

 Veröffentlichungen der DGK

Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 898

Stefania Zourlidou

Traffic Regulation Recognition from GPS Data

München 2023

Bayerische Akademie der Wissenschaften

ISSN 0065-5325 ISBN 978-3-7696-5310-6

Diese Arbeit ist gleichzeitig veröffentlicht in:

Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover
ISSN 0174-1454, Nr. 384, Hannover 2023

 Veröffentlichungen der DGK

Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 898

Traffic Regulation Recognition from GPS Data

Von der Fakultät für Bauingenieurwesen und Geodäsie

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Stefania Zourlidou, M. Sc.

Geboren am 09.03.1981 in Panorama Thessaloniki, Griechenland

München 2023

Bayerische Akademie der Wissenschaften

ISSN 0065-5325 ISBN 978-3-7696-5310-6

Diese Arbeit ist gleichzeitig veröffentlicht in:

Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover

ISSN 0174-1454, Nr. 384, Hannover 2023

Adresse der DGK:

Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften (DGK)

Alfons-Goppel-Straße 11 ● D – 80 539 München

Telefon +49 – 331 – 288 1685 ● E-Mail post@dgk.badw.de

 http://www.dgk.badw.de

 Prüfungskommission:

 Vorsitzender: Prof. Dr.-Ing. habil. Jürgen Müller, LUH

Referentin: Prof. Dr.-Ing. habil. Monika Sester, LUH

Korreferenten: Prof. Dr.-Ing. habil. Christian Heipke, LUH

Prof. Dr. Jörg Müller, TU Clausthal-Zellerfeld

Tag der mündlichen Prüfung: 20.03.2023

© 2023 Bayerische Akademie der Wissenschaften, München

Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet,

die Veröffentlichung oder Teile daraus auf photomechanischem Wege (Photokopie, Mikrokopie) zu vervielfältigen

ISSN 0065-5325 ISBN 978‑3‑7696‑5310-6

Abstract

This dissertation shows the importance of using low-cost crowd-sourced information for the
task of traffic regulator recognition (traffic signals, stop signs, priority signs, uncontrolled
intersections), the cost of which in terms of time and money is much higher if standard
technology is used for surveying. GPS trajectories can reveal the movement patterns of
traffic participants, and the initial hypothesis that traffic regulations can be retrieved by
mining the movement patterns imposed by traffic rules is verified. The predictive ability
of the classifier becomes more accurate when static information derived from open maps
(OSM) is merged with dynamic features extracted from GPS trajectories. An extensive
evaluation of the proposed methodology on three datasets, provided classification accuracy
between 95% and 97%.

For recovering incorrect predictions, an additional consistency check of the predicted regu-
lation labels based on domain knowledge rules is proposed, which increases the classification
accuracy by 1%-3%. The low sampling rate of GPS traces was found that can negatively
affect the classification performance, decreasing the classification accuracy between 1%-2%
when the sampling interval is doubled from 2 s to 4 s. In contrast, excluding curved tra-
jectories from the analysis has a positive effect on classification performance. It was also
shown that the optimal number of trajectories per intersection arm in terms of computing
classification features is five straight trajectories.

The problem of sparsity of labeled data was investigated by exploring different scenarios
of availability of labeled data. Both unsupervised and semi-supervised techniques such as
clustering, self-training, cluster-then-label, as well as active learning were examined. The
idea of transferability of learning between cities (training a classifier in a city A and predict-
ing regulators in a city B) was also tested, discovering the conditions under which it may
be feasible and its limitations. The most accurate predictions of the above tested learning
methods were achieved through active learning, which was found to reduce the number of
labeled data required for training by 66.7% in the two tested datasets.

Finally, a hypothetical scenario is described for the first time, to the author’s knowledge, in
the field of traffic regulation recognition from GPS data, where information arrives as data
streams, opening up further the possibilities to address the traffic regulation recognition
problem in an incremental and more dynamic way.

Keywords: traffic-regulations, crowd-sourcing, GPS tracks

Kurzfassung

Diese Dissertation zeigt die Wichtigkeit der Nutzung von kostengünstigen Crowd-Sourced-
Informationen für die Erkennung von Verkehrsregulatoren (Ampeln, Stoppschilder, Vor-
fahrtsschilder, ungeregelte Kreuzungen) auf, deren Kosten in Form von Zeit und Geld viel
höher sind, wenn Standardtechnologie für die Vermessung verwendet wird. GPS-Trajektorien
können die Bewegungsmuster von Verkehrsteilnehmenden aufzeigen, und die anfängliche
Hypothese wurde bestätigt, dass Verkehrsregulatoren durch die Auswertung von Bewe-
gungsmustern, die durch Verkehrsregeln vorgegeben sind, ermittelt werden können. Die
Vorhersagefähigkeit des Klassifikators wird genauer, wenn statische Informationen aus of-
fenen Karten (OSM) mit dynamischen Merkmalen aus GPS-Trajektorien kombiniert wer-
den. Eine umfassende Bewertung der vorgeschlagenen Methodiken am Beispiel von drei
Datensätzen ergab eine Klassifizierungsgenauigkeit zwischen 95% und 97%.

Um falsch klassifizierte Regulatoren zu korrigieren, wird eine zusätzliche Konsistenzprüfung
der vorhergesagten Bezeichnungen auf der Grundlage von Regeln auf Basis des Domänenwis-
sens vorgeschlagen, die die Klassifizierungsgenauigkeit um 1%-3% erhöht. Darüber hinaus
wurde festgestellt, dass die niedrige Samplingrate von GPS-Tracks die Klassifizierungsleis-
tung negativ beeinflussen kann und die Klassifizierungsgenauigkeit um 1%-2% sinkt, wenn
das Samplingintervall von 2 auf 4 Sekunden verdoppelt wird. Außerdem wurde festgestellt,
dass der Ausschluss von gekurvten Trajektorien aus der Analyse einen positiven Effekt auf
die Klassifizierungsleistung hat. Zusätzlich wurde festgestellt, dass die optimale Anzahl von
Trajektorien pro Kreuzungsarm im Hinblick auf die Berechnung von Klassifizierungsmerk-
malen fünf gerade Trajektorien sind.

Die Problematik des Fehlens gelabelten Daten wurde untersucht, indem verschiedene Szenar-
ien der Verfügbarkeit von gelabelten Daten erforscht wurden. Hierbei wurden sowohl unsu-
pervised learning als auch semi-superivised Techniken wie clustering, self-training, cluster-
then-label sowie active learning untersucht. Die Idee der Übertragbarkeit des Lernens zwis-
chen Städten (Training eines Klassifizierers in einer Stadt A und Vorhersage von Regula-
toren in einer Stadt B) wurde ebenfalls getestet. Dabei wurden sowohl die Bedingungen
der Machbarkeit, als auch die Grenzen aufgedeckt. Die genauesten Vorhersagen der oben
getesteten Lernmethoden wurden durch active learning erreicht, welches die Anzahl der
für das Training erforderlichen gelabelten Daten in den beiden getesteten Datensätzen auf
66.7% reduziert.

Abschließend wird ein hypothetisches Szenario beschrieben, das nach Kenntnis der Au-
tor zum ersten Mal im Bereich der Erkennung von Verkehrsregulatoren anhand von GPS-
Daten auftritt. Hierbei treffen die Informationen in Form von Datenstreams ein, was weit-
ere Möglichkeiten eröffnet, das Problem der Erkennung von Verkehrsregelungen auf inkre-
mentelle und dynamischere Weise anzugehen.

Schlagworte: Verkehrsregulatoren, Crowd-Sourcing, GPS-tracks

Contents

1. Introduction 1

1.1. From GPS tracks to Traffic Regulations . 1

1.2. Motivation for Learning Intersection Traffic Regulations 4

1.3. Research Gap . 6

1.4. Motivation for Learning Traffic Regulations from GPS Data 6

1.5. Research Objectives, Challenges and Contributions 12

1.6. Outline of the Thesis . 14

1.7. Summary . 15

1.8. Acknowledgements . 15

2. Theoretical Background 17

2.1. Intersections and Intersection Traffic Regulations 17

2.1.1. Intersections . 17

2.1.2. Intersection Traffic Regulations . 20

2.2. Spatiotemporal Data and Movement Trajectories 22

2.2.1. The Global Positioning System . 22

2.2.2. Sampling Frequency . 24

2.2.3. The GPS Exchange Format: GPX . 25

2.2.4. Movement Patterns in Spatiotemporal Data 27

2.2.5. Spatiotemporal Data Mining . 29

2.2.6. Semantic Enrichment of Trajectories . 32

2.2.7. Detecting Stop and Moves: the CB-SMoT Algorithm 34

2.3. Machine Learning . 40

2.3.1. Machine Learning and Types of Learning 40

2.3.2. Supervised-Learning: Classification . 42

2.3.3. Unsupervised-Learning: Clustering . 52

2.3.4. Semi-supervised Learning . 57

2.3.5. Active-Learning . 59

2.3.6. Incremental Learning . 61

2.4. Acknowledgements . 63

3. Related Work 65

3.1. Existing Traffic Regulation Recognition Approaches 65

3.2. Static Categorization . 68

3.2.1. Map-based Category . 68

vii

viii Contents

3.2.2. Image-based Category . 69

3.3. Dynamic Categorization . 69

3.3.1. Episode-based Category . 69

3.3.2. Speed-profile Category . 71

3.3.3. Movement-summarization Category . 72

3.4. Hybrid-based Categorization . 73

3.5. Discussion . 74

3.6. Knowledge Gap . 76

3.7. Acknowledgements . 77

4. Traffic Regulation Recognition (TRR) from GPS Data 79

4.1. Introduction . 79

4.2. Datasets . 79

4.2.1. Dataset Requirements and Limitations 79

4.2.2. Datasets for Testing the Proposed Methods 80

4.2.3. Groundtruth Map Construction . 82

4.3. Methodology . 84

4.3.1. Detection of Stop and Deceleration Episodes 84

4.3.2. The Static Approach . 87

4.3.3. The c-Dynamic Approach . 88

4.3.4. The Dynamic Approach . 92

4.3.5. The Hybrid Approach . 93

4.3.6. Implementation and Classification Settings 93

4.4. Results . 94

4.5. Discussion . 95

4.6. Summary . 96

4.7. Acknowledgements . 96

5. TRR From GPS Data: One-Arm versus All-Arm Models 97

5.1. Introduction . 97

5.2. Methodology . 97

5.2.1. One-Arm vs. All-Arm Models . 97

5.2.2. The Effect of Sampling Rate . 98

5.2.3. Reduced Models . 98

5.2.4. The Effect of Turning/No-Turning Trajectories 98

5.2.5. The Effect of Number of Trajectories 99

5.2.6. Application of Domain Knowledge Rules 99

5.2.7. Classification Settings . 102

5.3. Results . 102

5.3.1. One-arm vs. All-arm Models . 102

5.3.2. Testing the Effect of Sampling Rate . 105

Contents ix

5.3.3. Reduced Models . 105

5.3.4. Testing the Effect of Turning Trajectories and Examining an Optimal

Number of Trajectories . 106

5.3.5. Testing the Effect of the Number of Trajectories on Classification

Performance . 109

5.3.6. Misclassification Analysis . 111

5.3.7. Applying Domain Knowledge Rules . 115

5.4. Discussion . 118

5.5. Summary . 119

5.6. Acknowledgements . 120

6. TRR with Sparsely Labeled and Stream Data 121

6.1. Introduction . 121

6.2. TRR with Clustering . 121

6.3. TRR with Self-Training, Active Learning and Cluster-then-Label 124

6.3.1. TRR with Self-Training: Using Labeled and Unlabeled Data 124

6.3.2. TRR with Active Learning . 125

6.3.3. TRR with the Cluster-then-Label Algorithm 127

6.3.4. Comparison of All Tested Methods . 128

6.4. Learning Transferability: Training on City A and Predicting on City B . . . 129

6.5. Incremental (Online) Learning . 137

6.6. Summary . 141

7. Conclusions and Outlook 143

7.1. Research Questions Addressed in this Thesis 143

7.2. Outlook . 145

List of Acronyms 146

Index 147

A. Appendix 151

List of Figures 161

List of Tables 167

Bibliography 169

Curriculum Vitae 179

Acknowledgements 180

1. Introduction

1.1. From GPS tracks to Traffic Regulations

The practice of exchanging (creating and sharing) geographical information has grown ex-
ponentially in recent years. The reason for this is the proliferation of the Internet and the
World Wide Web, and the development of geographic information technologies. Compared
to the early disorganized era of “sharing”, where the primary providers of geographic infor-
mation were national governments, the modern phase, already characterized as “chaotic”
in 2007 by Goodchild et al., in terms of the network of producers and consumers, remains
so. Nowadays, individuals can collect and share data or information of various kind from
their environment: news (Rodosthenous and Michael, 2021), photos (Depauw et al., 2022),
speed (Hu et al., 2016) and noise measurements (Picaut et al., 2019), air pollution (Chen
et al., 2018), atmospheric (Muller et al., 2015) and precipitation data (Fitzner and Sester,
2016), etc. These data and information that are associated with a location relative to the
earth are called geodata, also known as geographic data or geospatial data. From these, in-
teresting information about a particular phenomenon that occurred at a particular location
for a given time or period of time can be estimated, such as the examples just mentioned.

Moreover, all smartphones are now equipped with GPS chips, accelerometers and gyro-
scopes and their increasing usage has further expanded the possibilities for Spatial Crowd-
sourcing (SC), a term describing “the potential of the crowd to perform real-world tasks
with strong spatial nature that are not supported by Conventional Crowdsourcing (CC)
techniques” (Gummidi et al., 2019). CC techniques lack the spatial element and focus on
transactions that are conducted entirely over the Internet. In contrast, SC requires on-site
physical presence and this collected information has increasing potential (Heipke, 2010) and
significance in practice, for example, it is often used as part of the innovation process of orga-
nizations (Karachiwalla and Pinkow, 2021). More specifically, the field of crowdsourcing has
lots of potential for mapping mainly due to two reason: (a) the technology is mature enough
to stay for long, and (b) other means of mapping are too slow or too expensive (Heipke,
2010). Guo et al. (2014), discussing mobile crowd-sensing, distinguish two unique features:
(1) it involves both implicit and explicit participation and (2) it collects data from two user-
participant data sources - mobile social networks and mobile sensing. Either with minimum
(opportunistic) or significant (participatory) awareness and involvement, in a crowd-sensing
system volunteers can quickly gather a lot of geographic information that can then be pro-
cessed for many purposes (Lane et al., 2008).

There are numerous examples of how crowdsourced information from individuals can be
put to practical use. Social media crowdsourcing can increase our understanding of hu-
man dynamics and spatio-temporal characteristics of cities and convey information about
cities (Zhou and Zhang, 2016). For example, city locations (hotspots) that attract differ-
ent human activities at various intensities at different time intervals. Other popular top-
ics based on such data include extracting context information in the form of interesting
places (Agamennoni et al., 2009), computing speed estimates for accurate trip arrival pre-
diction (Niehöfer et al., 2009) and mining road features such as road names and classes (Li

1

2 CHAPTER 1. INTRODUCTION

et al., 2015). Furthermore, using common devices such as smartphones with low cost sensors,
predictions of phenomena such as earthquakes (early warning), which previously required
special equipment, can now be implemented (Minson et al., 2015).

Urban sensing has become increasingly popular for applications ranging from real-time de-
tection of traffic lights (Zhu et al., 2013) to the detection of road/traffic conditions (bumps,
hard braking, honking, roughness of bicycle paths) based on either mobile devices (Xiao
et al., 2021; Mohan et al., 2008; Wage and Sester, 2021) or cars equipped with sensors (Eriks-
son et al., 2008; Fox et al., 2017). Drivers in large cities can be informed about the existence
of vacant parking spaces near their destination, a citizen service realizable using crowd-
sourced data (Salpietro et al., 2015; Mathur et al., 2010). Finally, by analysing the aggre-
gated acoustic signal collected from the user’s smartphone microphone sensor, the traffic
state of the streets can be estimated (Vij and Aggarwal, 2018).

Some of the aforementioned approaches use data from various sensors to achieve their goals.
However, the minimum data required to extract spatial information remains the position of
an object or event (GPS log). A grade slightly above this minimum data is the temporally or-
dered positions of a moving object that when connected make up a spatiotemporal trajectory.
These positions are obtained as sequences of GPS records. Some examples of trajectories
of various moving objects (pedestrian, bicycle, car, sailboat) are shown in Figure 1.1. The
movement of objects carrying GPS recording devices can be recorded and the interpretation
of their recorded trajectories can be revealing either about the location/time/time interval
in which the motion takes place or about the moving objects themselves. This is because the
trajectories contain implicit knowledge of object movement regarding the underlying pat-
terns and structure of the movement that can be identified by pattern recognition techniques
and then applied to various domains (Sester et al., 2012). For example, human activities can
be predicted from pedestrian or vehicle trajectories (Makris and Ellis, 2002, 2003; Hu et al.,
2004; Piciarelli and Foresti, 2005) and transportation routes can be optimised by processing
trajectory data from urban transport (Feng and Zhu, 2016).

Focusing on vehicle-derived trajectories, some examples of their application are the inference
of the condition of traffic and the recognition of traffic patterns (Guo, 2008; Atev et al.,
2006), as well as the estimation of intersection travel time (Tang et al., 2016). Regarding
movement patterns, a conceptual view of trajectories (semantic trajectories) by detecting
stops and movements (Spaccapietra et al., 2008; Bermingham and Lee, 2018) allows us to
discover hidden patterns in the movement of objects (Alvares et al., 2007, 2009; Palma et al.,
2008) such as pattern relationships or to reveal interesting locations for individuals or groups
of people (Spinsanti et al., 2010; Phithakkitnukoon et al., 2010). Other trajectory-related
applications involve inferring trip purposes (Gong et al., 2016), detecting sudden events such
as braking incidents (Dang et al., 2014), classifying road user behaviour (Laureshyn et al.,
2009) and detecting anomalies (outliers) in traffic (Jiang et al., 2009) or in route navigation
(Huang et al., 2014).

One area of great research interest recently is automatic map updating, especially in view
of recent developments in autonomous driving. Moreover, the increasing use of navigation
devices nowadays that help drivers to quickly reach their destination is another factor that
makes up-to-date and accurate maps important. For this reason, many research studies
focus on how maps can be updated given the frequent changes that take place in the road
network. According to Mapscape (2022), roads change up to 15 percent annually. Changes
to the road network can be either temporary or permanent, i.e., temporary closures due to
construction projects or natural disasters, and permanent such as new roads and changes

1.1. FROM GPS TRACKS TO TRAFFIC REGULATIONS 3

(a) Walking (b) Cycling

(c) Car driving (d) Sailing

Figure 1.1.: Trajectories from moving objects in different movement modes: (a) walking, (b) cycling, (c) car
driving and (d) sailing.

to sections of existing roads, to name a few. The map update refers to both the road
network itself and the various features that come on top of it. The research interest in this
area lies basically in extracting the geometric and topological features of the road network.
Numerous studies have focused on the automatic generation of the road network from GPS
traces (Davies et al., 2006; Cao and Krumm, 2009; Biagioni and Eriksson, 2012; Ahmed
et al., 2015; Mariescu-Istodor and Fränti, 2018), on the detection of changes in the road
network (Tang et al., 2019; He et al., 2018) and in related subtopics such as the detection of
intersections (Fathi and Krumm, 2010; Wu et al., 2013; Wang et al., 2017). The innovative
element behind these map inference methods is that they are not based on data obtained
with special survey equipment, a process that is time-consuming and expensive, but on
crowdsourced GPS traces, recorded by vehicles with simple GPS devices. Thus, using only
spatio-temporal samples (longitude-latitude-time) from vehicles that act as probes, both the
geometry and connectivity of road segments can be obtained rapidly.

However, this interest on automatic road network extraction from GPS tracks, expressed
by the vast literature, is not uniform for all categories of map features that also need to
be automatically updated using GPS tracks. One such relatively unexplored research area
is that of traffic regulations (e.g., traffic signs). In the next section we explain why traffic
regulations are important map elements and what practical applications can benefit from
having them on maps.

4 CHAPTER 1. INTRODUCTION

1.2. Motivation for Learning Intersection Traffic Regulations

Road network traffic regulations, also called traffic controls, rules or regulators, are used
to control the traffic of road users such as vehicles, bicycles and pedestrians at intersec-
tions. Traffic regulations at intersections contain important navigational information and
could, for example, help in deriving more accurate travel time estimates. Traffic regulators,
such as traffic lights, have a significant impact on traffic flow at intersections, which in turn
contribute to increased fuel consumption because they involve queuing conditions and many
stop-and-go incidents. According to Alshayeb et al. (2021), intersections are one of the main
places where an excessive amount of fuel is consumed. In addition, traffic lights contribute
more to air pollution compared to other types of controls due to exaggerate vehicle emis-
sions at these locations (Gastaldi et al., 2014). Therefore, for fuel-efficient and green map
applications (Ganti et al., 2010; Saremi, 2016; Zhao et al., 2017), it is important to have this
traffic regulator related information on the maps and be up to date. Google maps recently
released (November 2021) the option of eco-friendly routing (Figure 1.2), which until the
writing of this dissertation is not available to everyone1. According to Google Maps (2022),
the eco-routing after generating a set of potential route candidates, incorporates data about
road conditions, such as road closures, live traffic-data and historic traffic patterns, into
machine learning algorithms to accurately predict the traffic during the course of a user’s
journey. In this way, under user’s demand, route recommendations also take into account
expected fuel consumption. As previously discussed, intersection traffic regulations can also
be included in the list of data with which such predictions are made. In addition, the type
of regulators controlling intersections is also crucial for the development of autonomous ve-
hicles and more specifically for the decision making involved on how they drive through
intersections and interact with other road users (pedestrians, cyclists, other autonomous or
human-driven vehicles).

Moreover, car safety is a matter of great interest to both drivers and car manufacturers.
Advance Driver Assistance Systems (ADAS) aim to assist drivers in the complex driving
process by detecting pedestrians, facilitating parking, helping with lane changes and crossing
intersections, recognising traffic signals and adjusting speed to avoid collisions, to name a
few. One idea for improving the performance (e.g., by reducing the false positive alerts) of
such safety-oriented systems is to fuse data from maps and other vehicle sensor sources. For
example, Peker et al. (2014) propose fusing map features (type of driving maneuvers allowed,
types of intersections, road network characteristics, etc.) with images obtained from in-
vehicle cameras to detect traffic signs with higher probability. Satzoda et al. (2013) show
how a multimodal synergistic approach can be applied for automated driving analysis by
analyzing data from different sources (CAN Bus, map and GPS devices) in a cooperative
and complementary way. Lefèvre et al. (2011, 2012) predict driver intention and assess
risk at road intersections based not only on vehicle kinematics and dynamics, but also on
contextual information in the form of topological and geometrical characteristics of the
intersections (traffic lanes, intersection connections), as well as hidden behavioral variables
(the set of authorized maneuvers and traffic rules (stop, yielding, etc.)), which are derived
from digital maps. The performance of the proposed methods in different test scenarios
shows an improvement over the results of similar methods based on single-source input data
only (without using traffic rules, lanes, etc.).

1The author last checked the Google maps settings of an Android device on 09.08.2022.

1.2. MOTIVATION FOR LEARNING INTERSECTION TRAFFIC REGULATIONS 5

(a) (b)

Figure 1.2.: (a) Google maps eco-friendly routing. (b) Eco-routing is still not available to everyone2.

Figure 1.3.: Some examples of traffic signs.

In addition, in the context of navigation, safety issues are in most cases limited to speed limit
reminders and speed limit alerts. For this reason, maps that include the local regulatory
framework could help to enhance safety (Zourlidou and Sester, 2015a,b). Focusing on the
intersection rule context, regulation-aware maps, i.e., maps containing traffic regulators,
could help drivers to cross intersections safely. Some examples of such traffic regulations,
indicated by traffic signs, are illustrated in Figure 1.3.

