Any well
constrained graph is either irreducible or contains an ir-
reducible subgraph. One is interested in irreducible sub-
graphs, since they correspond to smaller size subproblems
which are easier to solve.
The irreducible subgraphs of a graph can be computed
from a perfect matching (a set of edges where no two
distinct edges share a vertex and all vertices are cov-
ered, Fig. 1(b)) by finding strongly connected components,

f1 f2 f3 f4 f5 f6 f7

x1 x2 x3 x4 x5 x6 x7

f1 f2 f3 f4 f5 f6 f7

x1 x2 x3 x4 x5 x6 x7

f1 f2 f3 f4 f5 f6 f7

x1 x2 x3 x4 x5 x6 x7

H11 H12 H13

(a) (b)

(c) (d)

Figure 1: Constraint graph for Eq. (3). (a) Original graph,
(b) perfect matching, (c) strongly connected components, (d) col-
lapsed graph H .

Fig. 1(c). By collapsing the irreducible subgraphs to single
nodes, and replacing the edges between them by single, di-
rected edges, a new graph H is obtained, which is acyclic,
Fig. 1(d). It induces a partial order which can be used to
solve the equation system. In the example, H11 can be
solved first, since it contains two equations f1, f2, depen-
dent on two unknowns x1, x2. Then, H12 can be solved,
since there are two equations f3, f4, which depend on four
unknowns, however, x1, x2 are known already, so x3, x4

are obtained. Finally, H13 can be solved using the values
for x3, x4.
It has to be noted that since G captures only structural
properties, there is not necessarily a one-to-one relation-
ship betweenG and the original equation system E: G can
be overconstrained, while E still has a finite (or infinite)
set of solutions (in case of consistent overconstraints); G
can be underconstrained but E can still have a finite set
of solutions over the reals (consider x2

1 + x2
2 = 0); or G

can be well-constrained but E has an infinite set of solu-
tions (when the Jacobian C of f does not have full rank).
If G is not well-constrained, the method above will find
subgraphs G1, G2, G3 which are well-, over-, undercon-
strained, respectively.
2.2 Polynomial Equations
Constraints between objects can often be expressed using
bilinear equations. For example, in the two-dimensional
case, with p = (x1, y1)

T, q = (x2, y2)
T ∈ IR2 denoting

points and l = (a1, b1, c1)
T,m = (a2, b2, c2)

T represent-
ing lines in Hesse normal form ax+ by + c = 0,

a2
1 + b21 − 1 = 0 (4)

a1x1 + b1y1 + c1 = 0 (5)
a1x1 + b1y1 + c1 − d = 0 (6)

(x1 − x2)
2 + (y1 − y2)2 − d = 0 (7)

a1a2 + b1b2 = 0 (8)
a1b2 − a2b1 = 0 (9)

a1a2 + b1b2 − cos % = 0

a1b2 − a2b1 − sin % = 0 (10)

are equations for (4) l having a unit length normal vector,
(5) p incident l, (6) p having (signed) distance d from l,
(7) p having Euclidean distance d from q, (8) l perpen-
dicular m, (9) l parallel m, (10) oriented lines l and m

enclosing the fixed angle %. (See e.g. (Heuel, 2004) for a
more complete list of relationships.)



Thus, f from (1) consists of a set of polynomial equations
fi(x) = 0, for 1 ≤ i ≤ m. The set of all solutions x which
satisfy all those equations is called the affine variety (Cox
et al., 1997) V (f1, . . . , fm), i.e.

V (f1, . . . , fm) = {x ∈ IRn : fi(x) = 0 ∀ 1 ≤ i ≤ m} .

