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Abstract— To accurately predict future positions of different
agents in traffic scenarios is crucial for safely deploying
intelligent autonomous systems in the real-world environment.
However, it remains a challenge due to the behavior of a target
agent being affected by other agents dynamically, and there
being more than one socially possible paths the agent could take.
In this paper, we propose a novel framework, named Dynamic
Context Encoder Network (DCENet). In our framework, first,
the spatial context between agents is explored by using self-
attention architectures. Then, two LSTM encoders are trained
to learn temporal context between steps by taking the observed
trajectories and the extracted dynamic spatial context as input,
respectively. The spatial-temporal context is encoded into a
latent space using a Conditional Variational Auto-Encoder
(CVAE) module. Finally, a set of future trajectories for each
agent is predicted conditioned on the learned spatial-temporal
context by sampling from the latent space, repeatedly. DCENet
is evaluated on the largest and most challenging trajectory
forecasting benchmark Trajnet and reports a new state-of-the-
art performance. It also demonstrates superior performance
evaluated on the benchmark InD for mixed traffic at intersec-
tions. A series of ablation studies are conducted to validate the
effectiveness of each proposed module. Our code is available at
git@github.com:tanjatang/DCENet.git.

I. INTRODUCTION

Intelligent autonomous systems, such as robots and au-
tonomous vehicles, have a high demand for the ability
of accurately perceiving, understanding and predicting the
future behavior of humans for effective and safe deployments
in our real-world environment. For example, an autonomous
agent will adjust its moving path according to the possible
locations of other agents to prevent obstructions or collisions.
However, it is challenging to predict the future location of an
agent because it is not deterministic: (1) an agent may change
its mind during the movement, (2) other agents’ behaviors
will affect its next step (e.g., to avoid collisions), and (3)
the influence from other agents is dynamic. Therefore, it is
more beneficial to predict a set of most potential trajectories
adaptive to the dynamic interactions between agents than to
predict a deterministic one. In this work, we seek to explore
the dynamic context between agents in traffic scenarios to
predict a set of possible trajectories for each agent in the
short future (12 steps) by observing their trajectories (8
steps), as showcased in Fig 1.

Specifically, the main contributions of this work are as fol-
lows: (1) It provides a novel end-to-end framework to predict
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Fig. 1: Predicting multiple future trajectories (the most-likely
one indicated by dash line over multiple ones indicated by
blue shadow area) of a target agent (in red) conditioned on its
observed movement (solid line) with the consideration of its
interactions between neighboring agents (in blue) in mixed
traffic. Interaction is learned through the dynamic maps
with each layer dedicated to capturing position, orientation
and speed information (indicated by color-coded rectangles)
using the self-attention structure.

trajectories of homogeneous agents (pedestrians, bicycles,
vehicles, etc.) rather than only for pedestrians that most of
the prior works focus on [1]. (2) Self-attention modules are
integrated into our framework to explore the dynamic context
among agents. (3) A set of possible trajectories for each agent
is predicted conditioned on its observed trajectory and the
learned dynamic context using a CVAE [2] module. DCENet
is evaluated on the Trajnet Challenge [3] which is one of
the largest and most challenging benchmarks for trajectory
forecasting. We further evaluate DCENet on the large-scale
benchmark InD [4] to justify its efficacy and generalization
ability. To judge the effectiveness of each proposed module,
we conduct additional ablation studies. An overview of our
framework is depicted in Fig. 2.

II. RELATED WORK

Trajectory Prediction. Forecasting human trajectory has
been researched for decades. In the early stages, many classic
approaches are widely applied such as linear regression and
Kalman filter [5], Gaussian processes [6, 7] and Markov
decision processing [8, 9]. These traditional methods heavily
rely on the quality of manually designed features, which
cannot work reliably in a real-world environment and are
poor at scaling up for dealing with the so-called Big Data.
In recent years, many artificial intelligent (AI) technologies
have been boosted by the thriving deep learning technolo-
gies [10], including human trajectory prediction [1, 11]–[16].
The deep learning models, especially the Long Short-Term
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Fig. 2: The pipeline for the proposed method. The Encoder Y and Encoder X are identical in structure.