Finally, another need for mapping intersection traffic regulations comes from the progression
of Location Based Services (LBS), which generally try to optimize transportation or offer
an optimal way to reach a location B starting from a location A based on personalized
criteria, e.g., avoiding tolls, highways, etc. Krisp and Keler (2015) go one step further
of the existing personalized navigation and way-finding services and propose the idea of

2Image Sources: https://www.gstatic.com/gumdrop/sustainability/google-maps-eco-friendly-routing.pdf
and https://support.google.com/maps/answer/11470237?hl=en&ref_topic=3292869 accessed 09.08.2022.

https://www.gstatic.com/gumdrop/sustainability/google-maps-eco-friendly-routing.pdf
https://support.google.com/maps/answer/11470237?hl=en&ref_topic=3292869

6 CHAPTER 1. INTRODUCTION

providing routing suggestions to drivers that avoid complicated crossings in urban areas.
For example, a complicated intersection may be an intersection where the road network is
intersected by bike lanes and tram rails. Similarly, a complicated crossing can be a left turn
at an intersection that is not controlled by a traffic light. Conversely, an easy intersection
may be an all-way stop controlled intersection. Such recommendations can be useful to
inexperienced drivers or drivers who for whatever reasons do not feel comfortable driving
in an urban environment. Traffic regulations could also be explored in the context of road
driving complexity and incorporated into the definition of rating intersections’ complexity
for personalized route recommendations.

In summary, we identified four possible applications that can be realised if intersection traffic
regulations are featured on maps: 1) fuel-efficient routing, 2) autonomous vehicles, 3) ADAS
and 4) personalized routing. In the next section we reveal the research gap in the areas of
automatic map update and traffic regulation recognition.

1.3. Research Gap

When examining National Agencies maps or public map databases, such as OpenStreetMap
(OSM), one can notice that most intersections are missing information on traffic regulations.
And even if this information is included, it concerns mainly traffic signals (traffic lights).
Figure 1.4 shows the OSM from a very central and busy area of a large city in northern
Germany, Hanover, where traffic regulation information is available for only five of the fifty
intersections shown, all five controlled by traffic lights. This is remarkable, as in this city
there is a very active OSM community, which provides very detailed OSM maps in general.
Moreover, as Hu et al. (2015) points out, despite the importance of traffic regulations, there
is currently no national database of the traffic regulations of intersections, unlike the case of
road maps. Instead, this information is fragmented in physical records of various municipal
authorities.

Consequently, having explained in the previous Section 1.2 the importance of knowing the
traffic regulations of intersections and having noted here the insufficient indication of traffic
regulators on maps, the need for new methodologies that can collect this information mas-
sively, quickly, accurately and at low cost becomes obvious. Since the most accurate way to
collect this information is to use surveying equipment, which is neither fast nor cheap, the
remaining alternative is to learn or predict traffic regulations from available data sources.
Such data can be crowdsourced images or GPS trajectories. In the next section, we argue
about the advantage of using GPS data compared to images.

1.4. Motivation for Learning Traffic Regulations from GPS Data

The task of automatic detection and identification of traffic regulators can be solved by
using different data sources. Related studies, mainly use images or GPS traces (Zourlidou
and Sester, 2019). Images obtained from cameras or mobile mapping systems can be used to
create a traffic sign inventory system. However, acquiring images with such equipment has
high time and operational costs. Another option could be to use street-level images offered
by platforms such as Google Street View (2022) and Mapillary (2022). The use of Google
Street images would have cost constraints, as access to the associated API for large-scale use
would require a license. Also, as Hu et al. (2015) point out, there are still many cities and

1.4. MOTIVATION FOR LEARNING TRAFFIC REGULATIONS FROM GPS DATA 7

Figure 1.4.: Intersections for which OSM contains traffic regulation relevant information (in green circles).
For all other intersections no such information is present. Accessed on 04.08.2022.

places that are not covered by these services and therefore there are no images available to
be crawled for traffic regulation detection. Recent quantitative descriptions of road network
coverage for both providers were not found. However, we can assess the coverage visually
from Figure 1.5 and 1.6, that show the current road network coverage of the two main road
image providers mentioned above. In Google Street View (Figure 1.5), although countries
such as the US and most European countries are fairly well covered, other countries are
either for legal or privacy reasons partially covered (e.g., in Germany only some major cities
have agreed to allow Google to take street photos) or not at all (e.g., eastern countries).
Similarly, although Mapillary’s data is free of charge3, its images have similar limitations to
those of Google Street View. For example, although many streets in Germany are covered
by photos (Figure 1.6a), the coverage mainly concerns main streets. Figure 1.6b shows the
central area of Hanover, where one can see that is not fully covered and areas near the center
are covered even more sparsely (Figure 1.6c).

Traffic sign recognition from vehicle cameras is a popular and well-established topic in the
computer vision community, providing accurate recognition of traffic signs (Huang et al.,
2017; Ardianto et al., 2017). However, although modern cars have cameras, manufacturers
do not share their data. But even if such data were available, their adoption in a crowd-
sourced scenario would have limitations. One drawback is the generation of large volumes
of data (images) and therefore the consumption of resources such as bandwidth and stor-
age space. Also, the cameras must be mounted on vehicles, adding further constraints for
broad user participation. According to Kosonen and Henttonen (2015), the key issue of the
launching stage of a crowd-sourcing project is to convince people to start volunteering, and
for persuading them, it is important to clearly demonstrate how easy it is to participate. In
a hypothetical scenario of crowd-sourcing images for traffic regulation recognition with cell
phone cameras, people would need to place their cell phones on a car cell phone holder

3https://help.mapillary.com/hc/en-us/articles/360020754199-Pricing. Accessed 08.08.2022 for checking the pricing
costs.

8 CHAPTER 1. INTRODUCTION

(a) World wide.

(b) Europe.

(c) Germany.

Figure 1.5.: Google Street View coverage (blue lines). The images were accessed on 09.08.2022.

1.4. MOTIVATION FOR LEARNING TRAFFIC REGULATIONS FROM GPS DATA 9

(a) World wide.

(b) Center of Hanover city, Germany.

(c) Non central area in Hanover, Germany.

Figure 1.6.: Coverage of Mapillary Street level Imagery (green lines). The images were accessed on
10.08.2022.

10 CHAPTER 1. INTRODUCTION

each time they drive, make sure the camera lenses and car window are clean, check that the
phone’s battery is charged or plugged in a phone charger (battery consumption is very high
when taking photos), and address other possible issues such as whether there is enough data
storage or internet data available on the phone device, whether there is an internet connec-
tion, etc. All of these factors obviously do not make the crowd-sourcing scenario seem easy
or appealing to participate in. In addition, there are privacy issues when identifying people
or number plates in the images shared, as well as issues of occlusion, clutter and illumination
that one often has to deal with when processing images for object recognition (Balali and
Golparvar-Fard, 2016).

The second, more time and cost friendly solution for massive intersection traffic regulator
recognition are GPS traces. GPS traces (i.e., time-ordered sequences of recorded locations)
are a “lightweight” data source in terms of battery and storage requirements. A file con-
taining the locations and timestamps of a 20-minute car trip, sampling the location every
2 seconds, is only 15 KBytes in size. GPS tracks can also be recorded without special
equipment. All smartphones today have GPS receivers and can therefore be used to record
movements. According to Merry and Bettinger (2019), an iPhone 6 (released in September
2014) has an average position accuracy of 7-13 meters in an urban environment, for different
settings of season, time of day, and WiFi usage period. Since GPS trace recording does not
require the phone’s display, which is a power-intensive component of the phone, to be on,
battery consumption is only slightly affected. In addition, GPS traces require minimal or
no user intervention in the recording task (launching a recording application or running in
the background when the phone is started). Another advantage over image recording is that
they do not impose special requirements on the placement of the device, as is the case with
a camera (installation on the front car window on a stable phone mount). Therefore, GPS
data is considered a more user-friendly solution for collecting data under a crowd-sourcing
scenario for recognizing intersection traffic regulations.

Another free solution for the recognition of traffic regulators is to use open data obtained
from OSM (Saremi and Abdelzaher, 2015). Besides the map features that explicitly stand
in OSM, such as shops, buildings, roads, etc., there is also implicit information that can be
extracted and exploited for the classification task of traffic regulators. Such information, as
discussed later in the methodology section of this thesis, can be attributes describing the
connectivity of intersections, such as the length of the road to which an intersection belongs
and the distances of an intersection from neighboring intersections. This information can
be freely extracted from OSM and then fed to a classifier to predict intersection traffic
controllers. However, the predictive results have certain limitations, as will be explained
later. Therefore, for the objectives of this thesis, we chose to use GPS traces of vehicles
combined with open data obtained from OSM.

The idea of using GPS data to identify intersection traffic controls is based on two as-
sumptions: 1) traffic controls affect driver behavior in an indicative and uniform manner
for all drivers crossing the same intersection (or for all crossings of a single driver that
crosses an intersection several times), and 2) similar movement patterns are observed at
different intersections that are regulated by the same traffic control. In other words, the
assumptions are that a specific movement pattern can be identified at a regulated location
from the trajectories that cross that certain location and similar movement patterns can
be observed at different locations (intersections) that are regulated by the same traffic con-
trol. Of course there may be drivers who may violate a traffic signal or a stop sign under
certain circumstances, and consequently their movement behaviour differs from the main-

1.4. MOTIVATION FOR LEARNING TRAFFIC REGULATIONS FROM GPS DATA 11

stream pattern, however we assume that the vast majority of drivers do not systematically
violate traffic rules, and if there are such cases expressed in the dataset, they can be con-
sidered outliers. Therefore, the expectation is that the vast majority of drivers respect the
traffic regulations, and the two assumptions mentioned earlier can be valid only under this
prerequisite.

The two assumptions about the movement behavior observed at regulated intersection lo-
cations are visually illustrated in Figure 1.7. In Figure 1.7b, two vehicles crossing the same
intersection path - turning left at a traffic signal-controlled intersection (intersection B) -
exhibit the same movement behavior: slowing down on approaching the intersection (brak-
ing indicated as yellow line), indicating the intention to turn left (blinking indicated as red
line) and turning left. The same traffic patterns are observed at intersection A, illustrated
in Figure 1.7a, where two vehicles show similar movement patterns to each other and to
those of intersection B, controlled by the same traffic regulator (traffic lights).

(a) Intersection A. (b) Intersection B.

Figure 1.7.: Both images show intersections controlled by traffic signals. Successive samples during the
activation of the turn signal/blinker and brake are indicated in red and yellow respectively. The spatial
trajectory of the moving vehicle is indicated in blue.

Other examples illustrating the two assumptions are depicted in Figure 1.8, where the
movement paths along with the blinking and braking episodes of two vehicles are shown. The
locations indicated in purple represent locations at which all vehicles stop. This behavior
may be indicative of a stop sign. The more trajectories that validate a pattern observed at
a particular location, the more likely the prediction is to be true. For example, if we assume
that forty trajectories rather than just two as in Figure 1.8 validate the stopping behavior,
then the stop sign prediction would certainly be more likely. Conversely, if thirty of the
trajectories stopped and ten were crossing without slowing down (a mixture of two movement
patterns, stop and unhindered driving), then this pattern (mixture of two patterns) could
be indicative of a traffic light being there. Moreover, events that are not validated from the
majority of the trajectories (black dotted circles) can be ignored as outliers or anomalies
(they could be sudden events, traffic anomalies or traffic rule violations).

Therefore, having justified the suitability of GPS trajectories as a data type for determining
the type of intersection controls, and having explained the hypotheses for identifying traffic

12 CHAPTER 1. INTRODUCTION

Figure 1.8.: This figure shows the recorded routes of two different vehicles in an area. Blue trajectories denote
the routes. Blinker and brake occurrences are shown in red and yellow, respectively. With green and purple
circles we denote clusters of similar spatial behavior. Sequences of blinker and brake followed by change of
direction indicate turn pattern (green circle) and sequences of braking until stopping indicate stop maneuver
(purple circle). Black dotted circles denote brake instances being observed at a single trajectory (not all the
drivers that pass from this location brake, so this behavior cannot be considered as pattern).

regulators through the patterns identified in the trajectories, the next step is to validate
these hypotheses, which is the subject of this dissertation. The next section lists the research
objectives of this thesis.

1.5. Research Objectives, Challenges and Contributions

The main research question of this thesis is how traffic regulators can be recognised from low
cost data such as GPS trajectories. Schematically, this objective is illustrated in Figure 1.9,
which emphasizes also the motivation of this work, that is, as explained in Section 1.2, the
enrichment of maps with traffic regulators.

The primary challenge that this thesis had to come up with was the lack of open datasets.
Due to this lack, all research works so far use different datasets of various size regarding
the number of trajectories and number of intersections that the latter cross, and of various
traffic regulations, e.g., only traffic signals, or stop signs and traffic signals, etc. As a result,
one can find different proposed methodologies, applied in different datasets, whose results
cannot be compared to each other. Moreover, no existing research work so far has been
applied to different datasets with different classes of regulators to evaluate the ability of
the method to generalize to different classes of rules. It becomes clear that open reference
datasets are missing so far, in which both the trajectories and the regulators’ ground-
truth map (label information) are available and researchers can use them as benchmarks
when it comes to compare the classification performance of their proposed approaches with
other similar studies. For the scope of this thesis, we manually mapped (and labeled) the
regulators of the road network of an open trajectory dataset (Chicago dataset), gathered

1.5. RESEARCH OBJECTIVES, CHALLENGES AND CONTRIBUTIONS 13

(a) Trajectories as data for predicting traffic regulators.

(b) Traffic regulators as predicted from trajectories.

Figure 1.9.: Schematic illustration of the main objective of this thesis: enriching maps with traffic regulators
from low cost data such as GPS trajectories.

trajectories from the city of Hanover and created the groundtruth map of traffic regulators
for this dataset too. All these datasets have been placed in an open repository so that other
researchers can use to test their methodologies.

Now, having such a benchmark, one can consider whether a method that is good at predict-
ing a certain group of regulators, e.g., traffic lights, stop signs and uncontrolled intersections,
can be equally good at predicting another group, e.g., traffic-signals, priority signs, yield
signs and uncontrolled intersection; or, whether the same classification features are suffi-
ciently descriptive to distinguish between different groups of regulators; or, whether some
existing methods applied in the context of two-class classification problems (traffic light,
not traffic light) and achieving excellent performance, are also equally good if applied to
multi-class problems.

This thesis addresses the Traffic Regulation Recognition (TRR) problem by testing a new
method in different datasets, under different trajectory and classification settings (number
of trajectories, one-arm features vs. all- arm features), which to author’s knowledge has not
been done before. More specifically, the research contributions of the study presented in this
dissertation can be summarized as follows:

14 CHAPTER 1. INTRODUCTION

1. It presents a new methodology for TRR by analysing GPS traces, where in the classifi-
cation feature vector, information from the adjacent intersection arms is also included
(all-arm models).

– It proposes a modification of a well-known clustering technique for detecting short-
term movement events such as stopping and decelerating episodes (Palma et al.,
2008).

– It provides an extensive evaluation of the proposed methodology, which is missing
from the literature of the TRR from GPS traces. Three datasets, from different
cities (Chicago, Champaign, Hanover), that include different regulation types are
used for testing the proposed methodology.

– It proposes an additional consistency check of the predicted labels at an intersec-
tion level, recovering incorrect predicted regulators when possible.

– It examines whether the sampling rate of GPS tracks influences the classification
performance and if so, to what extent.

2. It investigates the classification performance of the proposed TRR method under dif-
ferent trajectory settings.

– It explores the effect of turning trajectories on the classification performance.

– It examines the minimum number of trajectories per intersection arm required to
achieve acceptable accuracy.

3. It investigates the classification performance of the methodology under sparsely labeled
data and streaming data. Labeling data is a time- and cost-consuming task. This thesis
explores possible solutions.

– It explores the predictive ability of the proposed TRR methodology under sparsely
labeled data, by using clustering, the semi-supervised learning techniques, self-
learning and cluster-then-label, and active-learning.

– It assesses the cross-city transferabilty of learning, i.e., training the classifier with
data from city A and predicting regulators on city B.

– It tests the proposed methodology under the framework of incremental learning.
Instead of processing all data at one time for building a learning model, one ob-
servation (data instance) is processed at a time and the learning model is updated
incrementally.

1.6. Outline of the Thesis

This thesis is structured as follows:

Chapter 2 provides a brief introduction to the fundamental concepts and methodologies used
in this thesis to address its objectives. This theoretical background is mainly concerned
with spatio-temporal data, such as GPS tracking and trajectories, and machine learning
concepts such as clustering, random forest classification, gradient boosting, self-learning,
active-learning, incremental learning and model performance measures.

Chapter 3 discusses relevant existing studies and identifies research gaps in the field of TRR
from GPS data.

1.7. SUMMARY 15

Chapter 4 explains the datasets used in all the experiments conducted in this thesis, as well
as it presents a methodology for TRR using information from a single intersection arm.

Chapter 5 extends the methodology proposed in the previous chapter by including infor-
mation from all intersection arms (of the same intersection) in the classifier. Here, is also
tested the effect of turning trajectories and the number of trajectories on classification per-
formance. A thorough misclassification analysis is also given for all three datasets. Finally,
domain knowledge rules are proposed and applied in a post-classification step, where trying
to recover the incorrectly predicted traffic regulations (intersection-arm level) taking into
account all available predicted regulations at the intersection level (all predicted regulations
from all arms that belong to the same intersection).

Section 6 considers the TRR problem under sparsely labeled data. Clustering and semi-
supervised techniques are tested with various experimental settings. The transferability
of learning between cities (cross-city learning transferability) is also considered here, by
training a classifier and use it to predict regulators from a different city than that on
which it was trained (i.e. training in city A and predicting in city B). Here the proposed
methodology is also extended in the context of incremental learning.

Chapter 7 summarises the findings of previous chapters, underlines the limitations of the
proposed methodology and proposes future research directions.

1.7. Summary

Mapping with surveying equipment is a time-consuming and expensive process, which means
that it cannot be repeated frequently. The question therefore arises as to how a map and
its features can remain up to date. This thesis is motivated by the fact that only a very
small amount of intersection regulators is mapped on publicly available maps databases such
as OSM. There are four possible areas in which traffic regulators can find applications: 1)
fuel-efficient routing, 2) autonomous vehicles, 3) ADAS, and 4) personalized routing. GPS
traces are a “lightweight” data source compared to images and can easily be adopted in the
context of an opportunistic crowd-sourcing scenario with the scope of mass and fast sensing
of traffic regulations. This thesis proposes a methodology for recognizing traffic regulators
using vehicle trajectories that can be easily recorded with low-cost devices such as mobile
phones. Other contributions include the investigation of the problem under sparsely labeled
data and the framework of incremental learning.

1.8. Acknowledgements

Chapter 1 contains images, observations, arguments and discussions that have been pub-
lished in the 3rd AGILE Conference on Geographic Information Science (Zourlidou and
Sester, 2015b), in the ISPRS International Journal of Geo-Information,(Zourlidou and Ses-
ter, 2019; Zourlidou et al., 2023) and in the 25th AGILE Conference on Artificial Intelligence
in the Service of Geospatial Technologies,(Zourlidou et al., 2022d). The thesis author is the
principal investigator and author of these articles, as well as the creator of all figures.

2. Theoretical Background

This chapter explains some of the key concepts used in this thesis to achieve its objectives.
It clarifies the terms intersection and traffic regulation (Section 2.1), the main elements
that contribute and are related to the acquisition of movement trajectories (Section 2.2) and
presents some known learning methods of machine learning, such as clustering, classification,
self-learning, active-learning and incremental learning (Section 2.3).

2.1. Intersections and Intersection Traffic Regulations

2.1.1. Intersections

An intersection1 or at-grade junction is a junction where two or more paths, roads, highways
or other roadways converge, diverge, meet or cross at the same level, as opposed to a inter-
change, which uses bridges or tunnels to separate different roads. Compared to other road
structures, intersections have more conflict points. Conflict points are locations within or on
the approaches to an intersection where vehicle paths merge, diverge, or cross (Figure 2.1).
The more conflict points, the higher the probability of a collision between traffic partici-
pants. For highways, the probability of collision between vehicles can be reduced by using
interchanges. However, interchanges are not usually feasible for the vast majority of inter-
sections on arterial and collector roads. Certain vehicle movements are also more likely to
cause collisions, such as left turns compared to straight and right turn maneuvers. Although
intersections represent only a small percentage of the total length of the road network, they
nevertheless account for a large proportion of the reported accidents and the majority of
potential crash (conflict) locations (Design-Manual, 2021). According to the European Trace
project, in the EU-27, about 43% of all road injuries occur at intersections, about 70% of
intersection accidents occur within urban areas and 45% to 68% of intersection accidents
occur at intersections with traffic signs (Wisch et al., 2019). In addition, the same source
reports that in terms of car accidents with at least serious injuries, 38% of the 34,489 car-
to-car accidents occurred at intersections, accounting for 18% of deaths (a total of 4,236
deaths).

Figure 2.1.: Vehicle conflict points at a T-intersection: �merging, ◦ crossing, • and diverging points.

1The term crossroad is often used to describe the same concept. However, an intersection refers primarily to a road
that joins two main roads or crosses a main road.

17

18 CHAPTER 2. THEORETICAL BACKGROUND

(a) Crossroad (four-leg). (b) T-intersection (three-leg). (c) X-intersection (four-leg).

(d) Y-intersection (three-leg). (e) Ramp merge (three-leg). (f) Misaligned intersection (four-leg
or offset-right).

(g) Deformed intersection (multi-leg). (h) Roundabout.

Figure 2.2.: Different types of intersections.

The intersections are crossed by different types of participants, such as vehicles, motorcycles,
bicycles and pedestrians. Based on their topology, Wei et al. (2021) classifies intersections
into eight main categories: crossroad, X-intersection, Y-intersection, T-intersection (with
variations in angle of approach), roundabout, misaligned intersection, ramp merge, and de-
formed intersection (Figure 2.2). Other simpler categorization may be according to the

2.1. INTERSECTIONS AND INTERSECTION TRAFFIC REGULATIONS 19

number of arms or legs or approaches they have (three-leg intersection, four-leg intersec-
tion, multi-leg intersection, as illustrated in Figure 2.2). The X-intersection is also found
under the name scissor or skewed cross. In general, each intersection can vary considerably
in terms of the scope, shape and type of traffic control devices. The simplest and most com-
mon T-intersection is the private entrance or driveway where access is given to a residential
property to and from the road network, while at the other extreme, a highway intersecting
another major highway usually requires a rather complex intersection design. The factors
taken into consideration for the design of an intersection are listed in Table 2.1.

Table 2.1.: Intersection design considerations (Design-Manual, 2021).

Human factors

Driving habits Driver error Driver workload
Driver expectancy Driver distractions Pedestrian use and habits
Conformance to natural paths
of movement

Perception-reaction time Bicycle traffic use and habits

Visual recognition of roadway
cues

Compatibility with context
characteristics

Demand for alternative mode
choices

Traffic Considerations

Design users, modal priority
and intersection design vehi-
cles

Design and actual capacities Design-hour turning move-
ments

Variety of movements (diverg-
ing/merging/weaving/crossing)

Vehicle size and operating
characteristics

Vehicle speeds

Transit involvement Crash Experience Bicycle movements
Pedestrian movements

Physical Elements

Character and use of abutting
property

Vertical alignments at the in-
tersection

Sight distance

Angle of the intersection Conflict areas Speed-change lanes
Managed lanes (HOV, HOT,
shoulder)

Accessible facilities Parking zones

Geometric design features Traffic control devices Illumination
Roadside design features Environmental factors Crosswalks
Transit facilities Driveways Streetside design features
Adjacent at-grade rail cross-
ing

Access management treat-
ments including turn restric-
tions

Economic Factors

Cost of improvements Annual maintenance Annual operation costs
Annual life cycle costs Salvage value Energy consumption
Emissions
Effects of controlling access and right of way on abutting properties where channelization
restricts or prohibits vehicular movements

As explained later on, the methodology proposed in this thesis is based on the assumption
that certain physical elements of the road infrastructure, such as the length of the road

20 CHAPTER 2. THEORETICAL BACKGROUND

connecting an intersection to the nearby ones, the speed limit, the category of the road
(primary, secondary, etc.), as well as traffic-related elements such as the observed speed of
vehicles when crossing intersections and certain movement patterns (stopping and slowing
episodes) can be indicative of the traffic regulations that control the intersections. That is,
since intersections are designed to serve both traffic and traffic participants in a particu-
lar way (Table 2.1), their design (including the regulations by which they are controlled)
both influences and is influenced by the traffic and the movement behavior of traffic partic-
ipants. Therefore, the methodology of this thesis assumes that by exploiting infrastructure
and movement characteristics, such as those mentioned previously, extracted from open
maps and GPS traces, the traffic regulations of intersections, as attributes of the design of
intersections, can be recovered.