The corresponding algebraic object is the ideal I , which
is a subset of all polynomials over a field which satisfies
(i) 0 ∈ I , (ii) f1, f2 ∈ I ⇒ f1 + f2 ∈ I , (iii) f1 ∈ I ,
h polynomial ⇒ hf ∈ I . Given the set of polynomials
f1, . . . , fm, the set

〈f1, . . . , fm〉 :=
{

m
∑

i=1

hifi

}

with hi being arbitrary polynomials over the field is indeed
an ideal, the ideal generated by f1, . . . , fm. Interestingly,
it turns out that the variety V (f1, . . . , fm) does not de-
pend on the particular basis functions chosen, but rather
only on the ideal generated by them, i.e. V (f1, . . . , fm) =
V (〈f1, . . . , fm〉). The consequence of this is that given a
set of polynomial equations f1, . . . , fm, looking for their
solution space V (f1, . . . , fm), one can replace the original
set of polynomials by any other set h1, . . . , hs for which
〈f1, . . . , fm〉 = 〈h1, . . . , hs〉, i.e. which spans the same
ideal.
A particularly useful set is the Gröbner basis of an ideal I ,
a finite set {h1, . . . , hs} for which

〈LT(h1), . . . ,LT(hs)〉 = 〈LT(I)〉 ,

where LT(h) denotes the leading term of the polynomial
h under a given monomial order and 〈LT(I)〉 is the ideal
spanned by all leading terms of I . The Gröbner basis can
be systematically obtained from any given set of polynomi-
als using Buchberger’s algorithm. It is the generalization
of the familiar row reduction for linear matrices, and in fact
it will yield the row reduced form of a matrix if applied to
a linear equation system.
Gröbner bases can be used to solve polynomial equation
systems by successively eliminating variables (with usu-
ally a numerical solution required at the end). Unfor-
tunately, not only the number s of polynomials in the
Gröbner basis can be very large, but also the order of the
polynomials. It has been shown that the construction of
a Gröbner basis from polynomials of degree of at most d
can involve polynomials of degree proportional to 22

d

, and
thus even if a Gröbner basis can be obtained, the polyno-
mials can probably not be solved.
However, Gröbner bases have also the property that the
ideal membership problem can be solved using polynomial
division. That is, the question if a given polynomial f is
member of the ideal I can be answered easily by dividing
f by the polynomials h1, . . . , hs of the Gröbner basis of
I . If there is no remainder, f ∈ I . For the corresponding
varieties, this means that for any solution x ∈ V (I), also
f(x) = 0 holds.
In the context of constraint modelling, this can be used
as follows. Given a partially modelled object involv-
ing variables x and constraints h1, . . . , hs−1, suppose the

user wants to add another constraint hs. This additional
constraint can (i) really add information (which is what
usually is intended), (ii) be superfluous (since the con-
straint is actually already enforced by some combination
of h1, . . . , hs−1), or (iii) can render the system unsolv-
able. These cases can be distinguished as hs ∈ I =
〈h1, . . . , hs−1〉 ⇒ case (ii), 〈h1, . . . , hs〉 = {1} ⇒ case
(iii), and else case (i) holds.
For example, consider 3 lines l1, l2, l3 in two dimensional
Euclidean space, where l1⊥l2 and l2⊥l3. Clearly, then,
l1‖l3, so adding this constraint would have no effect. Us-
ing equations (4) and (8), the algebraic formulation of the
constraints is

f1 = a2
1 + b21 − 1 = 0 f4 = a1a2 + b1b2 = 0

f2 = a2
2 + b22 − 1 = 0 f5 = a2a3 + b2b3 = 0

f3 = a2
3 + b23 − 1 = 0

(11)