Memories (LSTMs) and Recurrent Neural Network (RNN),
show great power in modeling complex social interactions
between agents for collision avoidance and exploiting the
time dependency for predicting futures [17]. The Social
LSTM network [11] explores the interaction between pedes-
trians by connecting neighboring LSTMs in the social pool-
ing layer and predicts trajectories for multiple pedestrians.
Zhang et al. [1] proposes the States Refinement LSTM
(SR-LSTM) model that aligns all the agents together and
refines the state of each agent through a message-passing
framework. The attention module [18] is incorporated in
LSTMs to learn the spatial-temporal context of trajectories
between pedestrians in [13, 19, 20]. However, many works
have figured out the limited capability of LSTM in modeling
human-human interaction [21, 22]. Recently, Transformer
structure [23] has shown its power in context learning and
sequential prediction [24]–[26]. In this paper, we will adopt
the self-attention module to encode the dynamic interaction
between traffic agents. Recent work of [27] seeks to utilize
the Transformer structure to predict trajectory instead of
LSTM. Our work is different from theirs essentially: (1) we
use the generic self-attention module while they use the Deep
Bidirectional Transformers (BERT) [25], which is a heavy
stacked Transformer structure and is pre-trained on large-
scale datasets, and (2) our framework is a generative model.

Multi-path Trajectory Prediction. Many approaches
have been proposed to predict a socially compliant set of
possible trajectories for an agent [12, 28]–[33]. Generative
Adversarial Nets (GAN) [34] and CVAE [2, 35] are the most
popular generative models used for this task. In [12], a
trajectory sampler named “Social GAN” is proposed that
considers the social effects of all agents. The generator
is trained to predict a set of trajectories for each agent
against a recurrent discriminator. Social and Physical atten-
tion mechanism are implemented in the GAN sampler so
as to predict paths for each agent [13]. In [28], multiple
plausible prediction samples are generated by a CVAE-based
RNN encoder-decoder conditioned on observations. Katyal et
al. [33] proposes to predict the intent of the target agent using
a Bayesian approach as a condition of their CVAE-based
LSTM encoder-decoder to help generate multiple paths.
Meanwhile, they introduce an LSTM discriminator to train
the framework in an adversarial way. In [36], scene context
and the interactions between individual and group agents are
accounted as a condition in their CVAE-based framework

to sample multiple trajectories. Some other works treat the
multi-path trajectory prediction problem as the estimation of
a multimodal distribution. Cui et al. [32] proposes to model
the multimodality of vehicle movement prediction with Deep
Convolutional Networks. In [30], first, the multimodal distri-
butions are predicted with an evolving strategy by combining
the Winner-Takes-ALL loss [37]. Then, the samples from the
first stage fit a distribution for trajectory prediction.

Our proposed framework is CVAE-based and integrates
self-attention architectures to extract dynamic interactions
among agents. We adopt the two-stream architecture [38]
where one respective stream is dedicated for learning the
spatial and temporal context explicitly, and they are later
fused. In this way, exploiting the complex dynamic spatial-
temporal context is decomposed into learning spatial context
at a step among agents by using the self-attention modules
and learning the temporal dependencies between steps by
using a following LSTM encoder.

III. METHOD

A. Problem Formulation

Trajectory prediction is defined as to sequentially predict
the future positions Ŷi = {ŷT+1

i , · · · , ŷT ′
i } of target agent i by

observing its trajectory Xi = {x1
i , · · · ,xT

i }, where xt
i = (xt

i ,y
t
i)

is the coordinates at the t-th step and so as ŷt
i . T is the

length of observed trajectory while T ′ is the total length
of being observed and predicted trajectory. Ŷi should be as
close to the corresponding ground truth Yi as possible. The
problem of multi-path trajectory prediction can be formulated
as predicting a set of trajectories Ŷi = {Ŷi,1, · · · , Ŷi,N} by
observing Xi for agent i, where N is the total number of
predicted trajectories.