2.1.2. Intersection Traffic Regulations

Traffic regulations are all applicable laws concerning the use and operation of vehicles. Traf-
fic participants in Germany are subject to the government’s Road Traffic Code (Straßen-
verkehrsordnung, StVO), which is a set of road traffic rules that every participant must
adhere to. In the context of this thesis, this term refers only to a subset of traffic regula-
tions, that regulates traffic at intersections. Common types of intersection control include
uncontrolled intersection (right of way rule), yield signs, priority signs, stop signs, round-
abouts, and traffic control signals (traffic lights). The description of the intersection controls
that follows is according to the Design-Manual (2021).

Uncontrolled intersections (Figure 2.15a) do not have signaling and the right of way rule
applies. This type of intersection is usually found on local roads where the volume of inter-
secting roads is low and roughly equal, speeds are low and there is little history of accidents.

Intersections with yield control (Figure 2.3c) give priority to other intersecting roads without
requiring a stop, i.e. if there is no other vehicle to give priority, the driver does not need
to stop. This control is mainly used at three-way intersections with low traffic volumes.
The yield control is generally not recommended when pedestrians are expected. In the US
it is most commonly used in rural areas and is not recommended in urban locations. In
contrast, in Germany it is used very often and in urban locations, which is combined with
priority control (Figure 2.3d) on the other legs of the same intersection. For example, at a
T intersection, if one approach (leg) of the intersection is yield controlled (yield traffic sign),
the other two approaches are priority controlled (priority traffic sign).

Two-way stop control intersections are a common, lower cost control that requires traffic
on the minor road to stop and yield to mainline before entering the major road. Multi-way
stop control (Figure 2.3e) requires all traffic to stop before entering the intersection. It is
suitable for lower speed facilities with approximately equal volumes on all legs. Multi-way
stop control is not recommended for multi-lane routes or intersections with unbalanced di-
rectional traffic flows due to the delays and queues introduced on the major-volume legs
of the intersection. Compared to two-way stop controls, they have fewer fatal and injury
accidents. In addition, traffic delays at these locations are increased, as well as fuel con-
sumption and air pollution. In Germany it is common for stop signs to coexist with priority
signs at the same intersection, i.e., at a T-junction, one leg is controlled by a stop sign and
the other two by priority signs. In the USA, two-way stop and all-way stop controls are
more common.

2.1. INTERSECTIONS AND INTERSECTION TRAFFIC REGULATIONS 21

(a) Uncontrolled T-intersection (Four-leg inter.). (b) Roundabout.

(c) Yield controlled intersection leg (T-inter.). (d) Priority controlled intersection leg (T-inter.).

(e) All-way stop controlled intersection (Four-leg inter.). (f) Traffic signal controlled intersection (Four-leg inter.).

Figure 2.3.: Images from intersections controlled by different regulations2.

Roundabouts (Figure 2.15b) are often circular (or near-circular) at-grade intersections,
where traffic on the approaches gives priority to traffic within the circulating roadway.
Among the various advantages they have as intersection controls are fewer points of con-
flict, reduced fatal and injury crashes compared to other types of at-grade intersections,

2Image Sources: https://www.mapillary.com/app/.

https://www.mapillary.com/app/

22 CHAPTER 2. THEORETICAL BACKGROUND

reduced traffic delays, greater capacity from a two-way or multi-way stop, and aesthetic
treatments and gateways to communities.

Intersections controlled by traffic signals (traffic lights) are called signalized (Figure 2.3f).
Compared to stop controls, traffic control signals increase the capacity of the intersection
and reduce at-angle vehicle accidents. They are often used to provide priority service in
railroads, emergency responders, transit, and approaches where advance queue loops are
used. They can also be used to stop heavy traffic at intervals to allow other traffic, vehic-
ular or pedestrian, to complete its movement or enter the intersection. However, signalized
intersections require continual maintenance and engineering for optimal operation and can
be susceptible to power outages and detection failures. Also, rear-end accidents occur more
frequently at signalized intersections compared to other type of control intersections. An
additional disadvantage is that they cannot adequately balance high traffic flows with pedes-
trian demands.

2.2. Spatiotemporal Data and Movement Trajectories

This section explains some main concepts related to movement trajectories, such as the
Global Positioning System (GPS) (Paragraph 2.2.1), the sampling frequency (Paragraph
2.2.2), the GPS exchange format (Paragraph 2.2.3) and the movement patterns in spa-
tiotemporal data (Paragraph 2.2.4).

2.2.1. The Global Positioning System

GPS is a space-based radio navigation system, developed by the US Department of Defense
in the early 1970s for military purposes. Later, it was made available to civilians and is
now accessible to both military and civilians. Its main purpose is to provide continuous
positioning and timing information anywhere in the world in all weather conditions. Because
of the numerous users it serves, as well as for security reasons, GPS is an one-way (passive)
system. It is operated and maintained by the US Department of Defense.

GPS consists of a constellation of satellites3, which broadcast navigation signals and a
network of ground stations and satellite control stations used for monitoring and control.
Currently, 31 GPS satellites orbit the Earth at an altitude of about 17,700 km. The three
segments of GPS are the space segment, the control segment and the user segment and are
illustrated in Figure 2.4. Each GPS satellite transmits a signal containing two sine waves
(known as carrier frequencies), two digital codes and a navigation message. The carriers
and codes are used to determine the distance of the user’s receiver from the GPS satellites.
The navigation message contains the coordinates of the satellites (position) as a function of
time, together with other information. These signals are controlled by high-accurate atomic
clocks located on the satellites.

The control segment consists of a global network of monitoring stations and ground control
stations, with a main control station located in Colorado Springs, Colorado, US. Its main
task is to track the satellites in order to determine and predict their location, to maintain
the system integrity, to track the atomic clocks and atmospheric data, etc. This information

3According to the US Federal Aviation Administration, there are 31 satellites in the GPS constellation, 27 of which
are in use at any given time, while the rest are available as backup. https://www.faa.gov/about/office_org/
headquarters_offices/ato/service_units/techops/navservices/gnss/gps. Accessed 17.08.2022.

https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 23

Figure 2.4.: The GPS segments.

is packed and uploaded to the satellites via the S-band link (Figure 2.4). The user segments
include all users who, with a GPS receiver connected to a GPS antenna, can receive GPS
signals and therefore determine their position anywhere in the world.

The idea behind GPS is rather simple. If the distances from a point on Earth (GPS receiver)
to three GPS satellites, as well as the positions of the satellites, are known, then the 3D
position of the GPS receiver can be calculated by applying the well-known concept of position
resection. The receiver uses the time difference between the time of signal reception and the
time of transmission to calculate the distance, or range, from the receiver to the satellite. To
calculate the distances from these three signals, an atomic clock synchronized with the GPS
is required. However, by taking a measurement from a fourth satellite, the receiver avoids
the need for an atomic clock. Thus, the receiver uses four satellites to calculate latitude,
longitude, altitude and time. The basic GPS service provides users with an accuracy of
about 7.0 meters, at 95 percent of the time, anywhere on or near the earth’s surface (U.S.
Federal Aviation Administration, 2022).

GPS signals are affected by various types of random errors and bias (systematic errors),
which can be classified into those originating from the satellites (orbital errors, satellite
clock errors), at the receiver (clock errors, multipath errors, receiver noise, antenna phase
centre variations) and those caused by signal propagation (atmospheric refraction - the
GPS signal is delayed as it passes through the ionospheric and tropospheric layers of the
atmosphere). In addition, the geometric positions of GPS satellites as seen by receivers also
affect the accuracy of the estimated GPS position. The more dispersed the satellites in the
sky are, the better the accuracy obtained (El-Rabbany, 2002, p. 27).

Other satellite constellations also provide similar services. Collectively, these constellations
and their extensions are called Global Navigation Satellite Systems (GNSS). The GLONASS
satellite system is a global navigation satellite system developed and operated by Russia,

24 CHAPTER 2. THEORETICAL BACKGROUND

consisting of 24 satellites4 in orbit (22 operational) at a nominal altitude of 19,100 km.
The BeiDou navigation system is developed and operated by China. It has 35 satellites
in orbit5 including 5 satellites in geostationary orbit (GEO) and 30 non-GEO satellites.
The system has evolved from a regional system, called BeiDou-1, to a global navigation
satellite system after the last launch on 23 June 2020, offering global coverage for timing
and navigation. The Galileo global satellite is developed and operated by the European
Union (first launch in 2011) and consists of a constellation of 30 satellites (including 6 spare
satellites)6. All providers have offered free use of their respective systems to the international
community and have developed International Civil Aviation Organization (ICAO) Standards
and Recommended Practices to support the use of these constellations for aviation (U.S.
Federal Aviation Administration, 2022).

2.2.2. Sampling Frequency

Most GPS receivers calculate the position and velocity every second, i.e., one sample per
second. Depending on the application, the sampling rate can be adjusted accordingly. For
example, for a taxi tracking management application, a low sampling rate (less than 1 Hz)
may be sufficient for the tracking task and efficient in terms of storage/network demands.
Andersen and Torp (2017), investigating the effects of sampling rate on trajectory paths
and travel time on the road network, found that GPS data collected every sixty seconds is
inaccurate to use for calculating travel times and that trajectory-based map matching works
best if the sampling period is twenty seconds or less.

The sampling period T is defined as the time difference between two consecutive GPS
samples (T = ti − ti−1). However, if for any reason there is a temporal gap between two
consecutive positions, i.e. ti− ti−1 > T , it means that sampling has been interrupted. Such
a gap in the track is called a hole (Parent et al., 2013). Nevertheless, if the gap was caused
intentionally (e.g., an employee stops her GPS when she goes to lunch), then the temporal
gap is called semantic gap. Holes can generally be recovered using interpolation techniques,
while semantic gaps should not be recovered, as they are intentionally omitted (Parent et al.,
2013). A common reason for interrupted sampling (holes) is when not enough signals are
received from the satellites (GPS signal loss). Many GPS devices ideally need to receive
signals from at least seven to eight satellites to calculate their position to an accuracy of
about 10 meters. With fewer satellites, uncertainty and inaccuracy increase, and with fewer
than four satellites, many receivers have difficulty producing reliable position estimates and
report that the GPS signal has been lost.

Figure 2.5 illustrates two trajectories (blue and orange) of two moving objects that traversed
the same movement path and their position was sampled at different sampling periods. Each
dot represents the position of a moving object in space at a particular time. By connecting
the successive positions (in time order), we obtain the trajectories. The blue trajectory
represents the path traveled, where the position (blue dots) is sampled every T time units,
while the orange trajectory is sampled every 3T time units. The orange trajectory can
be seen as the result of down sampling (or undersampling) the recorded (blue) locations,
obtaining a less informative representation of the path. Intermediate locations lost due to

4Source: https://gssc.esa.int/navipedia/index.php/GLONASS_General_Introduction. Accessed 17.08.2022.
5Source:https://gssc.esa.int/navipedia/index.php/BeiDou_Space_Segment. Accessed 17.08.2022.
6Source:https://gssc.esa.int/navipedia/index.php/Galileo_Architecture Accessed 17.08.2022.

https://gssc.esa.int/navipedia/index.php/GLONASS_General_Introduction
https://gssc.esa.int/navipedia/index.php/BeiDou_Space_Segment
https://gssc.esa.int/navipedia/index.php/Galileo_Architecture

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 25

Figure 2.5.: Two trajectories that represent the same traveled path, sampled with different sampling periods
(blue with T period and orange with 3T period).

undersampling (e.g., locations at t2, t3, t5, t6, t8, t9) cannot be recovered and are therefore
not expressed in the orange trajectory. Formally a trajectory can be defined as following:

Definition 1. (Trajectory sample) A trajectory sample is a list of space-time points

{p0 = (x0, y0, t0), p1 = (x1, y1, t1), ..., pN = (xN , yN , tN)},

where space points are indicated as xi yi ∈ R, ti ∈ R+, for i = 0, 1, ..., N, and time
instances as t0 < t1 < t2 < ... < tN . ■

Open GPS trajectory datasets contain data sampled at various sampling rates. The Geolife
dataset (Zheng et al., 2011) contains 17,621 trajectories from different modes of travel
(car, bus, walking, subway, bike and train) recorded by different GPS loggers and GPS-
phones with different sampling rates. 91% of the trajectories are recorded in a relatively
dense representation, i.e., every 1-5 seconds or every 5-10 meters per point. The one month
Beijing taxi GPS trajectory dataset (Lian and Zhang, 2018) recorded in May 2009 contains
129 million data samples, with 75% of the data sampled in one-minute intervals.

2.2.3. The GPS Exchange Format: GPX

The GPS Exchange Format, GPX, is a lightweight XML data format used to exchange GPS
data between GPS receivers, desktop and mobile software and web-based services on the
Internet, with a growing list of programs for Windows, MacOS, Linux, Palm, and PocketPC.
Although simple, it is powerful enough to describe complex geographic objects. It can store
three types of data: waypoints, tracks, and routes (Figure 2.6).

A waypoint (complex type: wptType) is a single point consisting of the WGS 84 (GPS)
coordinates of a point and possibly other descriptive information. It represents a waypoint,
a point of interest or a named feature on a map. A route (complex type: rteType) is
an ordered list of waypoints (routpoints) representing a series of turnpoints leading to a
destination. In a very simple GPS navigation device, this might be a straight line from
the starting point to the destination. In a modern device, it is the route leading from the
starting point to the destination. In a route, waypoints ensure that a particular route is
followed. However, waypoints can allow GPS navigators to adjust the route in the event
of a detour, meaning that if the user misses a waypoint, the navigator will recalculate the
route and either direct the user to the next waypoint from the one missed or add another
waypoint if necessary to reach the destination. A track (complex type type: trkType) is an

26 CHAPTER 2. THEORETICAL BACKGROUND

ordered list of points describing a path. A track consists of a sufficient number of points
(trackpoints) to accurately represent each bend of a path. Compared to routes, tracks are
much more detailed representations of paths and also work differently in that they are an
accurate record of the path taken, and therefore, although they can be navigated, they do
not allow the GPS navigator to recalculate a route.

Technically, since GPX is based on XML, it inherits all the advantages of XML. XML is
an open standard, with a rapidly growing base of developers and tool providers. GPX
defines a common set of data tags for describing GPS and geographic data in XML (Figure
2.7) allowing developers to define their own private objects and attributes. GPX files can
be converted to other file formats, such as .KML, .KMZ (Google Earth), .CSV (Microsoft
Excel), GEOJSON and .shp, using a simple web page or conversion program. A list of
software applications and websites that support the GPX format can be found on the official
GPX website (topografix.com, 2022).

Figure 2.6.: Type of GPS data that can be stored in a GPX file: waypoints, routes and tracks.

Figure 2.7.: A sample of the content of a GPX file, containing a track consisted of two trackpoints, with
sampling period of 1 second.

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 27

2.2.4. Movement Patterns in Spatiotemporal Data

Spatiotemporal data is any information related to space and time (Gudmundsson et al.,
2008). In this context, the representation of temporal sequences of spatiotemporal posi-
tions, i.e., pairs of time-position of a moving object7 is called trajectory. Depending on the
recording device, additional data, such as velocity and direction, may be attached to each
time-position pair. Here we adopt the definition of Giannotti et al. (2007) for the trajectory.

Definition 2. (ST-sequence) A spatio-temporal sequence (ST-sequence) or trajectory is a
sequence of triplets S = ⟨(x0,y0,t0),...(xk,yk,tk)⟩, where ti with i ∈ N0, is a timestamp,
∀k : 0 ≤ i ≤ k, ti < ti+1 and (xi,yi) are points in R2. ■

Movement patterns are concise descriptions of frequent behaviors, both in terms of space
(i.e., locations visited by a moving object) and time (i.e., the duration of the movement
behavior). A movement pattern can be any frequent behavior that can be modeled as any
arrangement of sub-trajectories and can be defined and formalized sufficiently, so that it
can eventually be recognized by an algorithm, as only formalized patterns are detectable by
algorithms (Gudmundsson et al., 2008). For example, suppose we want to define a pattern
that represents a set of individual trajectories that share the property of visiting the same
sequence of locations with similar travel times. Such a pattern could be used in a touristic
scenario, as it could reveal sequences of places visited by tourists, and hence could be used
to suggest personalized services (transport ticket offers, food vouchers, etc.). Such a pattern
can be defined as follows (Giannotti et al., 2007):

Definition 3. (T-pattern) A trajectory pattern or T-pattern, is a pair (S,A), where S =
⟨(x0,y0),...,(xk,yk)⟩ is a sequence of points in R2, and A = ⟨α1,...,αk⟩ ∈ Rk

+ is the (temporal)

annotation of the sequence. T-patterns can also be represented as (S,A) = (x0,y0)
α1−→

(x1,y1)
α2−→ ...

αk−→ (xk,yk). ■

In this particular example of a trajectory pattern, the occurrence of a T-pattern occurs when
both the spatial positions and transition times of the pattern correspond to those found in
an input sequence (trajectory) being searched for a T-pattern match.

The common element of the trajectories that make up a pattern is a set of distinguishing
characteristics that form a concise description of the set of trajectories. These summary
descriptions are called patterns or behaviors by Laube (2009). For trajectory behavior, we
adopt the definition of Parent et al. (2013).

Definition 4. (Trajectory behaviour) A trajectory behaviour (behaviour, for short) is a
set of characteristics that specifies a peculiar bearing of a moving object or set of moving
objects. When this set of characteristics is observed on an individual trajectory, it is called
individual trajectory behaviour. Otherwise, when the behaviour applies to a non-empty set
of trajectories it is called collective trajectory behaviour. ■

Recalling the tourist scenario mentioned earlier, a tourist behavior can be a daily trajectory
that exhibits this behavior if: its starting point P1 is a place of the “accommodation” type
(e.g., a hotel), it makes at least one stop at a place of the “museum” or “tourist attraction”
type, it makes one stop at a place of the “food” type, and its ending point is in the same
place as the starting point P1. The set of characteristics that determines tourist behaviour

7A moving object is also called entity.

28 CHAPTER 2. THEORETICAL BACKGROUND

is the “type of places”, associated with the starting point, the ending point and the stops
of the trajectory, and possibly the order in which tourists visit them.

Therefore, movement patterns in spatiotemporal data refer to (usually salient) events and
episodes represented in a set of trajectories, as expressed by a set of moving objects. Accord-
ing to this definition, a pattern can be seen as an aggregate representation or abstraction of
many individual trajectories of moving objects from an observed population of the latter.
It should be noted that the individual trajectories that “participate” in a pattern do not
necessarily express movements that take place at the same period of time (in the same place
and time).

Figure 2.8.: Four movement patterns identified in the spatiotemporal data (trajectories) of four moving
objects: interesting location, meeting point, moving clusters (flock) and periodic behaviour.

Figure 2.8 illustrates four different movement patterns in the trajectories of four entities. An
interesting location (Comito et al., 2016), also known as movement attractor or Region of
Interest (RoI) (Giannotti et al., 2007) or significant location (Niu et al., 2021) is defined as
the pattern of a single object (in this example) or that observed in several objects remaining
in a particular location for a given period of time. A RoI represents a natural way of
partitioning space into meaningful regions and then using them to associate trajectories of
moving objects within them. An example of a RoI can be a shopping mall (of interest to
many entities) or an entity’s residence (of interest to a particular individual). A meeting
point is a location where moving objects are present at the same time period. When a

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 29

spatiotemporal pattern repeats with some periodicity, it is called periodic, e.g., the journey
from home to work every weekday morning. A cluster of entities moving simultaneously is
called flock. Ignoring the time of movement development of the three entities in the example
of flock shown in Figure 2.8, such a spatial coexistence is usually referred as a cluster of
trajectories. From these examples it is clear that a movement pattern usually involves a
certain number of entities and trajectories, may start and end at certain times (temporal
footprint) and/or be confined to a certain space (spatial footprint) (Gudmundsson et al.,
2008). However, patterns can also be seen as repetitive movements, observed in the motion
of individual moving objects without necessarily being associated with a specific location or
(unique) behaviour (e.g., an episode of deceleration of a moving object).

The practicality of detecting movement patterns can be demonstrated through the various
applications that can use them. In the context of traffic management, an example of a
traffic pattern is the traffic jams at major city intersections during rush hours or driving
at low speed at places where traffic calming devices are installed. In the context of animal
behaviour or ecology, movement patterns may be the different phases of the annual cycle
of migratory animals or the sequential use of habitats by other animals (De Groeve et al.,
2016). In a surveillance or public safety scenario, where human movements are monitored by
cameras, normal movement patterns and suspicious (abnormal) behaviours can be identified
(Makris and Ellis, 2005), to prevent crime. In a military scenario, moving object databases
allow for the dynamic updating of the location of soldiers and military vehicles and can
identify complex movement patterns, such as the current convergence area where the enemy
is massing his troops. Finally, in professional sports, such as football or tennis, coaching
teams analyse the movement behaviour of their own and the opposing team (sports scene
analysis) to identify patterns such as player-ball interactions and strategies (Feuerhake,
2016). The next paragraph presents the main techniques for spatiotemporal data mining.

2.2.5. Spatiotemporal Data Mining

From the above examples of movement patterns it is clear that the possibilities for defin-
ing movement patterns are numerous. For this reason there are numerous data mining
algorithms for discovering new, non-trivial but potentially useful patterns in (large-scale)
spatiotemporal data. According to a recent survey on spatiotemporal data mining techniques
(Sharma et al., 2022), there are six major families of patterns, and therefore equal categories
of data mining: 1. spatiotemporal outliers and anomalies, 2. spatiotemporal couplings and
tele-couplings, 3. spatiotemporal prediction, 4. spatiotemporal partitioning and summariza-
tion, 5. spatiotemporal hotspots, and 6. spatiotemporal change. Outliers are observations
that appear to deviate from the expected or collective behavior that is in the spatial domain
joined to an exact position (x,y) or a location type, e.g. road bump. A spatial outlier is a
spatially referenced object whose spatial or non-spatial attribute value differs significantly
from other spatially referenced objects observed in the same spatial neighborhood. For ex-
ample, in a surveillance scenario of a public space, a deviation from the common pedestrian
path that individuals typically walk on may raise an alarm about possible illegal activities
in the environment (e.g., building intrusion). The detection of spatial time series outliers
is usually based on visualization approaches such as variograms and Moran scatter plots or
based on capturing exceptional cases that deviate substantially from the majority of pat-
terns (clusters). When searching for patterns in Big Data, parallel computing techniques,
such as tile processing, are used to efficiently manage the computational load (multiple

30 CHAPTER 2. THEORETICAL BACKGROUND

tiles are processed simultaneously using multi-threading). Techniques for detecting outliers
in trajectories include summarization of patterns (Lam, 2016), common subsequences (He
et al., 2022) and trajectory scores (Abreu et al., 2021), among others. For example, in
the latter work, a visual analytics tool that uses spatial segmentation, divides trips into
subtrajectories and score them. These scores are displayed in a tabular visualization where
users can rank trips by segment to find local anomalies. The amount of interpolation in
subtrajectories is displayed together with scores so that users can use both their insight and
the trip displayed on the map to determine if the score is reliable.