from which the Gröbner basis B = {h1, . . . , h11} =
{1−a2

1−b23, a1a2+b1b2, a1b1−a3b3,−a3b1+a1b3,−a2
2+

b23, a2a3+b2b3,−a2b2−a3b3,−a2−a3b2b3+a2b
2
3,−1+

a2
3 + b23,−b21 + b23, 1− b22 − b23} is obtained (using lexico-

graphic monomial order). Now, according to Eq. (9) l1‖l3
corresponds to f6 = a1b3 − a3b1 = 0, which can be sub-
divided by the polynomials of B, i.e. f6 ∈ 〈f1, . . . , f5〉 =
〈h1, . . . , h11〉— in fact, one sees that f6 = h4 ∈ B. Thus,
adding l1‖l3 does not change the solution set. However,
if we add to Eqs. (11) the inconsistent constraint l1⊥l3,
i.e. f7 = a1a3 + b1b3 = 0, the Gröbner basis will reveal
that 〈f1, . . . , f5, f7〉 = 〈1〉, i.e. there remains no feasible
solution x.
Altogether, this approach can be used to identify redundant
as well as conflicting constraints. However, the caveat is
that computing a Gröbner base can take substantial time
and space, so that its computation is not feasible in an
interactive environment. The question here is if the spe-
cial nature of the equations involved, such as (4)–(10), can
somehow lead to lower time and space bounds.
2.3 Linearization of Equations
The linearization of (2) results in an equation system of the
form

‖Ax− b‖ !
= min, (12)

subject to Cx = d, (13)

where A and C are the design and constraint matrices, re-
spectively (a weight matrix is omitted for clarity). If ‖·‖ in
(12) is the L2 norm, this can be solved in numerous ways
(Förstner, 1995, Lawson and Hanson, 1995), (i) by weight-
ing

Ã =

[

A

εC

]

, b̃ =

[

b

εd

]

with some “large” ε, and minimizing ‖Ãx− b̃‖ using the
normal equations

ÃTÃx = ÃTb̃ , (14)

(ii) by introducing Lagrange multipliers k and solving
[

ATA CT

C 0

] [

x

k

]

=

[

ATb

d

]

(15)



or (iii) by an explicit parametrization of the null space
of C: since all solutions to (13) can be parameterized as
x = C+d +Ny, where the columns of N span the null
space of C and C+ is the Moore-Penrose pseudoinverse,
instead of minimizing (12) over all x, one can minimize
‖A(C+d + Ny) − b‖ with respect to y, which yields
(Lawson and Hanson, 1995)

x = C+d+ (A(In −C+C))+(b−AC+d) . (16)

A problem arises with (14), since it enforces the constraint
equations (13) only to a certain degree, dependent on ε.
Constraint equations might compete against observation
equations — actually, with mass data from laser scanning,
there can be many thousands “against” a single constraint
equation. Consequently, ε has to be set very high, however
running the risk that Ã gets poorly conditioned. One can
think of situations where the requirement to exactly fulfill
the constraints (13) can be relaxed. For example, it might
be not so important that a right angle is exact to 8 decimal
places. However, C may also contain incidence relations
which must be satisfied in order for subsequent CAD oper-
ations, such as Boolean union or intersection, to succeed.
Care must also be taken considering the rank of the ma-
trices. Problem (12,13) has only a unique solution if
[AT,CT] has full rank. If not, solutions based on nor-
mal equations and inversion (14), (15) are not suitable, but
pseudoinverse (16) or SVD solutions are. In the context
of a constraint modeler, a newly placed object will usu-
ally be underconstrained, and in fact it will usually stay
underconstrained as long as it is intended to be modified
interactively.

3 INTERACTIVE MODIFICATION OF CON-
STRAINED OBJECTS

Assume that a scene contains instantiations of a number
of objects which fulfill all given constraints. For example,
placing a weak primitive in the scene would automatically
instantiate the unknowns in such a way that the associated
constraints are fulfilled. It would then add the unknowns
to the overall parameter vector x and the associated con-
straints to the constraint set. If additional constraints have
been added, methods from Sect. 2.2 or 2.3 can be used to
obtain an instantiation which fulfills all constraints.
Now suppose that the user picks some (part of an) objectO
in order to modify it interactively. For example, he could
pick a point of a polygon in order to drag it to another po-
sition. Now it can happen that (1) O is completely free
with respect to the selected modify operation and no other
objects are involved when it is modified, (2)O is free, how-
ever it is linked by constraints to other objects, which have
to be modified as well as a result of modifying O, (3) O is
partially or fully constrained, i.e. the user’s wish to modify
O can be only fulfilled partially or cannot be fulfilled at all.
In case (1) there is no problem. However, in case (2) the
question is which other objects are modified as result of
modifying O, i.e. how the change of O “propagates”. Fi-
nally, in case (3), as the situation of objects and constraints
might be quite complex, the user would want details why
his attempt to interactively modify the scene fails. That