B. Dynamic Maps

To model the interactions among agents, we first create
dynamic maps for each agent that consists of the orientation,
speed and position layers of its intermediate environment.
Centralized on the target agent, a map is defined as a
rectangular area of size W ×H and divided into grid cells.
First, referring to the target agent i, the neighboring agents
N(i) are mapped into the closest grid cellst

w×h according to
their relative position. They are also mapped into the cells
reached by their anticipated relative offset (speed) in the x



and y directions:

cellst
w = xt

j− xt
i +(∆xt

j−∆xt
i),

cellst
h = yt

j− yt
i +(∆yt

j−∆yt
i),

(1)

where w ≤W, h ≤ H, j ∈ N(i) and j 6= i. The orientation
layer O stores the heading direction that is defined as the
angle ϑ j in the Euclidean plane and calculated in the given
radians by ϑ j = arctan2(∆yt

j, ∆xt
j). (∆yt

j, ∆xt
j) is the offset of

the position from t-th step to the next one for neighboring
agent j. The angle is shifted into degree [0, 360). Similarly,
the speed layer S stores the travel speed and the position
layer P stores the positions using a binary flag in the cells
mapped above. Last, layer-wise, a Min-Max normalization
scheme is applied for normalization, see Fig. 1. The map
should cover a large vicinity area. Empirically we found 32×
32m2 a proper setting considering both the coverage and
the computational cost. The cell size is set to 1×1m2 as a
balance to avoid the overlap of multiple agents in one cell
based on the distribution of the experimental data, which is
also supported by the preservation of personal space [39].

C. Encoder Network

Our encoder has two branches and each one mainly con-
sists of stacked self-attention layers followed by an LSTM
module, as illustrated in Fig. 2. One branch is trained to learn
motion information from the observed trajectories, and the
other one is trained to explore dynamic interactions among
agents from the dynamic maps as discussed in Sec. III-B. The
input of the former is the locations vector of the observed
trajectory of the target agent Xi = {x1

i , · · · ,xT
i } ∈ RT×2,

while the latter one is the dynamic maps of the target agent
noted as DM = {O,S,P} ∈ RT×H×W×3. For simplicity, we
take the former one as an example. To get a sparse high-
dimension representation, Xi is first passed to a convolution
layer (Conv) and a fully connected (FC) layer. Each of them
is followed by a ReLU non-linear activation. We denote this
operation as π(Xi). A self-attention layer takes as input the
Query (Q), Key (K) and Value (V ) and outputs a weighted
sum of the value vectors, as depicted in Fig. 3. The weight
assigned to each value is calculated as the dot-product of the
query with the corresponding key:

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V, (2)

where
√

dk is the scaling factor, dk is the dimension of the
vector K and T is the transpose operation. This operation is
also called scaled dot-product attention [23]. The Q, K and
V are obtained by three linear transformations with the same
input separately:

Q = π(X)WQ, K = π(X)WK , V = π(X)WV , (3)

where WQ,WK ,WV ∈Rdπ×dk are the trainable parameters and
dπ is the dimension of π(X).

Unlike LSTM whose inputs are in the order of sequence
and the temporal information is retained explicitly, the self-
attention module takes all inputs at the same time. To make
use of the order of the sequence, position encodings are
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Fig. 3: Self-attention encoder network.

added to the Q, K and V at the bottom of each self-attention
layer. The sine and cosine functions of different frequencies
(varying in time here) are the most widely used:

pt = {pt,d}D
d=1, pt,d =

{
sin( t

10000d/D ), for d even;
cos( t

10000d/D ), for d odd, (4)

where D = dk ensures position encodings to have the same
dimension as the vectors of Q, K and V .