Instances that occur close in space and time are called spatiotemporal coupling patterns.
When these patterns are unordered they are called co-occurrences, when they are partially
ordered they are called cascading patterns, and when they are ordered they are called se-
quential patterns. An example of a partially ordered cascading pattern is the finding that
bar closings lead to drunk driving and assault. Tele-coupling patterns identify a significant
positive or negative correlation in a spatial time series. Common techniques for extracting
co-occurrences include a-priori-based methods and mixed-drove co-occurrence pattern find-
ing (Andrzejewski and Boinski, 2021), for sequence patterns include spatial participation
sequence indices (Maciag et al., 2019) and probabilistic approaches and for tele-coupling pat-
terns include spatial autocorrelation and statistical significance techniques (Kawale et al.,
2012).

Spatiotemporal predictions predict a target variable from a set of forecast-dependent vari-
ables. The predicted variable can be continuous or discrete and either spatiotemporal re-
gression (Harris et al., 2017) or classification (Yuan and Li, 2021) can be used for predicting
it.

Spatiotemporal partitioning or clustering is the process of clustering similar spatiotemporal
data and thus partitioning the underlying space and time. For example, crime data, which is
spatial and temporal in nature, can be partitioned to help law enforcement agencies identify
crime trends and effectively deploy their police resources. Spatiotemporal summarization pro-
vides a compact representation of spatiotemporal data. For example, road accident events
can be summarized into major routes covering most accidents. Spatiotemporal summariza-
tion is often done after or along with the spatiotemporal partitioning, so that the objects
in each partition can be summarized with aggregate statistics or representative measures
(Shekhar et al., 2015). Common approaches for spatiotemporal partitioning of events are
density-based methods such as DBSCAN (Ester et al., 1996) and ST-DBSCAN (Birant and
Kut, 2007), hierarchical methods such as BIRCH (Zhang et al., 1997), and graph-based
approaches such as GB-SPM (Wang et al., 2022). Clustering algorithms for trajectories
include direct, agglomerative, divisive, hybrid, graph and spectral methods that can be ap-
plied using various distance measures (to quantify trajectory similarities) such as dynamic
time warping (DTW) and longest common subsequence (LCSS) (Morris and Trivedi, 2009).
DTW compare unequal length trajectories by finding a time warping that minimizes the
total distance between matching points. LCSS is more robust to noise and outliers than
DTW because not all points need to be matched, as instead of a one-to-one matching be-
tween points, a point with no good match can be ignored to prevent unfair biasing.

Spatial hotspots are areas or regions where the concentration of geolocated objects within
an area is significantly higher than outside that area. Spatiotemporal hotspots are high-
density clustering patterns where the number of objects is unexpectedly higher than other
observations within a given time interval. Common approaches for hotspot analysis are

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 31

Figure 2.9.: The process of spatiotemporal data mining (Sharma et al., 2022).

ensemble-based approaches such as Random Forest and Naive Bayes, J48 and decision trees,
as well as Fuzzy C-Mean and DBSCAN (Butt et al., 2020). The visualization of hotspots
is usually based on estimating the densities of the detected clusters. For example, kernel
density estimation (KDE) (Kalinic and Jukka, 2018) or spatiotemporal network kernel den-
sity estimation (STNKDE)(Romano and Jiang, 2017) provide visualization of the temporal
dynamics of hotspots in the network space and can be used for traffic accident detection.

A spatiotemporal change is defined as a change in the statistical distribution of the data,
assuming that the data follow a certain distribution. Such an example might be a change in
landscape and its temporal dynamics, in order to assess how changes in residential patterns
relate to patterns of urban development (Weng, 2007). Depending on the representation of
the input data (raster or vector), different approaches are used to detect spatiotemporal
changes (Mou et al., 2019; Hong and Vatsavai, 2016).

Although data mining algorithms are an important element in the pattern extraction pro-
cess, there are additional important elements involved in the chain of the process that
transforms raw input data into knowledge (patterns). A general framework of the spa-
tiotemporal data mining process (Sharma et al., 2022) is illustrated in Figure 2.9. The
first step of the process is the pre-processing of the often imperfect raw data. Common
interventions in this step include data cleaning (cleaning noisy data and errors), data in-
tegration when combining data from multiple sources, data selection, data transformation
(converting data into a format compatible with the input of data-mining algorithms), and
data reduction (e.g., trajectory compression). In this phase, exploratory analysis is often
applied using statistical and graphical visualizations (e.g., charts), where anomalies can be
discovered and assumptions about the data can be tested. The data are then entered into
the data mining algorithm. The output of this step is the discovered patterns, which are
explored, evaluated and interpreted by domain experts. If necessary, a refinement process
is applied before knowledge is presented (knowledge presentation: the extracted patterns
exported in the output).

A data mining framework that explicitly addresses trajectory data is depicted in Fig-
ure 2.10 (Alvares et al., 2009). Here the trajectory cleaning process, in addition to noise
elimination, may include further checks: i) the computed velocity between two consecutive
GPS points must not be greater than a specified threshold, ii) the points in the trajectory
must be in time order, iii) each GPS point must have a different timestamp, iv) each trajec-
tory must have more than a minimum number of points (Alvares et al., 2009). Trajectory
data, depending on the application and the requirements of the data mining algorithm,
are often compressed (Muckell et al., 2014; Yin et al., 2022) for efficient data transmission,
storage and retrieval. The key issue in trajectory compression is how to achieve line simplifi-
cation with low time cost but acceptable loss of accuracy. Finally, matching GPS trajectories
(Quddus et al., 2007) with a map (map-matching) often leads to more accurate trajectories

32 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.10.: The framework for semantic trajectory mining (Alvares et al., 2009).

and therefore can also be applied in the data preparation stage. For many applications, use-
ful patterns cannot be extracted directly from GPS points and the underlying geographic
information must also be taken into account. This information is called semantics. The
data transformation aims at the same deliverable as the corresponding step in the general
data mining framework discussed earlier. After data preparation, the data can be fed into a
data mining tool, such as Weka or RapidMiner, where spatiotemporal patterns are detected
and extracted to the output. The next Section 2.2.6 explains the concept of semantics in
the context of trajectories.

2.2.6. Semantic Enrichment of Trajectories

Raw trajectories can be used by location-based applications when only the location of a
moving object is sufficient for the purpose of the application. For example, an application
may want to know “where was user A on 24.05.2021 at 07:00 am?”. If the location de-
scribed by the coordinates 52.383230, 9.693767 is sufficient for what the application wants
to calculate, estimate, or infer further, then the trajectories need no further transformation.
However, there are applications that aim to richer knowledge about the movement and in
addition to the raw trajectories they need additional information related or associated with
them. In the previous example, if an application needed to know if user A was at work on
24.05.2021 at 07:00 am, only the coordinates would not be enough to answer the question.
In this case, the user’s workplace (Figure 2.11) would somehow have to be geographically
defined and annotated as such, so that given the user’s location on that date and time, it
could estimate whether or not user A was at her workplace or not. When contextual data
is combined with GPS traces, the enriched traces are referred to as semantic trajectories.
As contextual data can be any data related to the context of the application, e.g., points of

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 33

Figure 2.11.: Enriching trajectories with semantic information based on stop and move detections.

interest such as shops, bus stations, museums or street names etc. The process of adding
(attaching) knowledge to raw trajectories is known as semantic enrichment. In the follow-
ing, the definition of semantic trajectories is given, as adopted by Parent et al. (2013).

Definition 5. (Semantic trajectory) A semantic trajectory is a trajectory that has been
enriched with annotations and/or one or several complementary segmentations. It is defined
as a tuple:

(trajectoryID, movingObjectID, trajectoryAnnotations,
trace : LISTOFposition (instant, point, positionAnnotations),
semanticGaps : LISTOF gap(t gap start, t gap end),
segmentations : SETOF segmentation (segmetationID,
episodes : LISTOF episode(t start, t end, definingAnnotation, episodeAnnotations)))
■

Each episode, e.g., a stop at a shopping place, according to the above definition is defined by
its start time (t start) and end time (t end) and the value of the annotation of the segmen-
tation criterion that applies to this episode (definingAnnotation). For example, a criterion
to characterize a position as Home can be that the moving person remains in that location
during the night. Episodes can also have additional annotations (episodeAnnotations). A
stop episode can include in its annotation list the nearest point of interest found on the
map. Episodes may be areas and road intersections through which trajectories pass, means
of transport that are used for the movement, category of a region, etc. Because very of-
ten episodes in the trajectory of a moving object are associated with the interruption of
movement for a period of time, stopping episodes are of particular interest for enriching
trajectories with semantics. The aforementioned definition allows the representation of tra-
jectories as sequences of stops and movements, where each point of the trajectory belongs
to either a stop or a move. Figure 2.11 depicts a GPS track with four semantic locations
associated with it, each corresponding to a stop (GPS point clusters). The trajectory in this
case can be represented as a sequence of four stops and three moves with the corresponding
time period associated with each stopping and moving episode. At a higher semantic level,
where each stop represents a specific semantic category (home, work, shop, and cinema)
the trajectory can be described as a sequence of stops in semantic locations. With such
representations, complex patterns can be identified, such as common sequences of locations
visited during weekdays/weekends. In the next Section 2.2.7, we describe the CB-SMoT
algorithm that detects stops in trajectories. It also explains why it makes sense to associate

34 CHAPTER 2. THEORETICAL BACKGROUND

stopping episodes with trajectories and intersections crossed by the former, in the context
of traffic regulation recognition from GPS data.

2.2.7. Detecting Stop and Moves: the CB-SMoT Algorithm

In light of semantic trajectories and the need to identify complex movement patterns, the
research work on extracting stops from trajectories is quite rich. The early work of Ashbrook
and Starner (2003) proposes a variant of the K-means clustering algorithm, where clusters
(locations) of points are identified incrementally, starting from a point place and examining
points within a certain radius of the place point. A location is defined as “any recorded
GPS coordinate with a time interval t between it and the previous point”. Other simple
approaches are based on zero velocity of the moving object, however GPS signal errors can
lead to velocity estimates that are often above zero, even though the object is stationary.

Alvares et al. (2007) detect stopping episodes within predefined regions where moving ob-
jects remain for at least a minimum amount of time. Zimmermann et al. (2009) address
the same problem in error-prone trajectories where some parts of them represent move-
ments that did not actually occur (e.g., the vehicle was stopped but due to GPS error or
device inefficiency, that part of the trajectory is represented as moving) using an interactive
density-based clustering algorithm, where the density is defined by spatial and temporal
criteria and the user can adjust the parameters of the algorithm in an interactive way using
a visualization tool. Rocha et al. (2010) consider the problem of identifying interesting lo-
cations in ocean fishing vessel trajectories with a rather low sampling rate (one sample per
thirty minutes), taking into account the change of direction as the main aspect. Finally,
the clustering method proposed by Xiang et al. (2016) considers the spatial and temporal
proximity between successive points (point sequence) within trajectories, based not on the
speed of each point, but on the speed of the sequence.

The latter algorithm is methodologically very close to the Clustering Based Stops and Moves
of Trajectories (CB-SMoT) detection algorithm (Palma et al., 2008). CB-SMoT is presented
in detail below, as this thesis proposes a modification of it (Section 4.3.1) for detecting
short-duration stopping and decelerating events on individual trajectories, which are then
used as classification features in the context of the traffic regulation recognition problem.
CB-SMoT can be seen as a variant of the well-known density-based DBSCAN (Ester et al.,
1996) clustering algorithm, where not only the spatial distance between points but also
their temporal proximity is taken into account. More specifically, CB-SMoT modifies the
following aspects of the DBSCAN algorithm: (i) instead of searching for a minimum number
of points within the neighbourhood, points are clustered based on a minimum temporal
distance criterion; and (ii) the definition of a point’s neighbourhood is adapted to take into
account further temporal constraints between points (cf. Definition 9). In the following, we
present all definitions involved in CB-SMoT, as given in the original paper (Palma et al.,
2008), as well as the algorithm itself.

Stops represent important positions within the trajectory where the moving object remains
for at least a minimum amount of time. Important locations, as areas with a defined ge-
ometry, are defined taking into account the context of the application used and correspond
to different types of spatial features defined in a geographical database. For each relevant
spatial feature type, a minimum time interval is defined so that a trajectory must contin-
uously intersect the area of that feature type to be considered a stop. A particular spatial
area that is crossed by a minimum time from a trajectory, is called a candidate stop.

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 35

Definition 6. (Candidate Stop) A candidate stop C is a tuple (Rc, ∆c), where Rc is a
topologically closed polygon in R2 and ∆c is a strictly positive real number. The set Rc is
called geometry of the candidate stop and ∆c is called its minimum duration. The candidate
stops are dependent of specific applications. A (predefined) location-based application A is
a finite set

A : {C1 = (Rc1 , ∆c1), C2 = (Rc2 , ∆c2), ... , CN = (RcN , ∆cN)}

of candidate stops with non-overlapping geometries Rc1 , Rc2 , ..., RcN . ■

Definition 7. (Stop) A stop episode8 of a trajectory T with respect to an application A is a
tuple (Rk, tj, tj+n), such that a maximal subtrajectory of T :

{(xi, yi, ti) | (xi, yi) intersects Rk} = {(xj, yj, tj), (xj+1, yj+1, tj+1), ..., (xj+n, yj+n, tj+n},

where Rk is the geometry of Ck ∈ A and |tj+n − tj| ≥ ∆k, k ∈ {c1,c2,...,cN} and n > j. ■

Definition 8. (Move) A move of a trajectory T with respect to an application A is:

i a maximal contiguous subtrajectory of T in between two temporally consecutive stops
of T ; or

ii a maximal contiguous subtrajectory of T in between the starting point of T and the
first stop of T ; or

iii a maximal contiguous subtrajectory of T in between the last stop of T and the last
point of T ; or

iv the trajectory T itself, if T has no stops.

■

Therefore, any point on a trajectory that is not part of a stopping episode is a movement. A
motion has no minimum duration, and may or may not intersect a candidate stop. If it does,
the intersection interval must be less than the minimum duration of the stop candidate. It
should be noted that the minimum stop duration shall be determined taking into account
the sampling period of the trajectory points to ensure that there are enough points to
characterise a stop.

Definition 9. (Eps-linear-neighborhood) Let {p0, p1, ..., pk, pk+1, ... ,pN} be a trajectory,
where p = (x, y, t) represents a point of the sequence of the points of the trajectory. The
Eps linear neighborhood of a point pk, denoted by LNEps(pk), is the maximal set of points
pi, such that:

(
k−1∑
i=m

dist(pi,pi+1)) ≤ Eps ∪ (
n∑

i=k+1

dist(pi−1, pi))) ≤ Eps, with t0 ≤ tm < tk < tn ≤ tN

8The term episode in the definition is an insertion by the author of the thesis and has been adopted to differentiate
stops referring to episodes within a single trajectory from significant locations which are also called stops and
refer to places of global interest, i.e., places where many trajectories stop.

36 CHAPTER 2. THEORETICAL BACKGROUND

Eps is a positive number representing the maximum distance between a point p and its
neighbours in the trajectory. Instead of considering a minimum number of points to define
a region as dense (cluster), the minimum dwell (stay) time in a region is used. ■

Definition 10. (Core point) A point p = (xp, yp, tp) of a trajectory is called core point
with respect to Eps and MinTime if |tn − tm| ≥ MinTime, where n is the last point of
LNEps(p), and m is the first one (the neighborhood is a time-ordered point sequence). ■

An important observation here is that the core point implies a maximum velocity constraint.
The ratio Eps

MinT ime
gives the maximum average velocity of the corresponding linear neighbor-

hood. Increasing of the parameter MinTime, the relative velocity decreases. Besides, using
time constraint instead of number of points eliminates the influence of problems related to
the limited number of points due to device or signal failure during sampling or the sampling
rate itself.

Definition 11. (Directly density-reachable) A point q is directly density-reachable to a point
p, if q ∈ LNEps(p) and p is a core point with respect to Eps and MinTime. ■

Definition 12. (Density-reachable) A point q0 is density-reachable from a point p with
respect to Eps and MinTime, if there exists a chain q0, q1 q2, ... qN where qN = p and qk is
directly density-reachable to qk+1. ■

Definition 13. (Density-connected) Two points p and q are density-connected with respect
to Eps and MinTime, if there exists a point o and both p and q are density-reachable
from o. A non-core point can be density-connected to another non-core point if both have
a common core point. ■

Definition 14. (Trajectory cluster) A trajectory cluster G of a trajectory T with respect
to Eps and MinTime is a non-empty subtrajectory of T formed by a set of contiguous
time-space points such that:

1. ∀p, q ∈ T : if p ∈ G and q is density-reachable from p with respect to Eps and
MinTime, then q ∈ G.

2. ∀p, q ∈ G: p is density-connected to q with respect to Eps and MinTime.

■

The CB-SMoT algorithm (Algorithm 1) is a two-step algorithm that takes as input a single
trajectory and two parameters, Eps (see Definition 9) and MinTime (see Definition 10).
In the first step, stop episodes are identified on the trajectory (Figure 2.12). In the second
step, the algorithm determines where these stop episodes (clusters) are located, taking into
account the application context A of the trajectory as defined by the list of candidate stops
(see Definition 6). The algorithm at this stage checks if the cluster intersects for at least
MinTime one of the candidate stops. If not, the detected stop episode is considered as an
interesting place and is added to the list of unknown stops. An example of detected unknown
stop locations as well as of stop episodes detected in known stop locations (candidate stops)
is illustrated in Figure 2.13. Each unknown stop receives an identifier, and if two or more
unknown stops intersect, as in Figure 2.12, they receive the same identifier.

Definition 15. (Unknown Stop) An unknown stop of a trajectory T with respect to an
application A, Eps, and MinTime, is a cluster Gk of T which does not intersect an Rj of
A for at least ∆j , where Cj = (Rj, ∆j) is a candidate stop. ■

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 37

Figure 2.12.: Two trajectories T1 and T2 with stop episodes S1 and S2 on the same location (blue).

Figure 2.13.: A single trajectory with starting point p1 and ending point pn. The region which the trajectory
is observed on, includes four candidate stops C1, C2, C3, C4 (marked in blue), at two of which the moving
object stops (S3 stops at C2 and S4 at C3). CB-SMoT can also detect unknown stopping locations, such as
S1 and S2 (marked in pink). Although C1 is crossed by the trajectory, no stopping episode is detected at it,
as the requirement for staying more that ∆c1 is not met.

38 CHAPTER 2. THEORETICAL BACKGROUND

Algorithm 1: The CB-SMoT algorithm: clustering-based stop and move detection of
trajectories.

Data:
T : a GPS trajectory
A : application
Eps (param) : linear point neighborhood distance
MinTime(param) : minimum time for clustering
Result: CB-SMoT identifies clusters of consecutive points within a trajectory that

remain at least MinTime within a linear neighborhood, defined by the
parameter Eps.

Returns: for each cluster with cluster id, the sequence of points of the cluster SeqPoints,
the point representative RepCluster of the cluster and the duration Dur of the detected
event

1 Initialize clusters to an empty list
2 Initialize all points of T as unprocessed
3 // Step 1: stop (clusters) detection
4 foreach unprocessed point p of T do
5 // find the neighbors of p
6 neighbor list = linear neighborhood(p, Eps)
7 if p is a core point wrt Eps, minTime then
8 for each neighbor n in neighbor list do
9 N neighbor list = linear neighborhood(n, Eps)

10 neighbor list = neighbor list ∪ N neighbor list

11 end for
12 add neighbor list as cluster with cluster id in Clusters
13 set all points in neighbor list as processed

14 end if

15 end foreach
16 // Step 2: identify if a stop episode intersect a known location (candidate stop) or
17 // recognise it as a unknown stop location
18 foreach cluster in Clusters and each C : (Rc,∆C) in A do
19 if cluster intersects Rc for time interval t ≥ ∆C then
20 generate a stop in Stop list
21 end if
22 else
23 generate a unknown stop in Stop list
24 end if

25 end foreach
26 for each subtrajectory which is not a stop (not in clusters) do
27 generate a move in Move list
28 end for
29 return Stop list, Move list

2.2. SPATIOTEMPORAL DATA AND MOVEMENT TRAJECTORIES 39

Figure 2.14.: Hotspots where the speed of vehicles is less than 10 kmh (red color). In blue are depicted the
trajectory samples.

For the scope of this thesis as explained later in Paragraph 4.3.1, the CB-SMoT algorithm
will be modified for detecting stop and deceleration episodes in single trajectories, being
motivated by the following observation. Figure 2.14 shows the hotspots, detected using the
open source geographic information system QGIS, where the speed of vehicles is less than
10 kmh. It is clear that the locations where such low-speed incidents are observed are near
intersections and this further motivates the idea of using such detections for the recognition
of the traffic controls of intersections. In addition, Figure 2.15 depicts the speed profiles
of a vehicle approaching an intersection regulated by a traffic signal. From 60 m to 21 m
measured from the centre of the intersection (left graph), the speed increases continuously
from 5 kmh to 38 kmh and remains just above 35 kmh until it crosses the centre of the
intersection. The right graph shows the trajectory speed of the same vehicle in the last 20
s before crossing the intersection (the center of the intersection is at 0 s). Here we see that
the vehicle decreases its speed while approaching the intersection until it almost stops 9 s
before the center of the intersection. It then begins to accelerate similar to the left diagram.

(a) (b)

Figure 2.15.: Speed profile of a vehicle before crossing a traffic light controlled intersection. Both graphs
correspond to the same vehicle trajectory. (a) shows the speed of the last 60 meters, while (b) shows the
speed of the last 20 seconds, both measured from the centre of the intersection.

40 CHAPTER 2. THEORETICAL BACKGROUND

From these graphs (speed profiles) it is clear that low speed episodes, which can be either
stopping or deceleration episodes can characterize locations such as intersections, and there-
fore can be useful for the scope of detecting their control type (regulation category). Sec-
tion 2.3 presents the machine learning algorithms used to implement the proposed method-
ologies of this thesis.

2.3. Machine Learning

In this section, we explain some basic concepts of machine learning. First, the learning
types of machine learning are clarified in Subsection 2.3.1. Subsection 2.3.2 deals with
supervised learning methods and describes two classification methods, Random Forest and
Gradient Boost. Subsection 2.3.3 is concerned with unsupervised learning and describes
two well-known clustering techniques, K-means and DBSCAN. Subsection 2.3.4 discusses
two semi-supervised methods, self-training and cluster-then-label, that address the problem
of label sparsity. Subsection 2.3.5 explains the concept of active-learning, which focuses on
how to select training data so that better learning, in terms of classification performance, is
achieved with less training data. Subsection 2.3.6 explains how learning can be implemented
in an incremental manner, where learning models process one observation (or a mini-batch)
at a time, as opposed to batch learning, where models are learned by processing all the data
at once.

2.3.1. Machine Learning and Types of Learning

The field of machine learning is concerned with the question of how computer programs can
learn a learning task and automatically improve with experience. Mitchell (1997) defines the
learning broadly, to include any computer program that improves its performance at some
task through experience. More precisely:

Definition 16. (Learning) A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E. ■

For example, a computer program that learns to play chess might improve its performance,
as measured by its ability to win in the set of tasks that involve playing chess games, through
the experience gained by playing games against itself or other opponents.