(a) (b) (c) (d)

Figure 2: Different user interface behavior when a point of a
polygon (a) or a rectangle (b)–(d) is changed.

is, the system should be able to explain the reason for the
failure in such a manner that the user can take appropriate
action. These aspects are dealt with in the next two sub-
sections.
3.1 Propagation of Changes
If a scene fulfils all constraints, the linearized constraints
Cx = d hold (Sect. 2.3). Now suppose the user picks
some object O in order to modify it, i.e. he wants to ap-
ply a change4x such that still all constraints are fulfilled,
C(x+4x) = d. Then, C4x = 0, i.e.4x is in the null
space of C. If the null space of C has dimension k, and
N is the n × k matrix containing k column vectors span-
ning the null space of C (i.e., CN = 0),4x =Ny must
hold, for a suitable y. Without loss of generality, one can
assume that the parameters which are directly modified by
the user are the first j elements of the parameter vector x.
That is, by the interactive modification, the user attempts
to set 4x = (4x1, . . . ,4xj , 0, . . . , 0)

T. However, this
vector might not be in the null space of C. In general,
equation
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=Ny (17)

holds where the user wants to set4x1, . . . ,4xj arbitrarily
while v1 = . . . = vj = 0. The different cases are: (1) The
null space ofC is {0}. Then, no4xi 6= 0. The user cannot
modify the picked object at all, since it is fully constrained.
(2) The dimension of the null space is > 0, however the
first j rows of N have rank < j. Then, v1 = . . . = vj = 0
cannot be achieved. The user can modify the picked ob-
ject, however not with all degrees of freedom. (3) The first
j rows of N have full rank, movement is not constrained.
If all of the vj+1, . . . , vn are zero, no other objects are af-
fected, but this will happen only when there are no con-
straints or the constraints have zero gradient in the direc-
tion of the parameter modification.
In case (3), any y which fulfills the first j rows of Eq. (17)
can be used, so the question is according to what criterion
y is chosen. It turns out that this question is less a mathe-
matical one but has rather more to do with what we expect
from a user interface. Consider a 2-D drawing program. If
a “polygon primitive” is placed in the scene and a single
polygon vertex is selected and dragged, one would usually
expect that only the vertex itself and the incident edges are
actually changed, see Fig. 2(a). On the other hand, if the
vertex of a “rectangle primitive” is moved, it is not so clear
what a user would expect. For example, it would be sen-
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Figure 3: Behavior of a simple constraint system under different
optimization criteria (see text).

sible that the diagonally opposite vertex and the rotation
stays fixed while the width and height is adjusted (b). Or,
the midpoint of the rectangle and the rotation stays fixed,
while width and height are adjusted (c). Or, rotation and
scale are changed (d). That is, a drawing program usually
has interactive modification operators which implement a
certain behavior. Such an approach, however, is not feasi-
ble for arbitrary objects and constraints.
In order to select y in this situation, a systematic approach
could be that there is “not much change” among the objects
which are not directly modified. Interpreting this in the
least squares sense, the task is to minimize

n
∑

i=j+1

(vi)
2 , subject to (18)

(4x1, . . . ,4xj , vj+1, . . . , vn)
T =Ny . (19)

To see what happens, consider the simple example in
Fig. 3(a). There are three points p1 = (0, 0)T, p2 =
(1, 0)T, p3 = (0, 1)T, linked by two lines l1 = (0, 1, 0)T,
l2 = (1, 0, 0)T, so that the unknown vector is x =
(x1, y1, x2, y2, x3, y3, a1, b1, c1, a2, b2, c2)