To attend to different information from different repre-
sentation subspaces jointly, the multi-head attention [23]
strategy is applied as a conventional operation, where a head
is an independent scaled dot-product attention module:

MultiHead(Q,K,V ) = ConCat(head1, ...,headh)WO,

headi = Attention(QWQi,KWKi,VWVi),
(5)

where WQi, WKi, WVi ∈ RD×dki are the linear transformation
parameters same as in Eq. (3) and WO are the linear transfor-
mation parameters for aggregating the extracted information
from different heads. Note that, dki =

dk
h and dki must be an

aliquot part of dk. h is the total number of the attention heads
and we use 2 heads in the implementation.

Then an LSTM is trained to exploit the temporal depen-
dencies between steps by taking as input the output of the
self-attention module and output an encoded representation.
The other branch that exploits the dynamic interactions
among agents works in the same way. Finally, the output
of these two branches is connected and passed to a FC layer
for fusion as the encoded information that includes dynamic
spatial-temporal context.

D. Multiple Trajectories Prediction

Our method is CVAE-based and predicts multiple trajec-
tories by repeatedly sampling from a learned latent space
conditioned on the encoded information. The CVAE is
an extension of the VAE [40] by introducing a condi-
tion to control the output [2]. Given a set of samples
(X,Y)= ((X1,Y1), · · · ,(XN ,YN)), it jointly learns a recogni-
tion model qφ (z|Y, X) of a variational approximation of the
true posterior pθ (z|Y, X) and a generation model pθ (Y|X, z)
for predicting the output Y conditioned on the input X. z
are the stochastic latent variables, φ and θ are the respec-
tive recognition and generative parameters. The goal is to
maximize the Conditional Log-Likelihood: log pθ (Y|X) =



log∑z pθ (Y,z|X) = log(∑z qφ (z|X,Y) pθ (Y|X,z)pθ (z|X)
qφ (z|X,Y) ). Ac-

cording to Jensen’s inequality [41], the evidence lower bound
can be obtained:

log pθ (Y|X)≥−DKL(qφ (z|X, Y)||pθ (z))+
Eqφ (z|X,Y)[log pθ (Y|X, z)].

(6)

Here both the approximated posterior qφ (z|X, Y) and the
prior pθ (z) are assumed to be Gaussian distribution for
an analytical solution [40]. During training, the Kullback-
Leibler divergence DKL(·) pushes the approximated poste-
rior to the prior distribution pθ (z). The generation error
Eqφ (z|X,Y)(·) measures the distance between the generated
output and the ground truth. During inference, for a given
observation Xi, one latent variable zi is drawn from the
prior distribution pθ (z), and one of the possible output Ŷi
is generated from the distribution pθ (Yi|Xi,zi). The latent
variables z allow for the one-to-many mapping from the
condition to the output via multiple sampling. In this work,
we model a conditional distribution pθ (Yn|X), where X is
the observed trajectory information and Yn is one of its
possible future trajectories.

Training: As shown in Fig. 2, during the training, both
the observed trajectory Xi and its future trajectory Yi are
encoded by our encoder (see Sec. III-C), respectively. Then,
their encodings are concatenated and passed through two FC
layers (each is followed by a ReLU activation) for fusion.
Then, two side-by-side FC layers are used to estimate the
mean µzi and the standard deviation σzi of the latent variables
zi. A trajectory Ŷi is reconstructed by an LSTM decoder
step by step by taking zi and the encodings of observation
as input. Because the random sampling process of zi can
not be back propagated during training, the standard repa-
rameterization trick [40] is adopted to make it differentiable.
To minimize the error between the predicted trajectory Ŷi
and the ground truth Yi, the reconstruction loss is defined as
the L2 loss (Euclidean distance). Thus, the whole network is
trained by minimizing the loss function using the stochastic
gradient descent method.

L = ‖Ŷ−Y‖2 +DKL(qφ (z|X, Y)||N (0, I)). (7)

Test: In the test phase, the ground truth of future trajectory
is no more available and its pathway is removed (color
coded in green in Fig. 2). A latent variable z is sampled
from the prior distribution N (0, I) and concatenated with
the observation encodings that serve as the condition for the
following trained decoder, so that the decoder can predict
a trajectory. To predict multiple trajectories, this process
(sampling and decoding) is repeated multiple times.