The process of solving a practical problem with machine learning generally involves five
steps (Zheng and Casari, 2018, p. 4), which are illustrated in Figure 2.16. First, the goal(s)
must be clarified, in terms of what a computer program must learn to do, given a set of
input data. In the second step, the data required for the learning task is collected and then
processed to have a format compatible with that which the computer program accepts as
input. In the third step, called feature engineering, the raw data is converted into features
(variables). Features represent measurable pieces of data, and finding the right features
is crucial for the learning capability that the computer program will obtain in the next
steps (e.g., how accurate predictions it can make). Creating features from raw data or
identifying them from raw data often requires some domain knowledge expertise for the
problem of study. During feature engineering, data that are not useful for the particular
learning task are eliminated, missing values are predicted, data from different sources are
integrated, and outliers or anomalies in the data are excluded from the input dataset and

2.3. MACHINE LEARNING 41

ultimately are not desirable to be learned by the algorithms. Clearly, this whole process
requires some kind of data analysis, which can identify the aforementioned peculiarities
that a dataset may have and then motivate appropriate actions for addressing them. For
this reason, feature engineering additionally involves an exploratory data analysis that sheds
light on the content and quality of the data from which the machine learning algorithms will
learn the specific learning task. Often such an analysis reveals unique features, identifies
those that are less intuitive, and leads to hypotheses about the object of study. Once the

Figure 2.16.: Implementation steps for solving a problem with machine learning.

features are determined and the data is cleaned, the dataset is split in training, validation
and test datasets. A learning model is constructed from the training data, in a process
called training. The model both sees and learns from this data. For tuning the model
hyperparameters, the validation dataset is used. The model occasionally sees this data, but
never learns from this. Learning is done only with training data. Then, the test data (unseen
data), which has not been used so far in any of the previous steps, are used to evaluate the
learning ability of the model acquired through the training process, using some performance
metrics. There are four types of learning: supervised, semi-supervised, unsupervised and
reinforcement.

Supervised learning uses labeled data to train algorithms that can either classify (label)
data into categories (classification) or predict outcomes (regression). In particular, the goal
of the learning task is to learn a function that maps an input to an output based on pairs
of data (also called examples) that have the form of input and output. These input-output
pairs are denoted as {(xi, yi)}Ni=1, where N is the number of examples and the dimension
of the feature vector x is equal to the number of features, i.e., x = [x(1), x(2),..., x(D)],
assuming that the number of features is D. The label yi can be either a categorical value
belonging to a finite set of classes 1, 2, ..., C, or a real number, or a more complex structure,
such as a matrix or a graph. In the context of this thesis the output will always be a class
(corresponding to a traffic regulator).

In unsupervised learning, the dataset is a collection of unlabeled examples, denoted as
{xi}Ni=1, with x is the feature vector. The goal of unsupervised learning is to build a model
by taking a feature vector x as input and returning either a value that has a particular
meaning in the context of the problem of study, or another vector that again is itself of
particular meaning. For example, in clustering, which involves grouping a particular set of
objects or entities based on their characteristics and aggregating them according to their
similarities, for each input xj, the learning model returns the identifier of the cluster to which
it belongs. For example, suppose that the data are clustered into m clusters, identified as
1, 2,..., m, then for each input data, the clustering algorithm returns a number k ∈ Z
and k ∈ [1, m]. In dimensionality reduction, the output of the learning model is a feature
vector x = [x(1), x(2),..., x(D)] that has fewer features than the input x = [x(1), x(2),..., x(n)]
(D < n).

42 CHAPTER 2. THEORETICAL BACKGROUND

In semi-supervised learning, the dataset consists of both labeled and unlabeled examples,
with the set of unlabeled examples being much larger than the set of labeled examples.
It is often difficult to find a large dataset of labeled examples, and labeling is challenging
because it practically involves a manual process that is both time consuming and costly.
Semi-supervised learning combines supervised and unsupervised learning and aims to create
better learners by using labeled and unlabeled data than by using each one individually.
Semi-supervised problems include semi-supervised classification, regression, and clustering.

Reinforcement learning is an approach to control learning that accommodates indirect or de-
layed feedback as training information (Mitchell, 1997). An autonomous agent (a machine)
that lives, perceives, and acts in an environment can learn to choose optimal actions to
achieve its goals through a training process that provides rewards and punishments (penal-
ties) for the actions performed according to their desirability (rewards for desirable actions
and punishments for incorrect actions). The goals in reinforcement learning can be very
general and range from learning to play a board game to controlling a robot. In the next
paragraphs we explain the supervised, unsupervised and semi-supervised methods used to
implement this thesis.

2.3.2. Supervised-Learning: Classification

As mentioned earlier, the problem addressed in this thesis is a classification problem, and
hence in this section we will focus on it. Classification is the task of assigning labels to
unlabeled instances of data, and this task is performed by a classifier. A classifier is usually
described in terms of amodel. The model is created using a given set of instances (examples),
known as the training set, which contains feature values as well as class labels for each
instance. In addition to the training set, learning algorithms are also required in order to
learn a classification model in a systematic way. The process of using a learning algorithm
to create or build a classification model from the training data is known as induction. This
process is also often described as learning a model or building a model. The process of
applying a classification model to unseen test instances to predict their class labels is known
as deduction. Thus, the classification process involves two steps: 1. a learning algorithm is
applied to the training data to learn a classification model, and 2. the classification model
is applied to unlabeled instances to assign (predict) labels (Tan et al., 2018, 137).

There are many different types of classifiers. Tan et al. (2018) categorize them accord-
ing to their output characteristics, into binary versus multi-class and deterministic versus
probabilistic. Furthermore, depending on the technique used to distinguish instances from
different classes, into linear vs. nonlinear, global vs. local, and generative vs. discriminative
classifiers.

In short, binary classifiers assign each instance to one of two possible labels, usually denoted
as +1 and -1. If classifiers must assign instances to more than two labels, then the classifier
is called a multiclass or multi-category classifier. A deterministic classifier assigns each
instance of data a discrete-value label, while a probabilistic classifier assigns a continuous
value between 0 and 1 indicating how likely it is that an instance belongs to a particular
class, with the probability scores for all classes summing to 1. Some examples of probabilistic
classifiers include the Naive Bayes classifier, Bayesian networks and logistic regression.

2.3. MACHINE LEARNING 43

A linear classifier uses a linear separating hyperplane to distinguish instances from different
classes, while a non-linear classifier allows the construction of more complex, non-linear de-
cision boundaries. The assumption that classes can be distinguished by a linear hyperplane
leads to simple models that on the one hand are less prone to overfitting, on the other hand
are not flexible enough for capturing complex data. An example of a linear classifier is the
perceptron and a non-linear one is the multi-layer neural network. A global classifier fits a
single model to the entire dataset, while a local classifier divides the input space into smaller
regions and fits a different model to the instances of each subregion. Depending on whether
or not classifiers need to know the underlying mechanism that generates the instances of all
classes (distributions), they are divided into generative and discriminative. Discriminative
models make predictions on unseen data instances without explicitly describing the distri-
bution of each class label, whereas a generative model needs to know the distribution of the
dataset (classifiers learn a generative model for each class) in order to return a probabil-
ity for a given instance. Some examples of discriminative classifiers include decision trees,
nearest neighbor classifier, artificial neural networks, and support vector machines, while
examples of generative classifiers include the Naive Bayes classifier and Bayesian networks.
The following section focuses on two popular classification techniques, decision trees and
ensembles of decision trees, which according to the aforementioned categorization fall into
the categories of multiclass, non-deterministic, non-linear and discriminative.

2.3.2.1. Decision Trees

Decision trees are commonly used models for classification and regression tasks. Here they
are discussed in the context of classification. The basic idea behind decision trees is that
they lead to certain decisions by learning a hierarchy of if-else conditions (questions) from
the data. For example, suppose someone wants to decide whether to go to work or not,
given that he goes to work unless it is a weekend and no urgent work is pending, or if it is
a weekday and a holiday and no urgent work is pending. Clearly, the circumstances that
determine whether he goes to work are whether it is a weekend, whether there is urgent
work pending, and whether it is a holiday. These conditions take binary values (true, false)
and correspond to the attributes of the classification tree. Thus, the decision can be made
by asking simple questions such as whether it is a weekend, etc. Such a set of questions can
be expressed in the form of a tree, as shown in Figure 2.17. Each node of the tree represents
either a question or a terminal node (also known as a leaf) containing the answer (decision).
The top node is called the root. Therefore, to model such a decision tree with machine
learning, three binary attributes (is weekend, pending urgent task and is holiday) would be
needed and the output would be binary and would correspond to true if the decision is to
go to work, or false to stay at home. Then, given a dataset and the associated learning
algorithm, the decision tree is learned from the data.

The problems typically addressed by machine learning are more complex than the example
above. Also, the questions (features) that lead to decisions usually have continuous values
as answers are rather than just yes-no. To present a realistic example we will use the well-
known Iris flower dataset, which initially consists of 4 instances of features (sepal length,
sepal width, petal length, petal width) with a target that can receive three possible labels
(iris Setosa, iris Versicolour, iris Virginica). For visualization purposes (in 2D), we eliminate
the number of features to two (sepal length and sepal width) and the number of classes also
to two (Setosa, Versicolour). Since the features have continuous values, the questions are
of the form “whether the value x of the feature is greater than the value v?”. Then, the

44 CHAPTER 2. THEORETICAL BACKGROUND

learning algorithm at each step tries to find from all possible questions9 the one that is
most informative (according to some criteria) for the target variable. The first question,
represented as a root node, represents the entire data set. Each question leads to a split
and is either followed by another question or the recursive process of questions results in a
leaf when all data corresponding to the question have the same label (such a leaf is called
pure). Given a tree constructed from a training dataset, predictions can be made on a new
data instance by running the nodes from top to bottom and following each time the part of
the tree that is true for the particular feature of the data instance.

The problem with creating decision trees in the way described above is that they can become
arbitrarily deep and memorize training examples, as shown in Figure 2.18e and 2.18f. Tree
depth is defined as the length of the longest path from a root to a leaf. In this example
the tree has a depth of four and all leaves are pure (the accuracy is therefore 100%), and
we can see from Figure 2.18e that all instances are correctly classified. There are several
strategies for preventing overfitting and motivating better generalization to unseen data.
Some common techniques include limiting the depth of the tree, the number of terminal
nodes, and the minimum number of instances required to split an internal node. Stopping
the tree early before it is fully grown, using a strategy such as those mentioned earlier, is
known as pre-prunning. Such examples are shown in Figures 2.18b and 2.18d, where the
maximum depth of the tree is set to one and two, respectively. The first tree is quite simple
and its discriminative ability to distinguish examples from the two classes is quite poor,
as shown in Figure 2.18a, where there are many misclassified instances. In contrast, the
depth-two tree, although still simple, manages to separate the two classes very well and
without using elaborate hyperplane (unlike the example in 2.18e). Another possibility is to
let the tree fully grow and then remove nodes that contain little information. This strategy
is called post-pruning.

9Each question is called attribute test condition.

Figure 2.17.: A decision tree that decides whether someone goes to work or stays at home. The binary
features (true, false) are is weekend , pending urgent task, is holiday. Someone goes to work unless it is a
weekend and there isn’t any pending urgent task at work, or it is a weekday and a holiday and no urgent
work is pending at work.

2.3. MACHINE LEARNING 45

A measure for a node’s impurity is the gini score: when a node is pure, all training instances
it applies to belong to the same class and gini score is equal to zero. For example, all the
leaf nodes of the depth-four tree (Figure 2.18f) have gini score equal to zero. Equation 2.1
shows how the training algorithm computes the gini scoreGn of the nth node. The depth-two
(Figure 2.18b) left node has a gini score equal to 1− (0/51)2 − (45/51)2 − (6/51)2 ≈ 0.207.

Gn = 1−
M∑
c=1

pn,c (2.1)

where pn,c is the ratio of class c instances among the training instances in the nth node. An
alternative impurity-based measure to gini score is the entropy (Lee et al., 2022) .

A known algorithm to train binary decision trees is the Classification And Regression Tree
(CART) algorithm (the Python library Scikit-Learn uses it). CART first splits the training
set in two subsets using a single feature f and a threshold thresf (e.g., sepal length <=
5.45 cm). f and thresf values are found by searching for the pair (f,thresf) that produces
the purest subsets weighted by their size. The cost function that CART tries to minimize
is given by Equation 2.2. Once it has successfully split the training set in two subsets,
it splits the subsets using the same process and continues the this recursive process until
either the tree has grown at the maximum defined depth or it cannot find a split that will
reduce further its impurity. Because CART splits nodes always to two parts, it can only
produce binary trees. Other algorithms can create trees with nodes that have more than
two children, as for example the ID3 algorithm.

L(f,thresf) =
mleft

m
Gleft +

mright

m
Gright (2.2)

where Gleft/right is the impurity score of the left/right subset, mleft/right is the number of
instances in the left/right subset, and m the total number of instances of the node to be
partitioned.

The main advantage of decision trees is that they are simple to understand and interpret
(they can be visualized), even by non-experts, they are flexible and the algorithms are
scale invariant. The latter comes from the fact that each feature is processed separately
and therefore the splitting process does not depend on the scale of the features. This
means that features do not need to undergo any feature scaling, such as normalization or
standardization in a preprocessing stage. On the other hand, their main limitation is that
they tend to overfit and therefore provide poor generalization. Decision trees use orthogonal
decision boundaries, which makes them sensitive to small changes in the training data (e.g.,
rotation). One way to address this problem is to use several decision trees (ensemble of
trees) instead of just one. This issue is addressed in the next section.

2.3.2.2. Ensembles of Decision Trees

Ensembles are methods that combine the predictions of multiple learning models to create
more powerful models. For example, instead of relying only on the prediction of a Logistic
Regression classifier on a data instance, the prediction could be combined with the predicted
label of another classifier, for example an SVM classifier (Géron, 2019, p. 189). This can
be done by aggregating the predictions of different classifiers, generally using a “voting”
strategy. Two main voting strategies are hard and soft voting, which are illustrated in

46 CHAPTER 2. THEORETICAL BACKGROUND

(a) (b)

(c) (d)

(e) (f)

Figure 2.18.: An example of a binary decision tree on the modified Iris dataset (2 classes) for different (max)
values of depth: (a-b) 1, (c-d) 2 and (e-f) 10.

Figure 2.19. Hard voting, e.g., majority vote, aggregate cumulatively the predicted labels
of the classifiers and assigns as label the one predicted by most classifiers (Figure 2.19a).
When the classifiers can estimate the probabilities of the classes, the soft voting strategy
averages the probabilities of all classifiers per class and predicts the class with the highest
average value (Figure 2.19b).

There are many ensemble models in the machine learning literature. Two very effective
ones that use decision trees as ensemble learning models are random forests and gradient
boosted decision trees, which are discussed in the next section. In both cases, instead of using
different learning algorithms (different classifiers) as in the example with Logistic Regression

2.3. MACHINE LEARNING 47

and SVM mentioned earlier, the ensemble uses the same training algorithm (decision tree)
for each predictor, but each predictor is trained differently, as discussed in the next section.

(a) Hard voting involving five classifiers.

(b) Soft voting involving five classifiers.

Figure 2.19.: Voting classifiers. Class 1: (90% + 30% + 45% + 40% + 80%)/5 = 57%. Class 2: (10% +
70% + 55% + 60% + 20%)/5 = 43%.

Random Forest A random forest is an ensemble (group) of decision trees, where all trees
predict the same target (variable) and each tree is constructed in such a way that it differs
slightly from the other trees in the ensemble. To create trees that are similar but neither the
same nor very different, randomness is involved in the decision tree learning process and for
this reason the set of randomized decision trees is called a random forest. The motivation
for creating random trees comes from the fact that decision trees, although good predictors,

48 CHAPTER 2. THEORETICAL BACKGROUND

often overfit, so by creating many slightly different trees and averaging their predictions then
the overfitting can be eliminated, assuming that each tree overfits in a different way from
the other trees in the ensemble. Therefore, the challenge in a random forest is to construct
many good predictors of the same variable, all decision trees, each different from the other.

There are two ways in which randomized trees are created: by selecting (sampling) the
data instances to create a tree and by selecting the features to be used to partition the
tree. There are two strategies for selecting data instances: bagging and pasting, which in
combination with feature selection can lead to random patches and random subspaces.

The bagging sampling samples data instances from the initial dataset by replacement. The
resulting dataset is called a bootstrap. This process creates a dataset that is different from
the original dataset, as some of the instances will be the same as the original dataset, but
some will be missing. The pasting sampling samples data instances without replacement.
In other words, both bagging and pasting allow sampling training instances several times
across all the different predictors in the ensemble, but only bagging allows sampling training
instances multiple times for the same predictor.

In the tree building process, features can also be sampled, similar to data instances. In this
way, each predictor can be trained on a random subset of the input features. The sampling
of both the training instances and the features is called random patches sampling. Retaining
all training instances of the original dataset and sampling only the features is called random
subspaces sampling. Therefore, unlike decision trees where for each node the best feature is
searched for splitting the dataset, in the random forest for each node the algorithm searches
for the best split in a random subset of features. This feature sampling is repeated for each
node in the tree.

Therefore, sampling data to build each predictor of the ensemble results in different decision
trees generated on slightly different data sets, while feature sampling at each node generates
trees generated on different subsets of the feature vector. The combination of both sampling
strategies produces a forest of different decision trees. Once training is complete, the random
forest predicts targets using a soft voting strategy, as explained previously. An example of
a random forest consisting of eight trees is depicted in Figure 2.20, where the classification
boundaries of each predictor and the random forest are depicted in different colors. The
decision boundaries of the seven trees are quite different and less intuitive compared to that
of the random forest, which is smoother (more trees would create even smoother boundaries).

Gradient Boost Boosting refers to any ensemble method that combines several weak learn-
ers (simple models) to create a strong one. The basic idea behind boosting methods is to
train predictors sequentially, so that each predictor corrects the previous predictor, i.e. a
predictor becomes better by learning from the previous predictor’s errors. This is achieved
by fitting a new predictor to the residual errors made by the previous predictor (Figure 2.21).
There are many boosting methods in the literature, one of which has recently dominated
many machine learning competitions. The method is called gradient boosted regression trees
(gradient boost), and despite the term regression in the name, it can be used for both regres-
sion and classification. Compared to random forest, gradient boosted regression trees most
of the time outperforms it if its parameter are well tuned. This is actually the main disad-
vantage of gradient boosted decision trees - the sensitivity to parameter tuning, compared
to other supervised techniques.

2.3. MACHINE LEARNING 49

Figure 2.20.: A random forest (lower right figure) created from eight decision trees. Targets from different
classes are indicated in different color and shape (balls and asterisks). Decision boundaries are illustrated
in yellow and orange color.

The gradient boost method combines multiple low-depth decision trees, which are good
predictors for a portion of the data, to create a more robust model. When constructing the
trees, no randomness is introduced by default, but strong pre-pruning is applied to keep
the trees shallow (usually the depth is limited between one and five), resulting in a fast
predictor with low memory requirements. In addition to the number of trees (estimators)
and the maximum depth that regulate the complexity of the model, another parameter of
the gradient boost algorithm is the learning rate, which regulates the contribution of each
tree to the residual error correction. A low learning rate requires more trees for the ensemble
to fit the training data, but usually the generalization ability of an ensemble with more trees
is better than when a higher learning rate and fewer trees are used.

A machine learning library that implements a scalable distributed gradient-boosted deci-
sion tree model is XGBoost, which stands for Extreme Gradient Boosting. For large-scale
problems, it can be faster than other implementations (e.g., Scikit-Learn). Figure 2.22 il-
lustrates the evolution of decision trees in random forest, gradient boosted trees and the
latest implementation of the latter (XGBoost) that allows faster predictions.

2.3.2.3. Metrics for Classification

As explained earlier, a classifier is trained using a dataset called training dataset. After the
model is trained, its performance must be evaluated in a rigorous manner. The evaluation
of the model informs how well the model can predict on data that it has not seen before.

50 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.21.: The sequential process of building a gradient boosted decision tree model. New predictors are
added iteratively, by training each new tree on the residual errors of the predecessor tree.

Figure 2.22.: The evolution of a single decision tree to random forest, gradient boosted decision trees and
the recent implementation of the latter for faster predictions (XGBoost library).

Such a dataset is called a test dataset. A good performance on the test dataset means
that the model generalizes well, so learning through training has been successful. Some
formal widely used performance metrics for multi-class classification are confusion matrix,
accuracy, precision/recall and f-measure.

Confusion Matrix The confusion matrix is a table that summarizes the classification results
of a classifier in the predicted classes. Each raw corresponds to an actual class and each
column to a predicted class. The diagonal contains the examples that have been successfully
predicted (the actual and predicted class are the same). For a binary classification problem,
where the examples of the two classes are labelled as positive and negative, TP indicates
the true positive classified examples, TN the true negative, FP the false positive, and FN

2.3. MACHINE LEARNING 51

the false negative examples. These values can then be compactly portrayed in the confusion
matrix, as shown in Table 2.2.

Table 2.2.: A confusion matrix of a binary classification problem.

predicted
class 1 class 2

ac
tu
al class 1 TP FN

class 2 FP TN

The confusion table for multiclass classification is constructed in a similar way. It has as
many rows and columns as there are different classes (e.g., N classes) and each cell cij
with i,j ∈ 1,2,...,N contains the number of examples from the actual class i, which are
(mistakenly) assigned to class j. The examples that are correctly classified are found in
the diagonal cells cii. TP, FP, TN and FN are defined with respect to each class. For a
class i, all examples of class i are considered positive and all examples from other classes
are considered negative. Often the rates of the aforementioned measures are used, such as
the True Positive Rate (TPR) also called recall or sensitivity, True Negative Rate (TNR)
also called specificity, False Positive Rate (FPR) and False Negative Rate (FNR), which are
defined as:

TPR =
TP

TP + FN
= 1− FNR (2.3)

TNR =
TN

TN + FP
= 1− FPR (2.4)

FPR =
FP

FP + TP
= 1− TNR (2.5)

FNR =
FN

FN + TP
= 1− TPR (2.6)

Confusion matrices can be used to calculate other performance metrics, such as accuracy,
precision, and recall.

Accuracy The accuracy of a predictor is defined by the number of correctly classified ex-
amples divided by the total number of examples (correctly and incorrectly classified).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.7)

Accuracy is a useful metric when prediction errors are equally significant across classes.

Precision/Recall The precision is the ratio of the correct classified positive samples (TP)
to the overall positive classified samples (either correctly or incorrectly, i.e., TP and FP).
It expresses therefore the proportion of positive predictions that was actually correct and
reflects how reliable the model is in classifying samples as positive. It is defined as:

52 CHAPTER 2. THEORETICAL BACKGROUND

Precision =
TP

TP + FP
(2.8)

Recall (also called sensitivity) is the ratio of correct classified positive samples to the overall
number of actual positive examples in the dataset. It expresses what proportion of actual
positive samples was predicted correctly and it actually measures the model’s ability to
detect positive samples. The higher the recall, the more positive samples detected. It is
defined as:

Recall = TPR = Sensitivity =
TP

TP + FN
= 1− FNR (2.9)

F1 score F1 score is the harmonic average of recall and precision.

F1score =
2

1
recall

+ 1
precision

= 2 ∗ recall ∗ precision
recall + precision

(2.10)

Macro average/weighted average scores In a classification report which is often exported
after evaluating the performance of the test set, besides the aforementioned scores, are also
printed the macro and weighted values of the these scores (macro average precision, weighted
average precision, etc.). If P is the number of positive saples, N the number of negative in
a binary classification problem, then these scores are defined as:

scoremacro avg =
1

2
scoreP. +

1

2
scoreN (2.11)

scoreweighted avg =
P

P +N
∗ scoreP +

N

P +N
∗ scoreN (2.12)

2.3.3. Unsupervised-Learning: Clustering

Unsupervised learning includes all kinds of machine learning where there is no known output
to guide the learning algorithm. The goal of the learning algorithm is, given the (unlabeled)
input data to analyze and discover knowledge from them. The knowledge can be in the
form of hidden patterns or groupings of data (similarities). Unsupervised learning models
are used for three main functions: clustering, association and dimensionality reduction.
Here we focus only on clustering.

Cluster analysis partitions data into groups (clusters) of similar objects that are meaningful
and therefore can be useful for certain applications. A set of clusters is usually referred to
as a clustering. Clustering learning algorithms can be categorized into the following types:
hierarchical (nested) versus partitional (unnested), exclusive versus overlapping versus fuzzy,
and complete versus partial (Tan et al., 2018, p. 311). A partitional clustering splits the
set of data instances into non-overlapping subsets (clusters) such that each data instance

2.3. MACHINE LEARNING 53

Algorithm 2: The K-means algorithm.