T. Two normal
vector constraints of type (4) for l1 and l2, and for inci-
dence constraints p1 ∈ l1, p2 ∈ l1, p1 ∈ l2, p3 ∈ l2
of type (5) are used, which yields the linearized constraint
matrix

C =





0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0

0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0 0 1



 ,

and the matrix N is obtained (in this particularly simple
form, by column reduction) as

N =















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 −1 0 0

0 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

1 0 0 0 −1 0

−1 0 0 0 0 0















. (20)

Now suppose the user picks point p1 and wants to drag it
along the x direction, see Fig. 3(b). One can immediately
deduce that any move of p1 is possible since the first two
rows of N have rank 2 — in fact, any of the points can be
moved freely since the first 6 rows have full rank. How-
ever, what would be usually expected is that when only p1

is moved, p2 and p3 stay fixed. Unfortunately, minimiz-
ing (18) with constraint 4x1 = 1 and 4y1 = 0 yields

an optimum of
√

3/2 at y = (1, 0, 0, 0, 1/2, 0)T, with
Ny = (1, 0, 0, 0, 1/2, 0, 0, 0, 0, 0, 1/2,−1)T. The corre-
sponding situation is shown in Fig. 3(c). Both p1 and p3

will move, together with l2. The reason for this behavior
is that Eq. (18) not only minimizes the change of p2 and
p3, but also that of l1 and l2. This suppresses the turn of l2
and forces p3 to move. One can resolve this by regarding
points as “primary” and lines as “secondary” variables, and
restricting the minimization to primary variables. Then,
only v2

3 + v2
4 + v2

5 + v2
6 is minimized, and one obtains the

expected result of figure 3(b).
However, consider the slightly more complex scene of
Fig. 3(d), where the equation for l1⊥l2 has been added.
C is now a 7 × 12 matrix of rank 7, while N is
12 × 5. Again, one can see from N that p1 can be
dragged freely. However, the least squares solution, even
when constrained to only minimizing the movement of
the point coordinates yields a minimum of 1/

√
2 and

Ny = (1, 0, 0, 1/2, 1/2, 0,−1/2, 0, 0, 0, 1/2,−1). That
is, instead of the situation in Fig. 3(e), all 3 points will
move, as depicted in Fig. 3(f).
In general, due to the nature of least squares, the minimiza-
tion of (18) will tend to change many variables by a small
amount rather than a few variables by a large amount. In
an attempt to affect fewer variables, one could instead min-
imize the L1 norm, i.e.

∑n

i=j+1
|vi|. In the example (again

with only the point movement |v3| + |v4| + |v5| + |v6|
minimized), a minimum of 1 is obtained. However, any
y = (1, 0, 0, λ, 0) with 0 ≤ λ ≤ 1 yields this minimum,
with Ny = (1, 0, 0, λ, 1−λ, 0,−λ, 0, 0, 0, λ,−1) so there
is no unique solution. For 0 < λ < 1 both p2 and p3 are
affected, see Fig. 3(g).
From a computational perspective, it would be desirable
that as few as possible variables are affected by a user in-
teraction, although it is not clear if this leads sometimes to
unusual behavior from an user interface viewpoint. That
is, we want as few as possible vi 6= 0, the function to min-
imize is

n
∑

i=j+1

ψ(vi) (21)

subject to (19), with ψ(x) = sgn|x|, i.e. (21) counts the
number of nonzero vi. In the example, this leads to two
solutions, see Fig. 3(h). Numeric optimization of (21) is
problematic due to the discrete nature of ψ. One can how-
ever see that the minimization problem is equivalent to a
standard problem in computational geometry. If the first j
rows of (19) are solved for y, and vj+1, . . . , vn are set to
zero, one obtains an equation system of the form