E. Trajectory Ranking

We propose a ranking strategy to select the most-likely
predicted trajectory out of the multiple predictions in order
to adjust the Trajnet challenge setting. We apply bivari-
ate Gaussian distribution to rank the predicted trajectories
(Ŷi,1, · · · , Ŷi,N) for each agent. At step t ′, all the predicted

positions for agent i are stored in |X̂i, Ŷi|t
′
. We follow [42]

to fit the positions into the probability density function:

f (x̂i, ŷi)
t ′ =

1

2πµX̂i
µŶi

√
1−ρ2

exp
−Z

2(1−ρ2)
,

Z =
(x̂i−µX̂i

)2

σX̂i
2 +

(ŷi−µŶi
)2

σŶi
2 −

2ρ(x̂i−µX̂i
)(ŷi−µŶi

)

σX̂i
σŶi

.

(8)

where µ denotes the mean and σ the standard deviation,
and ρ is the correlation between X̂i and Ŷi. A predicted
trajectory is scored as the sum of the relative likelihood of all
its steps: S(Ŷi,n) = ∑

T ′
t ′=1 f (x̂i, ŷi)

t ′ . All predicted trajectories
are ranked by this score and the one with the highest score
stands out for the single-path prediction.

IV. EXPERIMENTS

To evaluate the performance of our proposed method,
we compare DCENet with the most influential and recent
nine state-of-the-art models that on the Trajnet [3] challenge
leader-board for fair comparison: (1) Linear (off): a simple
temporal linear regressor; (2) Social Force [43]: the very
high impact rule-based model that implements social force
to avoid collisions; (3) S-LSTM [11]: the highly cited LSTM-
based model that introduces social pooling layer for model-
ing interactions; (4) S-GAN [12]: a GAN-based trajectory
predictor; (5) MX-LSTM [44]: an LSTM trajectory predictor
that utilizes the head direction of agent; (6) SR-LSTM [1]: an
LSTM-based model that refines the hidden states by message
passing; (7) RED [21]: an RNN encoder-decoder model
that predicts trajectory directly only using observations; (8)
Ind-TF [27]: a Transformer-based trajectory predictor; (9)
AMENet [45]: the most recent state-of-the-art on the Trajnet
leader-board. We further design a series of ablation studies
to analyze the impact of each proposed module, i.e., dynamic
maps, transformer and LSTM encoder/decoder: (1) Baseline:
an LSTM encoder-decoder only using the observed trajectory
as input; (2) DCENet w/o DMs: the branch of encoding
dynamic maps is removed from our final model; (3) Trans.
En&De: the LSTM encoder-decoder is substituted by the
Transformer encoder/decoder [23] in our framework.

A. Datasets

The Trajnet Challenge [3] is the largest multi-scenario
forecasting benchmark. In the challenge, 8 consecutive
ground-truth locations (3.2 seconds) of each trajectory are
for observation and the following 12 steps (4.8 seconds) are
required to forecast. Trajnet is a superset of diverse popular
benchmark datasets: ETH [46], UCY [47], Stanford Drone
Dataset [48], BIWI Hotel [46], and MOT PETS [49]. There is
a total of 11448 trajectories from these four subsets covering
38 scenes for training. The test data is from the diverse
partitions of them (besides MOT PETS) of the other 20
scenes without ground truth. The Trajnet Challenge provides
a specific server for online evaluation. It is worth noting that
many existing works are evaluated on a subset of Trajnet
using their own train/test splits. In the contrast, a comparison



TABLE I: Results of different methods on the Trajnet Chal-
lenge [3]. Models are categorized into deterministic (determ.)
and stochastic (stoch.) depending on if they incorporate a
generative module.