Data:
D : a set of data
k : number of clusters
e : convergence criterion

1 Initialize cluster centroids µ1, µ2, ..., µk randomly
2 Initialize cluster sets to empty sets: Cj ←− ∅ for all j = 1, ..., k
3 repeat
4 // Step 1: Cluster Assignment
5 for xj ∈ D do
6 j ←− arg mini{∥xj − µi∥}2//assign xj to closest centroid
7 Cj ←− Cj ∪ {xj}//add xj to the relevant cluster set

8 end for
9 // Step 2: Cluster Centroid Update

10 for i = 1 to k do

11 µi ←−
1

|Ci|
∑

xj∈Ci
xj

12 end for

13 until convergence criterion e is met ;

belongs to exactly one cluster. If a cluster is allowed to have subclusters, then the clustering
is called hierarchical, and since it consists of a set nested clusters, it is organized in a tree-
like structure. An exclusive clustering assigns each data instance to a single cluster, while
an overlapping or non-exclusive clustering allows data instances to be assigned to more
than one cluster. Under fuzzy (or probabilistic) clustering, each data instance belongs to
every cluster with a membership weight ranging between 0 and 1. Fuzzy clustering differs
from overlapping clustering because the membership weights (probabilities) for each data
instances sum up to 1 and therefore cannot deal with multiclass situations, where a data
instance may “fully” belong to two classes. A complete clustering assigns each data instance
to a cluster, while a partial clustering allows data instances to be assigned to no cluster. It
is often the case that some data instances in the dataset are outliers or represent data that
are not meaningful in the context of the similarities of the intended clustering of the data.
These data instances under partial clustering are not assigned to any cluster.

2.3.3.1. The K-means Clustering Algorithm

K-means is a partitional clustering technique that tries to find a user-specified number of
clusters (K), given as parameter to the learning algorithm. The clusters are represented
by their centroids. The K-means algorithm, described formally in Algorithm 2, starts by
initializing the K centroids. Then each data instance is assigned to the closest centroid.
All data instances assigned to the same centroid belongs to the same cluster. The centroid
of each cluster is then recomputed (update) based on the values of the data instances that
are assigned to the cluster that the centroid represents. The data instance assignment and
centroid recomputation steps are repeated until a convergence criterion is met. Usually such
criterion is when the centroids remain the same or almost the same (no data instance changes
cluster or a small percentage of them shifts to other clusters).

54 CHAPTER 2. THEORETICAL BACKGROUND

An example of the K-means algorithm is depicted in Figure 2.23. Here the predefined
number of clusters that the clustering algorithm needs to group the data instances to, is
three, and after initializing the centroids, three iterations of assigning all the points to
clusters and updating the centroids based on the assignments to clusters are needed until
the algorithm to converge.

K-means is simple, intuitive and can be used for a wide variety of data types. However, it
is not suitable for clusters of varying size, shape form and density, although it can usually
detect discrete small clusters if the user has specified a large number of clusters. Another
weakness is the sensitivity to outliers, inherited due to the recalculation of centroids from
the data instances and the subsequent reassignment of data instances into clusters based on
proximity to centroids.

Figure 2.23.: An example of the K-means clustering algorithm, where data instances are assigned to three
clusters (pink, yellow, blue), within three iterations of point assignment and centroid update. The centroids
of clusters are indicated by asterisks.

2.3.3.2. DBSCAN

DBSCAN (Ester et al., 1996) is a partitional, partial, density-based clustering algorithm that
does not require the user to specify the number of clusters to be identified. It is partitional
because data instances are detected in non-overlapping regions and partial because low-
density regions are classified as noise and assigned to no cluster. DBSCAN is defined formally
in Algorithm 3.

DBSCAN is characterised (and named) as density-based clustering because it identifies high-
density data regions separated by low-density regions. Here, the density is estimated around
a particular data instance x and is defined by the number of data points (min samples),
including x, that lie within a given radius eps of x. It is clear that the two parameters eps
and min samples, which define the density, affect the cluster detection, as shown in Figure
2.24. For example, a large eps will consider distinct clusters as one (last column of figures),
while a very small eps will split the data into very small clusters (first row, second figure
from left).

2.3. MACHINE LEARNING 55

Figure 2.24.: The DBSCAN algorithm for different values of parameters.

To formalize whether a region in the data space is dense or non-dense, three concepts are
defined: core point, border and noise point (Figure 2.25). Core points are located inside
a dense region (cluster), and for a point to qualify as a core point, it must have at least
min samples in a radius of size eps (measured from the point). Border points are points
that are not core points, but fall within the neighborhood of a core point (or multiple core
points), as defined by eps. Noise points are any point that is neither a core point nor a
border point. DBSCAN can handle clusters of arbitrary shape and size and is relatively
noise efficient. However, when densities vary, DBSCAN fails to identify the correct clusters.

Figure 2.25.: Core, border and noise points (min samples = 10).

56 CHAPTER 2. THEORETICAL BACKGROUND

Algorithm 3: The DBSCAN algorithm.

Data:
D : a set of data
eps : the radius defining the neighbourhood around a data point
min samples : minimum number of points to define the region as dense

1 Initialize the set of clusters C to an empty set: C ←− ∅
2 Mark all data xi ∈ D as Unprocessed
3 foreach xj ∈ D do
4 if xj is already Processed then
5 continue to next data point
6 end if
7 else
8 Mark xj as Processed
9 neighbors ←− Eps neighborhood(xj , eps)

10 if |neighbors| < min samples then
11 Mark xj as Noise
12 end if
13 else
14 C ←−Cnew //create a new cluster
15 Call Expand Cluster Function(xj , neighbors, Cnew, min samples)

16 end if

17 end if

18 end foreach

Algorithm 4: Expand cluster function of the DBSCAN algorithm.

Data:
xj : a data point
neighbors : neighbor points of xj with respect to eps
C : a cluster
eps : the radius defining the neighbourhood around a data point
min samples : minimum number of points to define the region as dense

1 Add xj to cluster C
2 foreach xi ∈ neighbors do
3 if xi is not already Processed then
4 Mark xi as Processed
5 expand neighbors←− Eps neighborhood(xi, eps)
6 if |expand neighbors| < min samples then
7 neighbors←− neighbors ∪ expand neighbors
8 end if

9 end if
10 if xi is not assigned to any cluster then
11 Add xi to cluster C
12 end if

13 end foreach

2.3. MACHINE LEARNING 57

2.3.4. Semi-supervised Learning

Semi-Supervised Learning (SSL) addresses the situation where relatively few labeled train-
ing data instances are available, but a large number of unlabeled data is provided. In many
practical problems, obtaining labeled data can be costly, for example for automatic web
page classification and part-of-speech tagging (millions of labelled data are required), or dif-
ficult, such as in computer-assisted medical diagnosis applications. As a branch of machine
learning, SSL uses a diverse set of tools developed in other branches of machine learning (un-
supervised learning and supervised learning) and therefore lies midway between supervised
and unsupervised learning (Chapelle et al., 2006, p.17). Formal SSL uses data X = (xi)i∈[n]
that can be divided into two parts. The data instances Xl = (x1,x2,...xl), for which the
labels Yl = (y1,y2,...yl) are given, and the data instances Xu = (xl+1,xl+2,...xl+u) for which
the labels are not known.

The SSL algorithms generally aim to improve performance on one of the two tasks related
to supervised and unsupervised learning, using information generally related to the other.
For example, semi-supervised classification methods attempt, by exploiting instances of
unlabeled data, to create a classifier whose performance exceeds the performance of clas-
sifiers created using exclusively labeled data. This is motivated by an assumption called
the smoothness assumption which states that, for two input data instances x,x′ ∈ X that
are close to the input space, the corresponding labels y,y′ should be identical. In practice,
SSL methods have also been applied to problems where labeled data were not sparse. The
assumption here is that if unlabeled data points provide additional information relevant to
the prediction task, then they can potentially help improve classification performance. For
clustering problems, the learning process may also benefit from the knowledge that some
data instances belong to the same class (Van Engelen and Hoos, 2020). In this case the
assumption is that data instances belonging to the same cluster belong to the same class
too (assumption cluster).

The variety of SSL algorithms is quite large. The methods differ in the SSL assumptions
on which they are based, in the way they incorporate unlabeled data into the learning pro-
cess (how unlabeled data are selected), and in the way they relate to supervised learning
algorithms. The most recent survey in SSL (Van Engelen and Hoos, 2020) proposes a clas-
sification of methods, which at the highest level are classified into two categories, inductive
and transductive methods. Inductive methods try to find a classification model that can be
used to predict the labels of previously unseen data instances, while transductive methods
aim to obtain label predictions for unlabeled data instances without creating a learning
model from the input space. Thus, given a dataset consisted of labeled and unlabeled data,
Xl,Xu ⊆ X, with labels yl ∈ Y l, the inductive methods obtain a model from the l labeled
data instances, f : X 7→ Y , while the transductive methods obtain predicted labels ŷu for the
unlabeled data instances in Xu. At a second level, the taxonomy categorizes inductive meth-
ods into three classes depending on how they incorporate unlabeled data: either through
a pseudo-labeling step (wrapper methods), a preprocessing step (unsupervised preprocess-
ing), or directly within the objective function (intrinsically SSL methods). The transductive
methods are in all cases based on graphs. In the following sections, we focus only on one
simple wrapper method, self-training, and one preprocessing method, cluster-then-label, as
these methods were used in the implementation of this thesis.

58 CHAPTER 2. THEORETICAL BACKGROUND

2.3.4.1. Self-Training (Self-Learning)

Self-training methods (also called self-learning methods) are the most basic of pseudo-
labeling approaches. They consist of a single supervised classifier that is iteratively trained
on both labeled data and pseudo-labeled data obtained in previous iterations of the algo-
rithm (Van Engelen and Hoos, 2020, p. 385). Algorithm 5 lists the sequence of steps of the
self-training process. Firstly, a classifier is trained with the available labeled data and then
it makes predictions on the unlabeled data instances. From the predicted labels, the most
confident ones (those predicted with high probability, greater than the confidence threshold
defined as parameter in Algorithm 5) are called pseudo-labels and are added to the set of the
labeled data. The training data after this addition consists of labeled and pseudo-labeled
data. The classifier is then re-trained on the enlarged training dataset and the process is
iterated until a stop-criterion is met. Usually, such a criterion is a maximum number of
iteration or when all all unlabeled data has been labeled.

By using different conditions for the selection of pseudo-labels, several variants of self-
training algorithms can be derived. Similarly, modifying the process of incorporating the
selected pseudo-labeled data into the classification (how to reuse them, e.g., by giving them
weights) or choosing different stopping criteria can lead to variations of self-training algo-
rithms.

Algorithm 5: Self-training.

Data:
L : the labeled data
U : the unlabeled data
stop–criterion : k iterations or all unlabeled data U has been labeled or the predictive
accuracy does not improve significantly anymore
h : a classifier
confthrel : confidence threshold

1 repeat
2 Train the classifier h with the L labeled data
3 Predict the U data with h classifier
4 Select the confident predicted data instances from the previous step, w.r.t confthres

(pseudo-labels)
5 Add the pseudo-labeled data instance to L

6 until stop–criterion is met ;

2.3.4.2. Cluster-then-label

Both SSL methods considered so far exclusively use supervised learning to train classifiers.
However, many SSL algorithms combine clustering with supervised learning, such that the
former complements or guides the classification task. Such methods are called cluster-then-
label approaches and in principle first apply an unsupervised or semi-supervised clustering
algorithm on all available data, and then use the resulting clusters to “inform” the classifi-
cation process.

One such example can be clustering all available data and then propagating the majority
label of each cluster to all unlabeled data instances of the same cluster or to a percentage
of data instances that are closest to the centroid of the cluster. Then, using the augmented

2.3. MACHINE LEARNING 59

labeled data (the original labeled data augmented by the clustering-assisted propagated
labels), a classifier can be trained to predict the target labels.

Another variant of the cluster-then-label method first clusters the labeled data and a subset
of the unlabeled data and then a different classifier for each cluster is trained using the
labeled data contained in the cluster. The trained classifiers then predict the unlabeled
data instances of the clusters whose labeled data were used to train them (Goldberg et al.,
2009). Algorithm 6 describes the steps of an a cluster-then-label approach, where instances
that are used for training by a classifier are selected in a earlier step with the help of
clustering (Géron, 2019, p. 253).

Algorithm 6: Cluster-then-label.

Data:
Utrain : unlabeled data to be used for training
Utest : unlabeled data to be used for testing (predicting)
k : number of clusters
h1 : a clustering algorithm
h2 : a supervised classifier
p : percentage of data instances (0-100)

1 Cluster the unlabeled data Utrain into k clusters with h1
2 for each cluster do
3 Find the data instance xclosest from each cluster that is closest to the centroid of the

cluster
4 Manual label the xclosest data instance
5 Propagate the label of xclosest to p% of data instances that belong to same cluster as

xclosest and are closest to it
6 end for
7 Train h2 with the data instances labeled in the previous step
8 Predict the test data Utest using the trained h2 classifier

2.3.5. Active-Learning

Active learning (sometimes called “query learning” or “optimal experimental design”) is
a subfield of machine learning that focuses on how to select training data so that better
learning, in terms of performance, is achieved with less training data. The basic assump-
tion is that if the learning algorithm is allowed to choose the data from which it learns, it
will perform better with less training (Settles, 2009). Unlike standard SSL methods that
attempt to address the problem of sparsely labeled data by using supervised and unsuper-
vised methods, active learning systems attempt to overcome the problem of label sparsity by
asking queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human
annotator). With such a selection procedure, the active learning process aims to achieve
better generalization performance with less training data, and thus at a lower cost.

There are several scenarios (Settles, 2009, p.8) in which data-driven active learners can pose
questions in the form of unlabeled instances. One of these is called pool-based sampling,
which assumes that there is a small set of labeled data L and a large pool of unlabeled
data U . Then, queries to label unlabeled data are selectively drawn from the pool U ,
which is usually assumed to be static (unchanging). There are different query strategy
frameworks in terms of the criteria for selecting the data instances to be labeled. One

60 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.26.: The pool-based active learning process.

of them selects instances for which the classifier is less confident about their target label
(uncertainty sampling). The learning process in a pool-based scenario is shown in Figure
2.26. Combined with an uncertainty sampling the learning steps are given in Algorithm 7.
The learning model is trained on the labeled instances L and then used to make predictions
on all unlabeled data instances U . The data instances for which the model is most uncertain
(i.e., the estimated probability is the lowest) are labeled by a domain expert. This process
is repeated until a stopping criterion is met (e.g., all data in the U pool are labelled).
Other sampling strategies include labeling the data instances that would lead to the largest
model change or the instances for which different classifiers disagree most. Algorithm 6
can be seen as an example of hybrid active learning (Lughofer, 2012), which is based on
an unsupervised criterion followed by a supervised criterion based on uncertainty. Lughofer
(2012) implemented such an active learning strategy in an on-line classification scenario,
where in a first step training is conducted from scratch (i.e., no initial labels/learners are
required) based purely on unsupervised criteria obtained from clusters. Samples located
near cluster centres and near cluster boundaries are considered to be the most informative
in terms of the characteristics of the class distribution and are therefore selected to be
labeled. In the second step, the classifier is trained incrementally (on-line mode) using the
most important data examples for training, selected in the previous (off-line) step.

Algorithm 7: Active-Learning.

Data:
U : unlabeled data
L : labeled data to be used for training
h : a supervised classifier

1 repeat
2 Train h with the labeled data instances L
3 Apply h on the unlabeled data U
4 Find the data instance xj ∈ U for which h is less certain for its label
5 Label xj
6 Add the labeled data instance xj in L : L ←− L∪ xj
7 Remove xj from the pool U : U ←− U\ xj
8 until a stop criterion is met ;

2.3. MACHINE LEARNING 61

2.3.6. Incremental Learning

All the learning processes discussed so far have two distinct stages, training and predicting.
In the training phase, the stored data is processed by a learning algorithm that results in a
model, which can then be used to make predictions on unseen data. This learning process
is called batch or offline learning and is illustrated in Figure 2.27a. However, nowadays
there are real-world applications where the data “ages” very quickly (old data may not
represent the current state of the object or phenomenon under observation) or the amount
of data to be processed is huge, and aged data cannot be stored (data may exceed the
available memory). For example, forecasting applications, such as stock market forecasts,
require real-time or near real-time processing, as its data source is non-stationary. Data
that has the characteristic of being continuously generated from sources is called stream
data, and in the context of machine learning it must be processed one observation at a time
(or mini-batch), as opposed to batch learning, where learning is done in a batch manner.
This learning process is called incremental or online and is illustrated in Figure 2.27b.

(a)

(b)

Figure 2.27.: (a) Batch learning, (b) Incremental (online) learning.

62 CHAPTER 2. THEORETICAL BACKGROUND

In the context of data stream classification, data instances are not available in the form of a
set of numerous instances that can be used for training, but they become readily available
in a continuous and fast way. Prediction requests are expected any time and the classifier
must use its current model to serve them. Another characteristic of the data streams is
that the statistical properties of the target variable, which the learning model predicts, or
the input itself (more rare) can change over time. This characteristic is called concept drift,
and it is clear that if the current model does not evolve or is not adjusted to capture such
changes, predictions will gradually stop being accurate. Therefore evolving data streams
dictate different learning settings than the typical batch learning, which have motivated
modifications to current learning algorithms or new ones that meet those requirements. One
classification algorithm that has been modified to meet the requirements of data streams
is the adaptive random forest (Gomes et al., 2017). Algorithm 9 shows in pseudocode the
random forest for stream data, and Algorithm 8 the training process of a random tree.

The adaptive random forest differs from the random forest in two ways: (1) in the way the
bootstraps are created (online bootstrap procedure, line 2 of the Algorithm 8, (Bifet et al.,
2010)) and (2) in the way the decision to split leaves is made (features are eliminated up to
m < M , with M representing all classification features. See the arguments with which the
RFTreeTrain function is called in Algorithm 9, line 9). In addition, splitting attempts (line
7, Algorithm 8) are restricted to these m features for that node. Smaller values of Grace
Period parameter GP (line 6, Algorithm 8) motivate node splitting and lead to deeper
trees. Up to line 11 (Algorithm 9), the algorithm addresses stationary data streams. The
conditions tested in lines 11 and 16 attempt to address the problem of concept drift, where
a drift warning (line 11) triggers the initialization of a background tree to capture the new
“concept”, which will only replace an existing tree if the drift is eventually confirmed (line
16 Algorithm 9).

Algorithm 8: RFTree Train of Adaptive Random Forest algorithm (Gomes et al., 2017).

Data:
λ : fixed parameter of Poisson distribution
GP : Grace period before recalculating heuristics for split test
m: maximum features evaluated per split
t: tree
x,y : data instance

1 RFTreeTrain(m,t,x,y)
2 k ←− Poisson(λ = 6)
3 if k > 0 then
4 l←− FindLeaf(t,x)
5 UpdateLeafCounts(l,x,k)
6 if InstanceSeen(l) ≥ GP then
7 AttempSplit(l)
8 if DidSplit(l) then
9 CreateChildren(l,m)

10 end if

11 end if

12 end if

2.4. ACKNOWLEDGEMENTS 63

Algorithm 9: Adaptive Random Forest (Gomes et al., 2017).

Data:
m : maximum features evaluated per split
n : total number trees (n = |T |)
δw : warning threshold
δd : drift threshold
c(·): change detection method
S : data stream
B : set of background trees
W (t) : tree t weight
P (·) : learning performance estimation function

1 T ←− CreateTrees(n)
2 W ←− InitWeights(n)
3 B ←− ∅
4 repeat
5 (x,y)←− next(S)
6 for all t ∈ T do
7 ŷ ←− predict(t,x)
8 W (t)←− P (W (t),ŷ,y)
9 RFTreeTrain(m,t,x,y) //Train t on the current instance (x, y)

10 //Check if Warning has been detected
11 if C(δw,t,x,y) then
12 b←− CreateTree()// Init background tree
13 B(t) ←− b

14 end if
15 //Check if Drift has been detected
16 if C(δd,t,x,y) then
17 b←− CreateTree() //Replace t by its background tree
18 t←− B(t)

19 end if

20 end for
21 //Train each background tree
22 foreach b ∈ B do
23 RFTreeTrain(m,b,x,y)
24 end foreach

25 until HasNext(S);

2.4. Acknowledgements

Figure 2.15 has been published in the 22nd AGILE Conference on Geo-information Science
(Zourlidou et al., 2019). Figure 2.22 has been published in the 25th AGILE Conference
on Geographical Information Science (Zourlidou et al., 2022d). The thesis author is the
principal investigator and author of these articles, as well as the creator of all figures.

3. Related Work

3.1. Existing Traffic Regulation Recognition Approaches

This thesis proposes a new classification of traffic regulation recognition studies according to
the features used to classify traffic regulations. This taxonomy at the first level distinguishes
three categories, namely static-, dynamic- and hybrid-approaches and at the second level
five categories: map-based, image-based, episode-based, speed-profile, and movement summa-
rization. The taxonomy is depicted graphically in Figure 3.1. All the studies reviewed in
this section are listed in Table 3.1. A detailed description of the methods of the reviewed
articles, their limitations and a comprehensive critical overview of the research field can be
found in a related systematic literature review (Zourlidou and Sester, 2019), the first and so
far only attempt to illustrate the progress and challenges of the research field. The review
provided in this chapter, is extended to include recent works published after 2019.

This chapter provides a brief updated review of existing methods, focusing mainly on the
following aspects and experimental settings in which they have been tested: the classes of
regulations for which classifiers are trained to recognise, the characteristics of the datasets
on which the methods are tested (are they openly available for download for reproduction
of results or for use in testing similar methodologies? how was the groundtruth map con-
ducted?), the testing settings (does the article consider the transferability of classifier learn-
ing to different cities?1, does it examine classification performance using different numbers of
GPS trajectories?), the classification features they use and their classification performance.
This extracted information from the thirteen reviewed articles is organized in Table 3.2.
By reviewing the existing methods, the knowledge gap that this thesis attempts to fill is
highlighted.

Taxonomy of
Traffic Regulation Recognition

Methods

Static
approaches

Dynamic
approaches

Hybrid
approaches

1
Map-based
approaches

2
Image-based
approaches

3
Episode-based
approaches

4
Speed-profile
approaches

5
Movement

Summarization
approaches

Figure 3.1.: Taxonomy of methods for traffic regulation recognition from GPS data.

1Cross-city learning transferabilty: train a classifier on the data of a city A and then predict target labels from
data of a city B.

65

66 CHAPTER 3. RELATED WORK

Table 3.1.: Reviewed articles in chronological order.

Author(s) Title of the Article Year Method(s)

1 Pribe and Rogers Learning to associate observed driver behavior with traffic controls 1999 Episode/Mov.sum
2 Carisi et al. Enhancing in vehicle digital maps via GPS crowdsourcing 2011 Episode
3 Saremi and Abdelzaher Combining map-based inference and crowd-sensing for detecting traffic regulators 2015 Map, Epis., Hybrid
4 Hu et al. SmartRoad: Smartphone-based crowd sensing for traffic regulator detection and

identification
2015 Episode

5 Aly et al. Automatic rich map semantics identification through smartphone-based crowd-
sensing

2017 Episode

6 Wang et al. Automatic intersection and traffic rule detection by mining motor vehicle GPS
trajectories

2017 Mov.sum.

7 Efentakis et al. Crowdsourcing turning restrictions from map-matched trajectories 2017 Mov.sum.
8 Munoz-Organero et al. Automatic detection of traffic lights, street crossings and urban roundabouts

combining outlier detection and deep learning classification techniques based on
GPS traces while driving

2018 Speed

9 Zourlidou et al. Classification of street junctions according to traffic regulators 2019 Speed
10 Méneroux et al. Traffic signal detection from in-vehicle GPS speed profiles using functional data

analysis and machine learning
2020 Speed

11 Golze et al. Traffic regulator detection using GPS trajectories 2020 Episode/Mov.sum
12 Liao et al. Impact assessing of traffic lights via GPS vehicle trajectories 2021 Speed/Map
13 Cheng et al. Traffic control recognition with an attention mechanism using speed-profiles and

satellite imagery data
2022 Speed/Image

3.1. EXISTING TRAFFIC REGULATION RECOGNITION APPROACHES 67

Table 3.2.: Extracted information from the reviewed articles.