µj+1

...
µn






=Mν (22)

with M being (n− j)× (k− j) and M and µi fixed. The
solution sought for is the ν for which the largest number
of rows of the equation system (22) holds.
Since each of the rows in (22) defines a hyperplane in
(k − j) dimensional space, this is equivalent to finding a
point ν in (k − j) dimensional space which is incident to



x1 y1 a1 b1 c1 x2 y2 a2 b2 c2x3 y3 a3 b3 c3 x4 y4 a4 b4 c4

n i i d d r n i i n i i n i i

H11H12 H13 H14 H15 H16 H17

p1 l4

l4

l3

p4

i
H15

H14

H13 H12

H11

i
i

i
r

p3

p1 p2

p4

d1

d2

(a)

(b)

(c)

H16

l1

i

l1

l2

l3

l4

Figure 4: Introspection example. (a) Original scene, (b) con-
straint graph with maximum matching, (c) collapsed graph H .
n, i, d, r are normal, incidence, distance and rectangularity con-
straints, respectively.

the largest number of hyperplanes of a given set of (n− j)
planes. This is called the exact fitting problem. (Guibas
et al., 1996) have shown that while the problem is Ω(nd)
for n hyperplanes in d dimensional space when the num-
ber of hyperplanes meeting in ν is fixed, it can be solved
in linear time when the number of planes meeting in ν

is a fixed fraction of n. This results in a total complexity
of O(min{(nd/md−1) log(n/m), nd}), with m being the
number of planes incident in ν. When constraint equations
involve spatially close objects only, most of the row equa-
tions in (22) are satisfied and the linear time bound holds.
To summarize this section, interactively modifying an ele-
ment of a scene may influence other elements as well. How
they actually are changed depends on the minimization cri-
terion applied. Least squares may not be the appropriate
solution, since it tends to modify many objects by a small
amount. Minimizing the L1 norm yields non-unique re-
sults, which however may be closer to the expected interac-
tion. Finally, minimizing the number of changed elements
also gives non-unique results, leads to the well-known ex-
act fitting problem, and yields the largest reduction in num-
ber of equations for a subsequent iterative estimation.
3.2 Introspection
If an object O in the scene cannot be moved as expected,
it is partially or fully constrained. The reduction of the de-
grees of freedom of O results from some combination of
constraints. It is clear that unconnected components of the
constraint graph cannot influence O. However, it is desir-
able to have a more fine-grained result in order to assist the
user.
The graph decomposition discussed in Sect. 2.1 can be
used to derive additional information. Since the graph of
collapsed nodes, H , gives an order in which the equations
can be solved, any variable solved for can also be “traced
back”. Consider the example in Fig. 4(a). There are four
points and four lines, with p2 and p3 fixed, as well as fixed
distances p2–p4 and p3–p4 and a right angle l3⊥l4. As
a result, p1 cannot be moved freely. Figure 4(b) shows
the corresponding bipartite graph with a maximum match-
ing and irreducible subgraphs (grey boxes). Collapsing the
subgraphs, Fig. 4(c) is obtained, which nicely explains why
p1 is constrained (reading it according to the partial order
from left to right): H15 (p1) is fixed since it is incident

to H14 and H13 (l4). l4 in turn is fixed since it is going
through p4 and it has a right angle with l3. l3 in turn is
fixed since it is also going through p4. Thus, by tracing
back the graphH , the system can derive the reasoning why
p1 is fixed in one direction and output this to a user in text
form.

4 CONCLUSION

In this article, some machinery for constraint modelling
has been presented. Constraint graphs and maximum
matchings have been discussed as a means to investigate
the structure of equation systems. Gröbner bases were in-
troduced for the special case of polynomial equations. Fi-
nally, the solution of linear constraint equations, especially
using a basis of the null space, has been shown.
As examples of how these techniques can be used, con-
straint graphs have been applied to the introspection prob-
lem, Gröbner bases for identifying conflicting or redundant
constraints, and linearized equations for the propagation of
changes.
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