Model Category Avg. [m]↓ FDE [m]↓ ADE [m]↓

S-LSTM [11] determ. 1.3865 3.098 0.675
S-GAN [12] stoch. 1.334 2.107 0.561
MX-LSTM [44] determ. 0.8865 1.374 0.399
Linear (off) stoch. 0.8185 1.266 0.371
Social Force [43] determ. 0.8185 1.266 0.371
SR-LSTM [1] determ. 0.8155 1.261 0.370
RED [21] determ. 0.7800 1.201 0.359
Ind-TF [27] determ. 0.7765 1.197 0.356
AMENet [45] stoch. 0.7695 1.183 0.356

Baseline stoch. 0.8045 1.239 0.370
DCENet w/o DMs stoch. 0.7760 1.195 0.357
Trans. En&De stoch. 0.7780 1.196 0.360
DCENet stoch. 0.7660 1.179 0.353

of performance between different methods on the server is
more fair and solid. For this sake, we only compare DCENet
to the works which have shown their performance on the
Trajnet Challenge leader-board.

InD was acquired by Bock et al. [4] using drones at
four busy intersections in Germany in 2019. The traffic is
dominated by vehicles and they interact with pedestrians
heavily. The speed difference and confrontation makes the
trajectory prediction challenging. The data was processed to
obtain the same format as Trajnet: 8 steps for observation
and the following 12 steps for prediction.

B. Evaluation Metrics

We adopt the most popular evaluation metrics: the mean
average displacement error (ADE) and the final displacement
error (FDE) to measure the trajectory prediction perfor-
mance. ADE measures the aligned Euclidean distance from
the prediction to its corresponding ground truth trajectory
averaged overall steps. The mean value across all the tra-
jectories is reported. FDE measures the Euclidean distance
between the last position from the prediction to the corre-
sponding ground truth position. In addition, the most-likely
prediction is decided by the ranking method as described
in Sec III-E. Compared with the ground truth (only if it is
available), @top10 is the one out of ten predicted trajectories
that has the smallest ADE and FDE.

The implementation details of training and testing our
methods can be found in our code repository.

C. Results

The experimental results from different methods including
our ablative models reported on the Trajnet leader-board are
listed in Table I. We can see that DCENet reports new state-
of-the-art performance and the ablative models also have
comparable performances compared to the previous works.

First, by comparing to the Baseline, both DCENet w/o
DMs and Ind-TF have much better results, and DCENet w/o
DMs is slightly better (0.7760m vs. 0.7765m) in the average
score and FDE but a little inferior in ADE than Ind-TF.

TABLE II: Quantitative results of our model and the compar-
ative models on the InD benchmark measured by ADE/FDE.

Model S-LSTM S-GAN AMENet DCENet

InD @top 10
Intersection-(A) 2.04/4.61 2.84/4.91 0.95/1.94 0.72/1.50
Intersection-(B) 1.21/2.99 1.47/3.04 0.59/1.29 0.50/1.07
Intersection-(C) 1.66/3.89 2.05/4.04 0.74/1.64 0.66/1.40
Intersection-(D) 2.04/4.80 2.52/5.15 0.28/0.60 0.20/0.45
Avg. 1.74/4.07 2.22/4.29 0.64/1.37 0.52/1.23

InD Most-likely
Intersection-(A) 2.29/5.33 3.02/5.30 1.07/2.22 0.96/2.12
Intersection-(B) 1.28/3.19 1.55/3.23 0.65/1.46 0.64/1.41
Intersection-(C) 1.78/4.24 2.22/4.45 0.83/1.87 0.86/1.93
Intersection-(D) 2.17/5.11 2.71/5.64 0.37/0.80 0.28/0.62
Avg. 1.88/4.47 2.38/4.66 0.73/1.59 0.69/1.52

Considering both models only use observed trajectories as
input, it indicates that our method (self-attention + LSTM
encoder/decoder) explores a better spatial-temporal context
than Transformer. Furthermore, Ind-TF utilizes BERT, a
heavily stacked Transformer structure and must be pre-
trained on an external large-scale dataset, while DCENet
does not require it. The results of DCENet w/o DMs proves
that its superior performance is not because we use more
information (dynamic maps).