Article Regulator∗ Open
Data

Dataset Size Ground-
truth

Cross-
city

Min.
Samp.

Class. Method Class.Perform.⋄

1 Pribe and Rogers (1999) TS, SS, UN No 50 Inter. Various No No Neural Nets Ac:100%
2 Carisi et al. (2011) TS, SS No 89 Inter. On site No Yes Heuristics Ac:>90%
3 Saremi and Abdelzaher

(2015)
TS, SS, UN No >1K Inter. Google Str. Yes No Random Forest Ac:91%(dyn),

Ac:95%(map),
Ac:97%(hyb)

4 Hu et al. (2015) TS, SS, UN No 463 Arms On site No No Random Forest,
Spectral Clust.

Ac:>90%(RF),
Ac:80%(Clust),
Ac:95%(active
learning)

5 Aly et al. (2017) TS, SS No 24km Foot Traj. On site No No Heuristics R.:0.8, Pr:0.8
6 Wang et al. (2017) TR No 321 Inter. On site No No Clustering -
7 Efentakis et al. (2017) TR No >100K Inter. Various No No Heuristics Ac:57–70%
8 Munoz-Organero et al.

(2018)
TS∗∗ Partly 55 Traj.,10 Traj On site No No Deep Belief Net. R:0.89, Pr:0.88

9 Zourlidou et al. (2019) TS, PS-YS No 31 Inter. On site No No C4.5 R:0.83, Pr:0.31
10 Méneroux et al. (2020) TS No 44 TS, 5 SS On site No No Random Forest Ac:95%
11 Golze et al. (2020) TS, PS, UN No 1064 Arms On site No No Random Forest Ac:90.4%
12 Liao et al. (2021) TS No - On site No No DLSTM 0.95 AUC
13 Cheng et al. (2022) TS, PS, UN No 3538 Arms, 1204

Traj.
On site No No CVAE F:0.90

Article: Authors of the article. Regulator: Regulator classes that are the targets of the learning/predicting process.
Open Data: indicates whether the dataset used in the study is openly available for download. Dataset Size: contains information on the size of
the data if it is given by article. Groundtruth: indicates how the groundtruth map was conducted.
Cross-city: indicates whether the transferability of learning between cities is tested.
Min. Samp.: indicates whether the article conducts experiments on the effect of the number of trajectories on classification performance.
Class. Method: classification method. Class.perform.: classification performance.
∗ UN: Uncontrolled, TS: Traffic Signal, SS: Stop Sign, TR: Turning Restriction, PS: Priority Sign, YS: Yield Sign.
∗∗ Additionally to TS, street-crossings and roundabouts are detected.
⋄ Ac: Accuracy, Pr: Precision, R: Recall, F: F-score, AUC: Area under the ROC Curve.

68 CHAPTER 3. RELATED WORK

(a) (b)

Figure 3.2.: Intersection arms of (a) a three-way and (b) a four-way intersection.

Here we should note that a common methodological element of all these studies is the
extraction of classification features from the available data and then using them to classify
the intersection arms (or approaches). The term intersection arm refers to the road that
connects one intersection with another one, as explained on page 19 in Section 2.1.1. A three-
arm (three-way) intersection has three arms and a four-way intersection has four arms, as
shown in Figure 3.2a and 3.2b respectively.

The first level of taxonomy classifies methods into static, dynamic and hybrid categories,
depending on whether the classification features they use are static, dynamic or a mixture
from static and dynamic features. Static features are those that do not change over time, or
if they do, they do so not very often. Such information can be extracted from maps (map-
based approaches, Section 3.2.1) or satellite imagery (image-based approaches, Section 3.2.2).
In contrast, dynamic features are extracted from dynamic entities that change over time,
such as trajectories from moving objects (e.g., vehicles). From the trajectory of a vehicle,
the speed of the vehicle, the duration of its stops, etc. can be extracted. In the dynamic cat-
egory, we distinguish three subcategories: episode-based approaches (Section 3.3.1), where
movement episodes such as stopping or deceleration events are used as classification fea-
tures, speed-profile approaches (Section 3.3.2), and movement summarization approaches
(Section 3.3.3).

3.2. Static Categorization

This section reviews methods from the two subcategories of static category, map-based
(Section 3.2.1) and image-based approaches (Section 3.2.2).

3.2.1. Map-based Category

Map-based methods use static classification features extracted from maps, such as OSM.
The intuition behind this idea is that features describing for example the connectivity of
an intersection with nearby intersections, such as the distances of an intersection from
neighboring intersections or the road category to which an intersection belongs (primary,
secondary road, etc.) or the speed limit can be indicative of the regulation by which the
intersection is controlled (see the considerations of intersection design explained on page
20).

Here we find only one study that uses such features (Saremi and Abdelzaher, 2015). They
extract features related to speed as well as to inter-junction distances. In particular, they

3.3. DYNAMIC CATEGORIZATION 69

extract the speed rating of road segments, the distance of the nearest connected intersections,
the end-to-end distance of the road to which an intersection belongs, the semi-distances
of an intersection from both ends of the road to which it belongs, and the category of
the road segment that characterizes its importance in the road network (e.g., primary,
secondary, highway, etc.). After the classification, the methodology includes a step where
a consistency check is done among the predicted labels on intersection level. The following
domain knowledge rule is employed:

Either all or none of the approaches contributed to the same intersection have a
traffic light. This implies that when the classifier labels some of the approaches
of an intersection, but not all of them, with traffic light, the predicted label should
be revised. The revision makes either all or none of the intersection approaches
have a traffic light, this being decided upon utilizing probabilities computed based
on the fraction of decision trees voting for the approaches’ alternative labels.

The experiments were applied to datasets collected from four cities: 3,691 intersection ap-
proaches from the city of Urbana, 2,803 approaches from the city of Champaign, 7,561 ap-
proaches from Los Angeles, and 1,032 approaches from Pittsburgh. The groundtruth maps
of the traffic regulations were created from street level images acquired from Google Street
View. No dataset is available as an open dataset for reproducing the results or use for testing
similar methods. A Random Forest classifier with 500 trees is trained to categorize three
types of regulators: traffic lights, stop signs, and uncontrolled intersections. The classifica-
tion accuracy, with a confidence level of 80% in the prediction, is reported as 95% (worst
case in the different cities tested). The cross-city learning transferability tests achieved an
accuracy of 92%. No tests were conducted on the effect that the number of trajectories from
which classification features are extracted may have on classification performance.

3.2.2. Image-based Category

Methods that use features extracted from satellite images are classified into the image-based
category. Since this thesis focuses exclusively on methods that use GPS tracks, this category
is only considered in the context of methodologies that, in addition to features extracted
from tracks, also use features extracted from satellite images. Such a methodology is that
of Cheng et al. (2022), which is discussed in the section of hybrid methodologies (3.4).

3.3. Dynamic Categorization

3.3.1. Episode-based Category

The third category, episode-based, includes approaches that use various features mainly
related to stopping and/or deceleration episodes, usually extracted from a large set of tra-
jectories (dynamic entities). Stopping/deceleration episodes are detected on each trajectory
crossing an intersection arm and then statistical measures are calculated from these at-
tributes for all trajectories crossing the same intersection arm, such as the average number
of stopping episodes, the minimum number of deceleration episodes observed on tracks
crossing an intersection, etc.

Carisi et al. (2011) proposed a heuristic method for solving a binary classification problem
(traffic signals and stop signs), explaining how to enrich digital maps with the location
and time of traffic regulator types. First, slow down and standstill episodes occurring near
intersections are identified. Each intersection is then examined in terms of its traffic control.

70 CHAPTER 3. RELATED WORK

An intersection arm (approach) is considered to be controlled by a potential stop if at least
SST of the traces slows down. The SST is defined as the Stop Sign Threshold and its
optimal value is defined to 80%. The information per intersection arm shall be aggregated
to include all approaches of the same intersection. At an intersection regulated by stop
signs, at most two ways could have the right of way, while all others must yield. Therefore,
if all or all but one ways belonging to a given intersection, are marked as potential stops, the
intersection is identified as stop-sign regulated, and all the ways marked with a potential
stops become actual stop signs. If all but two ways are marked as potential stops, the
algorithm is not able to make an immediate decision and performs an additional control loop
to consider the case where the intersection is regulated with traffic lights. An intersection
approach is considered as a potential traffic light if at least TLT of the vehicles approaching
the intersection comes to a stop. The TLT is defined as the Traffic Light Threshold and its
optimal value is set at 15%. Based on the observation that when an intersection is traffic
light regulated, all its incoming ways comply with this requirement, the authors consider an
intersection to be traffic light regulated when at least half plus one of the incoming ways are
marked as potentially traffic light regulated. In addition, an intersection is marked as traffic
light regulated, only if all the ways not classified by the stop-sign recognition algorithm meet
the requirements to be potentially traffic signals. In all other cases, the intersection shall
be classified as a two-way stop. After the intersections are classified as stop/traffic light
controlled, the red signal duration is estimated using the 95th percentile of the standstill
times. This methodology was tested on two sets of GPS traces from two sections of the
city of Los Angeles (the 1st dataset consists of 28 intersections, 25 of which are stop signs
and 3 traffic lights, and the 2nd dataset consists of 61 intersections, 25 regulated with stop
signs and 36 traffic lights) and was found to be able to recognise stop signs with only 5
trajectories per intersection approach and traffic lights with only 7 trajectories, with an
accuracy greater than 90%.

Saremi and Abdelzaher (2015) propose a classification method (they call it the crowd-based
method) that uses the mean, minimum, maximum and standard deviation of the values
of three attributes extracted from the trajectories crossing an intersection: the crossing
speed, the number of stopping episodes and the duration of the latter. As crossing speed is
considered to be the lowest instantaneous speed of the vehicle when crossing an intersection
on its approach along the given intersection arm. The number of stops is considered to be the
number of time intervals during which the vehicle has stopped and is idling when crossing the
last section of the road along a given intersection arm. The stopping duration is taken as the
length of the last time interval during which the vehicle stopped and idled. The dataset used
to test this model consists of 6,700 miles of vehicular GPS traces collected from a total of 46
individuals over the course of several months. The minimum, first, second and third quartiles,
and maximum number of trajectories per intersection approach covered by the GPS traces
in the cities of Urbana, Champaign and Pittsburgh are 1, 2, 5, 24, 189, 1, 2, 4, 15, 223 and
1, 3, 5, 6, 13, respectively. It is not clear whether the number of intersections used to test
the map-based model (Section 3.2.1) is the same for this model, as no detailed classification
report is provided in the article. Also, no quantitative description of the datasets used
(e.g., the number of regulators per regulator category) is given. However, similar to their
proposed map-based model, a Random Forest classifier is trained to categorize three types
of regulators: traffic lights, stop signs, and uncontrolled intersections. The classification
accuracy, with a confidence level of 80% in prediction, is reported as 91% and interestingly,
the accuracy under cross-city learning settings is found 93%.

Hu et al. (2015) use two types of classification features, physical and statistical. The physical
features include the duration of the last stopping episode before a vehicle passes the intersec-

3.3. DYNAMIC CATEGORIZATION 71

tion, the minimum passing speed, the number of vehicle deceleration episodes, the number
of stopping episodes, and the distance of the last stopping episode from the intersection.
The statistical features include the minimum, maximum, mean and variance of the physical
features, aggregated for an intersection from all trajectories crossing it. The Random Forest
classifier as well as Spectral Clustering were tested for a 3-category classification problem
(traffic lights, stop signs, and uncontrolled intersections) using a dataset consisting of 463
intersection approaches (77 stop signs, 228 uncontrolled arms, and 158 traffic lights) crossed
by 4,000 miles trajectories recorded by 35 volunteer participants. Only straight trajectories
for feature extractions are used to eliminate the possible bias that may turning trajectories
have. By excluding turning trajectories, certain arms in T-shape junctions where trajecto-
ries always have to turn, will be always excluded entirely from classification. For this reason
the following domain knowledge rule is applied, for labeling those arms too:

Let us denote the left, right, and bottom ends of a T-shape intersection A, B,
and C, respectively. The traffic coming from C into the intersection must always
turn, and thus will always be discarded. Then, if A/B-traffic is uncontrolled, C-
traffic is stop sign controlled; otherwise, C-traffic has the same control type as
A/B-traffic. In other words, if A/B has traffic lights, so does C; otherwise C has
stop sign.

The groundtruth map was conducted by on site observation. The accuracy is reported
at 80% when unsupervised classification (clustering) is used. Under various feature settings
and information aggregation schemes (data, feature, label aggregation) and using a Random
Forest classifier, an accuracy of about 90% is reported. In addition, the paper considers an
active learning framework, combined with self-training, where manual labeling requests are
made to human annotators for those data instances predicted with low confidence. In this
case, the accuracy reaches 95%, while with only 20% data for training, the classifier achieved
90% accuracy.

Aly et al. (2017) use pedestrian tracks to detect stop signs and traffic lights. They identify
locations where pedestrians stay over a time interval (dwell time) and categorize the reg-
ulators accordingly. In particular, they measure the dwell time on the sides of crosswalks
and if the median dwell time exceeds a threshold hdwell, they identify the regulator as a
traffic light. Otherwise, it is a stop signal. The method is applied to a dataset consisting
of 24 km of pedestrian trajectories. The precision and recall of the classification is reported
with respect to hdwell values. For a relatively low value hdwell, the precision and recall have
optimal values, i.e., both 0.80.

3.3.2. Speed-profile Category

The speed-profile category includes methods that use vehicle speed profiles (time-ordered
speed measurements) as classification features.

Munoz-Organero et al. (2018) detect traffic lights, road crossings and roundabouts in real
time by classifying speed and acceleration time series with a deep belief network. Although,
the combined recall and precision are relatively high (0.89 and 0.88 respectively), the score
of the traffic light category shows a clear limitation in all tested classification settings, com-
pared to the other two categories. Two small datasets were used to evaluate the method.
One consists of 55 trajectories repeating the same route in two urban areas and a connecting
highway (8.1 km), crossing various road elements, such as traffic lights, road crossings and
roundabouts. The number of these elements is not given. The second dataset is an open

72 CHAPTER 3. RELATED WORK

dataset, consisting of 10 trajectories repeating the same 23.6 km long route, crossing the in-
teresting locations: 2 ramps, 2 motorway exits, 2 roundabouts, 20 traffic lights and 2 curved
roads. Despite the classification limitation of the traffic light category, this study is the first
to use deep learning by taking into account the sequential order of speed samples within
speed profiles, unlike other speed-based methods where the order of speed measurements is
lost when fed to non-sequential classifiers (e.g., that of Zourlidou et al. (2019)).

Similarly, Zourlidou et al. (2019) investigate the predictive ability of speed profiles, both
in terms of spatial resolution (speed sequences sampled at one-meter intervals) and tempo-
ral resolution (speed samples taken at one-second intervals). Different sequence sizes were
tested, for the two types of resolution (31 samples, 51 samples, etc.), revealing that the clas-
sification performance was better when using a temporal resolution of 8 s from the centre
of the intersection (a sequence of 9 speed samples, i.e., a speed sample 8 s from the centre
of the intersection, in 7 s, 6 s, ..., 0 s, with 0 s corresponding to the time the vehicle crosses
the centre of the junction). The speed profiles were used as features for a C4.5 decision tree
classifier trained to distinguish between traffic signal controlled and priority/yield controlled
intersections. The method was applied to a small dataset consisting of 31 intersections, 25
priority/yield controlled and 6 traffic signal controlled intersections. The results show high
recall (0.83) for traffic light category prediction, but low precision (0.31) and F-measure
(0.45). The groundtruth map of the dataset was conducted by on site observation and the
trajectory dataset is not openly available.

Méneroux et al. (2020) detect traffic signals (binary classification problem) using speed
profiles. By testing three different ways of feature extraction - functional analysis of speed
records, raw speed measurements and image recognition technique - they found that the
functional description of speed profiles with wavelet transforms outperforms the other ap-
proaches. Random Forest classification achieved the best accuracy (95%) compared to other
tested classification techniques. However, as the authors point out, the lack of data is a
strong limitation of the experiments, as their dataset contained only 44 instances of traffic
lights.

3.3.3. Movement-summarization Category

The fourth categorization of methods is called movement-summarization. It uses as features
the percentage of samples (trajectories) that follow specific motion patterns. The studies
of Pribe and Rogers (1999) and Golze et al. (2020) use such features, but in combination
with other features related to stopping/deceleration episodes, while the studies of Efentakis
et al. (2017) and Wang et al. (2017), which detect turn restrictions, are based solely on such
movement-summarization features.

Pribe and Rogers (1999) trained a Neural Network (NN) to learn to associate driver behavior
with three types of traffic rules, traffic lights, stop signs, and clears (uncontrolled intersection
arms). The NN was fed with the mean and standard deviation of the features associated
with the stopping episodes extracted from the GPS traces. Specifically, the number of times
a vehicle stops before crossing an intersection, the duration of the last three stops closest to
the intersection, and the total duration of all stops were used. In addition, they calculated
the percentage of trajectories that include at least one stop along each intersection approach.
The method achieved an accuracy of 100%, but was tested on a rather small dataset (50
intersections), also ignoring intersections that did not have at least two arms crossing the
tracks.

3.4. HYBRID-BASED CATEGORIZATION 73

Golze et al. (2020) proposed a Random Forest classifier with oversampling and Bagging
Booster to predict intersection regulators (traffic signals, priority controlled and uncon-
trolled intersections) with 90.4% accuracy. Along with other physical characteristics such
as the number of stopping episodes, the duration of stopping events, the average distance
to the intersection center of all stopping events, the duration of the last stopping episode,
the distance to the intersection center of the last stopping event, the average speed and
the maximum speed on approaching the intersection, they also calculate the percentage of
trajectories with at least one stopping episode. By also performing a feature importance
analysis, they show that the last feature is of great importance compared to other classifi-
cation features. In addition, they tested the case of using only straight trajectories as well
as both straight and turning trajectories, finding that by eliminating turning trajectories,
the classification performance was better. The dataset consists of 700 trajectories from the
city of Hanover, Germany, each of which has a length between 5 and 14 km, with a total
length of 3,748 km and all trajectories crossing a total of 1,064 intersections. The dataset
is not openly available for download, and ground truth map has been carried out by on site
observation.

A different category of rules concerns turn restrictions. Wang et al. (2017) detect turn-related
rules, such as U-turns and left-turn prohibitions within a certain time range (time range that
turns are allowed in specific intersection ways) by analyzing the trajectories and identifying
turn patterns (if any and within what time range) using clustering. This trajectory analysis
results in a table where rows represent different time intervals and columns correspond to
intersection turn paths. Each cell then contains the number of trajectories that cross that
turn path in a given time. Cells with zero trajectories indicate turn prohibitions.

Similarly, Efentakis et al. (2017) identify turning restrictions from a set of map-matched
trajectories by detecting the collective turning behavior of vehicles at intersections, i.e.,
summarizing the movement behavior (turning or not) of vehicles at intersection locations.
The study uses three OSM datasets collected from Athens, Berlin and Vienna, each con-
taining thousands of turns on intersection approaches (75,552 in the Athens dataset, 44,636
in Berlin and 36,484 in Vienna). Using two different thresholds (2.5% and 5%), turning
restrictions are identified by examining the percentage of trajectories turning on a given in-
tersection approach. The validation of the discovered turn constraints is done by visualizing
each of the detected constraints and using an external mapping service and cross-validating
the results. The accuracy of the verified turning restrictions in the three cities and in the
two considered boundaries ranges between 57% and 70%.

3.4. Hybrid-based Categorization

Hybrid-based approaches include methods that use a mixture of static and dynamic features.
Saremi and Abdelzaher (2015) is the first to initiate such a model, where in addition to the
map-based information extracted from OSM, in the availability of dynamic crowd-sourced
information (GPS traces), the classification model incorporates features extracted from tra-
jectories, such as the traverse speed, the number of stops and the stopping duration of the
last time interval that the vehicle has stopped and idling. A Random Forest classifier with
500 trees is trained to categorize three types of regulatory types: traffic lights, stop signs,
and uncontrolled intersections. The classification accuracy, with a confidence level of 80% in
prediction, is reported as 97%, outperforming both map-based and crowd-based (dynamic)
models. Moreover, in cross-city learning transferability settings, classification remains as
high as 96%.

74 CHAPTER 3. RELATED WORK

Liao et al. (2021) described a traffic light detection (binary classification problem) and
impact assessment framework, which can detect the presence of traffic lights and estimate
the influence range of traffic lights (vehicle wait queuing in space and time) using speed time
series extracted from GPS trajectories and intersection-related features, such as intersection
type (connecting arterials, connecting minor roads, connecting arterials and minor roads),
road type (according to two speed limits) and traffic flow information. The Dense module
is combined with a Long Short-Term Memory neural network (DLSTM) in the proposed
framework, which handles discrete and sequential features separately, achieving an AUC
value below the ROC curve of 0.95. No information on the size of the dataset is given, and
the groundtruth maps is said to have been conducted manually.

Cheng et al. (2022) launches an automatic way to identify three categories of traffic regu-
lators (traffic lights, priority signs and uncontrolled intersections) based on a Conditional
Variational Autoencoder (CVAE), utilizing GPS data collected from vehicles and satellite
images retrieved from Google Maps. A Long Short-Term Memory network is applied to
extract the motion dynamics in a GPS sequence crossing an intersection. In addition, a
Convolutional Neural Network (CNN) is build to extract local grid-based image informa-
tion associated with each step of GPS locations. A self-attention mechanism is adopted to
extract the spatial and temporal features in both GPS and grid sequences. The extracted
temporal and spatial features are then combined for the classification task of target labels.
The methodology is tested on a dataset collected from the city of Hanover consisting of
3,538 intersection arms and 1,204 trajectories. The groundtruth map of traffic rules was
generated from on site observation. The dataset is not available as an open dataset to re-
produce the results or to use it for testing similar methods. No tests were conducted on
the transferability of learning between cities or the effect of the number of trajectories on
classification performance. Compared to a Random Forest model and an Encoder-Decoder
model, the proposed model achieved better results, with accuracy and F1 score found 0.90.

3.5. Discussion

A common element of the methodologies examined is that classification is done at the in-
tersection arm level rather than the entire intersection. This is motivated from the fact
that there are intersections where not all arms are regulated with the same type of regu-
lator and therefore it makes sense to classify each intersection arm separately. If there are
large datasets available where there are enough intersection examples representing different
regulation mixtures in intersection level, it might also be possible to classify at the inter-
section level. In such a case, a three-way-all-stop controlled intersection could be labeled
as 1, a three-way intersection with one stop and two priority controlled arms could be la-
beled differently, etc. Because the classification is done at the intersection arm level, the
classification features in all but one study represent information exclusively relevant to that
arm. Only in the work of Saremi and Abdelzaher (2015) and for the map-based model, the
classification features for an intersection arm contain information also from neighbouring
arms of the same junction. To the best of our knowledge, no other methodology proposed
to date, for example from the dynamic category, has considered using features that include
information from neighboring arms. We consider this to be an interesting aspect of the
problem to investigate, as information from neighboring arms may be informative for each
arm itself.

3.5. DISCUSSION 75

Even using information from neighbouring arms, the classification is still done at the inter-
section arm level. Motivated by the single fundamental rule that Saremi and Abdelzaher
(2015) used to correct possible misclassifications in traffic light controlled intersections (see
Section 3.2.1) and the labeling rule that Hu et al. (2015) use to label the arms of T-shaped
intersections that are excluded from classification due to the elimination of turn trajectories
(see Section 3.3.1), we believe that checks of predicted labels at a step after classification
could trigger a mechanism for recovering incorrect predicted labels based on domain knowl-
edge rules that preserve label consistency at the intersection level. In this way, possible
misclassifications of intersection arms could be corrected.