Second, by comparison between the Baseline and S-LSTM
we can see that our Baseline model is significantly better. The
only difference between them is that our Baseline is CVAE-
based and generates multiple trajectories. It indicates that the
future motion of humans is of high uncertainty, and predict-
ing a set of possible trajectories is better than only predicting
a single one. It also proves the effectiveness of the trajectory
ranking methods (see Sec. III-E), which is used to select
the most-likely trajectory from the multiple predictions. Our
Baseline also outperforms S-GAN significantly, which is also
a generative model for multiple trajectories prediction.

Third, interestingly, Trans. En&De that adopts the Trans-
former encoder and decoder in our framework did not
achieve improved performance compared to DCENet. This
phenomenon proves that our self-attention + LSTM en-
coder/decoder structure explores better dynamic context be-
tween agents than Transformer encoder/decoder in terms of
trajectory prediction. The superior performance of Trans. w/o
DMs against Ind-TF also confirms that.

Lastly, DCENet outperforms DCENet w/o DM. It indi-
cates that the dynamic maps help model the interactions
between agents and are useful for trajectory prediction.

Discussion According to the comparison above, the results
indicate: (1) DCENet is effective for predicting accurate
trajectories for homogeneous agents in various real-world
traffic scenes, even without modeling interactions explicitly
(the Baseline model). (2) The ranking method correctly
estimates the multiple predictions and recommends a reliable
candidate for the single-path trajectory prediction task. (3)
Compared to the Baseline model, DCENet learns interaction
via the dynamic maps with the self-attention structure effec-
tively and achieved improved performance. (4) Both LSTM

git@github.com:tanjatang/DCENET.git
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Fig. 4: Multi-path trajectory predictions in shared spaces in Trajnet (1st row) and at different intersections in InD (2nd row).

and Transformer networks are capable of learning complex
sequential patterns but their combination further enhances
the performance in terms of trajectory prediction.

Furthermore, we tested DCENet on InD [4] to justify
its performance and generalization ability. We compare our
model with the three most relevant models: S-LSTM for
comparing with its occupancy grid mapping for agent-to-
agent interaction, S-GAN for its generative module, and
AMENet for its CVAE module and LSTM sequential mod-
eling. To guarantee a fair comparison, all the models were
trained and tested using the same data. Table II lists the quan-
titative results measured by ADE/FDE. Our model achieved
the best performance for the @top10 prediction across all
the intersections and reduced the errors by a big margin.
Our model also outperformed the other models for the most-
likely prediction at three out of four intersections. It only
slightly fell behind the AMENet model on the intersection-
(C). We anticipate that the most-likely prediction fell behind
the @top10 prediction. However, the ranking method is still
effective in recommending a reliable candidate in comparison
to the other models. The results indicate: (1) Our model is
able to generalize on different datasets and maintain superior
performance. (2) Predicting multiple paths is more beneficial
than predicting a single one for an agent. On the one hand,
multiple predictions increase the chances to narrow down the
errors. On the other hand, a single prediction may lead to
a wrong conclusion especially if the initial steps predicted
are deviating from the ground truth and the errors will
accumulate significantly with time. The multiple predictions
form into an area indicating the potential intent of an agent
and the area size reflects the uncertainty of an agent’s intent.

The qualitative results are shown in Fig. 4. The first row
showcases the scenarios in the Trajnet dataset. Note that
the qualitative analysis on Trajnet was carried out on the
validation set (an independent subset of the training set)
for comparing with the ground truth. Our model accurately
predicted two pedestrians walking towards each other at
bookstore-3. The shadow areas indicate multiple possible

trajectories. It also correctly predicted the static pedestrians
in coupa-3, as well as the pedestrians walking in parallel. In
deathCircle-0, our model predicted different possible turning
angles for the cyclist in the roundabout. In hyang-6, two
pedestrians walking closely to each other were predicted
correctly. The second row showcases the scenarios in the
InD dataset. Our model predicted a fast driving vehicle
with a slightly different predicted speed at the Intersection-
(A). It predicted that a left-turning vehicle may turn at the
intersection-(B) with varying tuning angle and speed. The
model also correctly predicted the interaction at the zebra
crossing at the intersection-(C), where the vehicle stops to
yield the way to the pedestrian. Similar predictions can
be seen for the walking and static pedestrians, as well as
the vehicle waiting at the entrance of the intersection-(D).
Overall, we can also see that the recommended single path is
very close to the corresponding ground truth for each agent.

V. CONCLUSION

In this paper, we proposed a novel framework DCENet
for multi-path trajectory prediction for homogeneous agents
in various real-world traffic scenarios. We decompose the
learning of dynamic spatial-temporal context into exploit-
ing the dynamic spatial context between agents using self-
attention architectures and learning temporal context between
steps with the following LSTM encoder. The spatial-temporal
context is encoded into a latent space using a CVAE module.
Finally, a set of future trajectories for each agent is pre-
dicted conditioned on the spatial-temporal context using the
trained CVAE module. DCENet was evaluated on the Trajnet
Challenge benchmark and achieved the new state-of-the-art
on the leader-board. Its superior performance on the InD
benchmark further validated its efficacy and generalization
ability. The ablation studies justified the impact of each mod-
ule in DCENet. In the future, we are interested in extending
the method for learning the impact from environment/static
context, e.g., space layout and scene deployment, to further
enhance the performance of trajectory prediction.



REFERENCES

[1] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, “Sr-lstm: State
refinement for lstm towards pedestrian trajectory prediction,” in CVPR,
2019, pp. 12 085–12 094.

[2] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in NIPS, 2014, pp.
3581–3589.

[3] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and A. Alahi,
“Trajnet: Towards a benchmark for human trajectory prediction,” arXiv
preprint, 2018.

[4] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein,
“The ind dataset: A drone dataset of naturalistic road user trajectories
at german intersections,” arXiv preprint arXiv:1911.07602, 2019.

[5] A. C. Harvey, Forecasting, structural time series models and the
Kalman filter. Cambridge university press, 1990.

[6] M. K. C. Tay and C. Laugier, “Modelling smooth paths using gaussian
processes,” in Field and Service Robotics, 2008, pp. 381–390.

[7] D. Ellis, E. Sommerlade, and I. Reid, “Modelling pedestrian trajectory
patterns with gaussian processes,” in ICCV Workshops, 2009, pp.
1229–1234.

[8] D. Makris and T. Ellis, “Spatial and probabilistic modelling of
pedestrian behaviour.” in BMVC, 2002, pp. 1–10.

[9] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in ECCV, 2012, pp. 201–214.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, p. 436, 2015.

[11] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction crowded
spaces,” in CVPR, 2016, pp. 961–971.

[12] A. Gupta, L. Johnson, Justand Fei-Fei, S. Savarese, and A. Alahi,
“Social gan: Socially acceptable trajectories with generative adversar-
ial networks,” in CVPR, 2018, pp. 2255–2264.

[13] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, and S. Savarese,
“Sophie: An attentive gan for predicting paths compliant to social and
physical constraints,” in CVPR, 2019, pp. 1349–1358.

[14] N. Mohajerin and M. Rohani, “Multi-step prediction of occupancy grid
maps with recurrent neural networks,” in CVPR, 2019, pp. 10 600–
10 608.

[15] R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha, “Traphic:
Trajectory prediction dense and heterogeneous traffic using weighted
interactions,” in CVPR, 2019, pp. 8483–8492.

[16] C. Tang and R. R. Salakhutdinov, “Multiple futures prediction,” in
NIPS, 2019, pp. 15 398–15 408.

[17] P. Kothari, S. Kreiss, and A. Alahi, “Human trajectory fore-
casting crowds: A deep learning perspective,” arXiv preprint
arXiv:2007.03639, 2020.

[18] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in ICLR, 2015.

[19] A. Al-Molegi, M. Jabreel, and A. Martinez-Balleste, “Move, attend
and predict: An attention-based neural model for people’s movement
prediction,” Pattern Recognition Letters, vol. 112, pp. 34–40, 2018.

[20] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling
attention human crowds,” in ICRA, 2018, pp. 1–7.
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