The effect of turning trajectories on classification performance has been examined only
in one study (Golze et al., 2020), while the work of Hu et al. (2015) only mentions that
it ignored turning trajectories from the feature computation. All other studies make no
reference on this aspect of the problem.

Moreover, from Table 3.2 we see that six classes of traffic regulators (TS, SS, UN, TR, YS,
PS) were identified as detectable by crowdsensing means from the thirteen articles reviewed.
A first observation on this is that the most frequently detectable classes are TS and SS. A
second observation is that all of these published studies use different datasets, and apart
from an open small dataset (10 trajectories) reported and used by Munoz-Organero et al.
(2018), none of the studies made the dataset used publicly available to the research commu-
nity so that other studies can use it as a benchmark. Without such a dataset as a reference,
we observe that each study tests a different methodology on different target labels, with
features computed from different trajectory densities (e.g. 1,204 trajectories used in Cheng
et al. (2022) and 55 trajectories in Munoz-Organero et al. (2018)), and using different train-
ing/testing settings (e.g., 50 intersections in the dataset used by Pribe and Rogers (1999)
and 463 by Hu et al. (2015)). For example, can a method that identifies TS and SS with
high accuracy, predict equally well the three classes of TS, PS and UN regulators? That is,
if we apply the same methodology to a different regulator context, will it perform similarly?
This observation highlights therefore the need, a method to be tested on various datasets
each containing different regulator labels, so that the generalisation ability of the classifier
to be assessed under broader label settings (label categories). Similarly, it is important to
test a method on datasets with different trajectory density settings, as the classification fea-
tures in most methodologies are extracted as the aggregation value of the mean, minimum,
etc. of physical features (e.g., number of detected episodes). Moreover, the description of
the datasets or classification reports often do not include important information about the
number of data samples per class and, therefore, one cannot fully evaluate the classification
performance of the proposed methodologies or compare the performance between different
recognition approaches.

The method for obtaining the ground truth map in 10 out the 13 studies is based solely on on-
site (direct) observation. One study uses street-level images from Google Street View (Saremi
and Abdelzaher, 2015), another uses on-site observation and sources from an official trans-
port agency (Pribe and Rogers, 1999), and a third study (Efentakis et al., 2017) uses infor-
mation from satellite images and on-site examination. Given that on-site observation is also
included in these multiple sources, the total percentage of methods that uses the manual
method of acquiring ground truth maps is further increased to over 92%. Since the learning
process requires the regulator labels (training), the groundtruth map of the regulators is an
integral part of the data needed by the algorithms. When its acquisition requires a manual
process (on-site observation), this imposes constraints related to time and cost on recogni-
tion methods that intend to automate the overall process of identifying traffic regulations.

76 CHAPTER 3. RELATED WORK

Thus, if by crowdsensing or using platforms that provide such data, a lot of trajectory data
can be readily available to address the classification task, obtaining the ground truth map is
still necessary for learning purposes. Today, many GPS datasets are available from various
open source platforms or institutions or competitions, but cannot be used in the context of
traffic regulator recognition unless the ground-truth map is also provided. Therefore, this
finding highlights the need for open datasets that researchers can easily access, so that
they do not have to come across the time-consuming manual work that a groundtruth map
entails.

Moreover, on the one hand the importance of regulator labels in the context of supervised
classification and on the other hand the time-consuming and costly task of constructing
groundtruth maps, motivate the investigation of unsupervised and semi-supervised method-
ologies that could be used in the context of this problem and so far have only been explored
by one study (Hu et al., 2015).

Another important conclusion is that the transferability of learning between cities remains
an unexplored aspect of the problem, as only one study has conducted experiments on this
(Saremi and Abdelzaher, 2015). Similarly, an unexplored issue is the number of trajectories
required for sufficient classification: 5, 10, 20, or how many trajectories are required for a
classifier to learn to discriminate between different regulators?

Additionally, more conclusions could be drawn if classification performance was assessed
across all studies with the same metrics, or even better, if detailed classification reports
were provided, including the number of data instances per regulatory class used to build
the classification models. It seems that hybrid methods (Class.Perfom, and Class. Method
columns in Table 3.2), such as that of Saremi and Abdelzaher (2015), that combine static
and dynamic features perform better than those using only static or dynamic features, and
given that this idea is only addressed in two articles (Saremi and Abdelzaher, 2015; Cheng
et al., 2022), it may be an interesting methodological direction to explore further.

A general observation already outlined in Section 1.2 is that crowd-sourcing traffic regulators
for map-enrichment is a less explored topic compared to other automatically generated map
elements (e.g., street geometry, intersection locations). This is also reflected by the number
of articles excluded in the screening process for the review of published work in the field,
as well as the small number of articles that make up the list under review of this chapter.
The recent interest on this subject, if taken into account the long period of inactivity since
1999 when the first relevant article was published, could be explained by the practical need
to enhance maps with this information. Therefore, considering the limitations of existing
methodologies, as described in this section, new research directions can be made for the
topic explored in this thesis.

3.6. Knowledge Gap

We identify the following major research directions, that are either unexplored or under-
explored so far by existing works, and therefore this thesis aims at:

1. Proposing and testing a new traffic regulator recognition methodology and evaluating
it in different dataset settings, i.e., different cities, regulators, trajectory densities and
dataset sizes.

– Since, from the literature review it was identified that hybrid methods seem to
perform better, the proposed model will examine further this finding.

3.7. ACKNOWLEDGEMENTS 77

– The proposed methodology will be tested under different feature settings, i.e.,
including information from context arms and using exclusively information from
one intersection arm.

– The methodology will propose an additional consistency check of the predicted
labels at an intersection level, at a post-processing step, recovering incorrect pre-
dicted regulator labels when possible.

– The proposed methodology will examine the influence of sampling rate of GPS
tracks on the classification performance.

2. Investigating the classification performance of the proposed method under different
trajectory settings.

– We will examine whether there is a certain number of trajectories per intersection
arm that leads to optimal classification performance.

– We will examine the effect (if any) of turning trajectories in the classification
performance.

3. Investigating the classification performance of the methodology under sparsely labeled
data and streaming data.

– The classification performance of the proposed methodology will be examined
under: 1) no available labeled data, and 2) the availability of various amounts of
labeled data (12 labeled data instances, 24, etc.). Machine learning methods such
as clustering, semi-supervised learning techniques such as self-learning, as well as
active learning, will be used for the above purpose.

– The proposed classification method will be assessed under learning transferabilty
settings (train a classifier on city A and predict regulators on city B).

– The proposed methodology will be applied under the framework of incremental
learning. Instead of processing all data at one time for building a learning model,
data instances will be processed one at a time and the learning model will be
updated on an incremental way (training with a single data instance).

3.7. Acknowledgements

The observations, discussions and conclusions of Sections 3.5 and 3.6 have been partly
published in the ISPRS International Journal of Geo-Information under the title Traffic
Regulator Detection and Identification from Crowdsourced Data-A Systematic Literature
Review (Zourlidou and Sester, 2019).

The review of some articles mentioned in this chapter has been also published in the ISPRS
International Journal of Geo-Information under the title Recognition of Intersection Traffic
Regulations From Crowdsourced Data (Zourlidou et al., 2023).

The thesis author is the principal investigator and author of both articles, as well as the
creator of all figures.

4. Traffic Regulation Recognition (TRR) from GPS Data

4.1. Introduction

This chapter discusses four different TRR methods that according to the proposed TRR
taxonomy (Section 3.1) fall into the categories static, dynamic and hybrid. The first method
is called static (Section 4.3.2) and uses features derived from OSM. The second method
Section 4.3.3) is a dynamic TRR approach, called c-dynamic (c- for compact), which uses
features describing the speed of vehicles on approaching the intersection, as well as their
movement behaviour as captured by four movement patterns: (a) unhindered crossing of
the intersection, (b) deceleration without stopping, (c) stopping once and (d) stopping more
than once before crossing the intersection. The third method (Section 4.3.4) is called dynamic
and is an extension of the c-dynamic method using all the features of the latter and other
features related to stopping and deceleration episodes. The fourth method (Section 4.3.5)
is called hybrid and uses a combination of the features of the static and dynamic models
together. For the four TRR methods, two supervised algorithms are considered for building
the learning models, the Random Forest (RF) and the Gradient Boost (GB), using three
different datasets from the city of Hanover (DE), Champaign (US) and Chicago (US), which
are described in Section 4.2. The predictive performance of the trained classifiers is given in
Section 4.4 and discussed in Section 4.5.

4.2. Datasets

This section explains the data requirements for dealing with the TRR problem from crowd-
sourced data, and the constraints arising from these requirements (Section 4.2.1). Section
4.2.2 describes the data used in this thesis. The construction process of the groundtruth
map of intersection regulations is explained in Section 4.2.3.

4.2.1. Dataset Requirements and Limitations

As the proposed four TRR methods are based on supervised classification, both GPS traces
(for feature computation) and regulators (as labels) of the intersection arms are required.
Labeling, as already discussed (Section 3.5), is a time-consuming process and open tra-
jectory datasets cannot be used unless information on the intersection regulations is also
available to be used as target labels for training/testing purposes. With regard to the tra-
jectory dataset, an important requirement is that GPS samples must be recorded at a high
frequency, for example, 1 sample per second. This requirement stems from the fact that stop-
ping and deceleration episodes (classification features) are estimated from the GPS tracks
and therefore, if the sampling frequency is low (e.g., 1 sample every 15 s), short duration
episodes, such as those of stopping and deceleration, would occur between two samples and
could not be detected. Some widely used trajectory datasets such as the Athens and Berlin
datasets (Ahmed et al., 2015) have sampling intervals 30.14 s and 41.98 s, respectively.
Therefore, this requirement further limits the possible open trajectory datasets that could
be used for TRR, due to the required sampling rate. Up to the time of the implementation
of this thesis, no open dataset with a sampling rate above 0.28 Hz (≈1 sample every 3.61 s)

79

80 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

was found, except for the Chicago dataset (Ahmed et al., 2015). Thus, having to address
these challenges of datasets, the thesis author was able to access three appropriate datasets
in total: one recorded by the thesis author and now available as open dataset (Zourlidou
et al., 2022a,c), one shared by the author of the journal article Hu et al. (2015) at the request
of the thesis author, and one open trajectory dataset (Ahmed et al., 2015) for which the
groundtruth map had to be manually conducted by the thesis author and is now available
as an open dataset, too (Zourlidou et al., 2022b).

4.2.2. Datasets for Testing the Proposed Methods

Table 4.1 gives a description of the three datasets. The datasets contain two combina-
tions of rules, with the Champaign and Chicago datasets containing the same set of rules
(Uncontrolled (UN), Stop Sign (SS), and Traffic Signals (TS)) and the Hanover dataset con-
taining a subset of rules from the Champaign and Chicago datasets plus another one regu-
lator (UN, Priority Sign (PS), TS). Although the Hanover dataset contains Yield Sign (YS)
controlled arms, most of them are sparsely sampled (few trajectories cross them) and only
a few of those sampled from more than 3 trajectories could in principle be used for train-
ing/testing. For this reason YS was excluded from the analysis.

One regulation is considered per intersection arm, which means that a 3-way intersection has
three regulations and a 4-way intersection has four regulations. However, not all intersection
arms are sampled from the trajectories, i.e., an intersection may be sampled from only
one of its roadways (approaches), while another may be sampled from all of its roadways.
Therefore, depending on the types of intersections (3-way, 4-way) and the availability of
trajectory samples that cross the intersection arms, the total number of regulations per
dataset varies accordingly. The Hanover dataset consists of 1,204 tracks with a total length
of 6,498 km (average: 5.39 km and standard deviation 4.14 km) obtained from a vehicle
that the thesis author used for her daily commuting covering an area of 11.6 km x 16.9
km, with an average sampling rate of 1.7 s and average speed 30.28 kmh. The tracks cross
1,064 intersections with 3,538 in total intersection arms. The Champaign dataset consists
of 2,022 tracks with a total length of 6,230 km (average: 2.83 km and standard deviation
3.98 km) obtained from vehicles driven by 35 volunteers covering an area of 12.2 km x 13
km, with an average sampling rate of 1 s and average speed 35.1 kmh. The tracks cross
713 intersections with 2,501 in total intersection arms. The Chicago dataset consists of 889
tracks with a total length of 2,869 km (average: 3.22 km and standard deviation 897.28 m))
obtained from university shuttle buses covering an area of 3.9 km x 2.5 km, with an average
sampling rate of 3.61 s and average speed 32.86 kmh. The tracks cross 156 intersections
with 568 in total intersection arms. All data are naturalistic1 in the sense that drivers were
not given external instructions on how to drive. Figure 4.1 illustrates the three datasets.

Table 4.1.: Datasets used for testing the proposed methods.

City Junc. Rules Traj. Avg.
Speed(km/h)

Avg.Traj.
Length(km)

Sampl.
Rate(s)

Rules ∗

Hanover 1,064 3,538 1,204 30.28 5.39 1.7 TS, PS, UN
Champaign 713 2,501 2,202 35.1 2.83 1 TS, SS, UN
Chicago 156 568 889 32.86 3.22 3.61 TS, SS, UN

∗TS: Traffic Signal, SS: Stop Sign, UN: Uncontrolled, PS: Priority Sign.

1Naturalistic data can be defined as data that make up records of human activities that are neither elicited by nor
affected by the actions of researchers Given (2008).

4.2. DATASETS 81

(a) Hanover.

(b) Champaign.

(c) Chicago.

Figure 4.1.: The three datasets used in this study.

82 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

4.2.3. Groundtruth Map Construction

The purpose of a groundtruth map of intersection regulations is to relate each intersection
arm to the type of regulation it is controlled by. Such a map is illustrated in Figure 4.2a and
an example of the recorded information per intersection arm (arm id, rule label, arm angle,
junction id) is shown in Figure 4.2b. To construct the groundtruth map of the Hanover
dataset, the mobile phone applicationmapillary (Mapillary, 2022) was used to capture street
images. A mobile phone was placed in the front window of the car, as shown in Figure 4.3a,
and then, running the app, geotagged images were recorded while driving (Figure 4.3a).
Each mapillary logging session results in a sequence of geotagged images, which can either
be viewed from the application’s Upload tab (Figure 4.3c) or the images can be uploaded to
a Geographic Information System (GIS) (we used QGIS) and then viewed using the provided
event browser tool from the GIS (Figure 4.3b).

(a) The groundtruth map of the Chicago dataset.

(b) The recorded information on a groundtruth map.

Figure 4.2.: Examples of groundtruth maps.

4.2. DATASETS 83

(a) Capturing street level photos with mapillary App.

(b) Examining mapillary captured photos in Qgis for labeling intersection arms. (c) Examining mapillary cap-
tured photos in mapillary ap-
plication.

Figure 4.3.: Tools for constructing groundtruth maps of intersection regulations.

We used the latter method to examine the image sequences one by one (previous and
next image buttons shown in Figure 4.3b), while simultaneously examining the position
of the captured image on the map (red asterisk in the largest window of Figure 4.3b).
The traffic rule (label) of the inspected intersection arm was then manually recorded (at
a separate layer in QGIS) and given a unique identification number, and all these features
were associated with the relevant intersection (intersection identification number) to which
the corresponding intersection arm belongs (Figure 4.2b).

For the Chicago groundtruth map, mapillary images uploaded by other users were examined
and the groundtruth map was constructed using the QGIS software again. Some labels, when
possible, were verified by examining additional Google satellite imagery. The groundtruth

84 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

map from the Champaign dataset was provided to the thesis author as part of the TRR
dataset shared for research purposes from the first author of the article (Hu et al., 2015),
after request of this thesis author. However, some intersections were not represented in the
groundtruth map even though they were crossed by trajectories, and we had to add their
labels using the same method as in the other two datasets.

4.3. Methodology

This section describes the clustering algorithm for detecting short-term significant movement
episodes, such as stopping and decelerating episodes (Section 4.3.1). These episodes are then
used as classification features per se or further processed to compute other classification
features used by the four proposed TRR methods (Section 4.3.2, 4.3.3, 4.3.4, 4.3.5).

4.3.1. Detection of Stop and Deceleration Episodes

The Clustering Based Detection of Stop and Deceleration Episodes of Trajectories (CB-SDoT)
algorithm (see Algorithm 10) is a modification of the CB-SMoT (Palma et al., 2008) algo-
rithm (Section 2.2.7) for detecting significant episodes of short duration. Usually significant
locations as discussed in Section 2.2.6 are identified as those places that the moving objects
stay a significant amount of time. In the context of the work examined in this thesis, the
hypothesis is that the time spent at the intersections can be distinctive compared to non in-
tersection locations but the time intervals are much smaller than those locations recognised
by algorithms, such as the CB-SMoT, (touristic locations for example). Moreover, although
in the context of other stop-and-move detecting algorithms the more time a moving object
spends at a certain location, the more significant the location is, such a concept is neither
valid nor desirable under the TRR methodology that this thesis examines. Stopping episodes
that have a large duration should be considered as outliers as they may indicate traffic jams
or parking alongside the road and the source that causes them in general is not a traffic
regulation. For this reason, CB-SDoT identifies clusters of points (Figures 4.4 and 4.5) that
within a certain distance Eps remain at least minTime and (unlike CB-SMoT) no more
than maxTime. The maxTime parameter limits longer stops to be distinguished as stop-
ping episodes. In total, CB-SDoT in addition to the distance between points (Eps), it takes
into account the temporal distances between them to determine the clustering criteria. The
values of the parameters were defined experimentally. For stopping episodes: Eps=10 m,
minTime=4 s, maxTime=600 s, and for deceleration episodes: Eps=10 m, minTime=2.4
s, maxTime=3.9 s.

Figure 4.4.: Stopping (red) and deceleration (yellow) episodes detected in one trip (from east to west). The
numbers in blue indicate the vehicle’s speed in kmh.

4.3. METHODOLOGY 85

Figure 4.5.: Stopping episodes (in red) detected in the Chicago dataset.

Algorithm 10: The CB-SDoT algorithm.

Data:
T : set of GPS trajectories
Eps : interpoint distance
minTime : minimum time
maxTime : maximum time
Result: CB-SDoT identifies clusters of points that within a certain distance Eps remain

at least minTime and no more than maxTime.
Returns: for each cluster with cluster id, the sequence of points of the cluster
SeqPoints, the point representative RepCluster of the cluster and the duration Dur of
the detected event.

1 Initialize clusters to an empty list
2 Initialize all points of T as unprocessed
3 for each trajectory t in T do
4 for each unprocessed point p in t do
5 // find the neighbors of p
6 neighbor list = linear neighborhood(p, Eps)
7 if p is a core point wrt Eps, minTime, maxTime then
8 for each neighbor n in neighbor list do
9 N neighbor list = linear neighborhood(n, Eps)

10 neighbor list = neighbor list ∪ N neighbor list

11 end for
12 add neighbor list as cluster with cluster id in clusters
13 find the RepCluster of the cluster compute the Dur of the cluster
14 set all points in neighbor list as processed

15 end if

16 end for

17 end for

86 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

The concepts core point, linear neighbourhood and neighbouring points (Algorithm 10) refer
to the same ones originally defined in Ester et al. (1996) and Palma et al. (2008) and already
given in 2.2.7 and 2.3.3.2. Each detected cluster is a temporally ordered sequence of points.
For each cluster, a point is identified as the representative point of the cluster. Such a
point could be a core point of the cluster, or the first point in the time series of the cluster
(indicating the start of the event), or the last point (indicating the end of the event), or the
middle point, or the point closest to the centre of the intersection, or the one with the lowest
speed and closest to the centre of the intersection. The Algorithm 10 considers such a point
to be the last point in the time series of points in the detected cluster that has the lowest
speed. The reason for defining such a point is that additional classification features are
extracted from the stopping and deceleration episodes, which are related to the distance of
the episodes from the centre of the intersection. One such example is the distance of the last
stopping episode from the center of the intersection, (see dynamic-model at Section 4.3.4).
Measuring such distances requires a point that represents the cluster (to measure from that
point to the point that represents the intersection center), and the representative point
serves exactly this role.

4.3. METHODOLOGY 87

4.3.2. The Static Approach

The static method uses five features per intersection arm, all extracted from OSM. Originally
these features were proposed by Saremi and Abdelzaher (2015) for the map-based TRR
model, but there each intersection arm is described by a feature vector that combines features
from all intersection arms belonging to the same intersection, i.e., an intersection arm of a
4-way intersection is defined by 4x5=20 features. Here we propose a simplified TRR model
of the original, where each intersection arm is described by only five features (depicted in
Figure 4.6):

1. the end-to-end distance of the road that the intersection arm belongs to (red arrow
in Figure 4.6). The length of a road is indicative of its importance in the road network.
The same rationale applies also to the other distance-based features (points 2, 3).

2. the semi-distance of an intersection arm is the distance from the center of the in-
tersection to the center of the most distant intersection that the intersection arm is
connected to (green arrow in Figure 4.6).

3. the closest distance of an intersection arm is the distance from the center of the
intersection that the arm belongs to, to the center of the nearest intersection that the
arm is connected to (light blue arrow in Figure 4.6).

4. the maximum speed (speed limit) of an intersection approach is the maximum al-
lowed speed along it. Intersections controlled by traffic signals in general have higher
speed limit (e.g., 50 kmh) compared to stop-sign controlled intersections (e.g., 30 kmh).

5. the street category refers to the street type category of the intersection arm (e.g.,
primary, secondary, tertiary, residential street).

Figure 4.6.: Illustration of the distance-related features (end-to-end distance, semi-distance and closest dis-
tance) of the static method that represent the north-south intersection arm (indicated in grey color) of a
four-way intersection (in yellow).

88 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

4.3.3. The c-Dynamic Approach

This proposed TRR method is based on the hypothesis that each regulator class enforces
vehicles to move on certain moving patterns, and by detecting those patterns we can then
recover the regulators. We describe the observed movement patterns by using as core ele-
ments (pattern blocks) the stop and deceleration episodes, as well as their non-observation,
that is no stop and no deceleration episodes (four pattern blocks). For example, a movement
pattern can be a free crossing of an intersection where no stop or deceleration episode is
observed. Another pattern can be stopping only one time before crossing the intersection.
Numerous patterns can be defined by combining these patterns blocks. Then each regulated
intersection arm can be described from the movement patterns observed at its location, by
simply summarizing the patterns (each described by stop/deceleration episodes) of all the
trajectories that cross that intersection arm. For example, suppose N trajectories cross
a junction arm i arm. From the N trajectories, M trajectories cross the i arm having a
constant speed (p1: free flow, i.e. no stop, no deceleration events) and N −M trajectories
stop one time at the junction and wait for a few seconds (p2: one stop before crossing the
junction). We can then describe the i arm using the ratios of the trajectories following the
two motion patterns, p1 and p2. Defining p1 as the motion pattern of free flow and p2 as the
motion pattern with stops, then i arm can be quantitatively described as a location where
a mixed motion behavior is collectively observed and which can be summarized as follows:

[p1,p2]i arm = [
M

N
,
N −M

N
], with

2∑
n=1

pn = 1

Applying this idea in the context of the TRR problem, we define four different move-
ment patterns, depicted in Figure 4.7, instead of the two we used in the previous example
(
∑4

n=1 pn = 1):

– p1: Free-flowing (unobstructed) movement while crossing the intersection (no deceler-
ation or stopping episodes are observed).

– p2: The vehicle slows down without stopping.

– p3: The vehicle stops only once before crossing the intersection. However, it may slow
down more than once.

– p4: The vehicle stops more than once before crossing the intersection.

Movement-Summarization Features

% Trajectories
with Pattern-1

% Trajectories
with Pattern-2

% Trajectories
with Pattern-3

% Trajectories
with Pattern-4

Pattern-1: Free flow (no deceleration, no stop episodes)
Pattern-2: Deceleration with no stop episodes
Pattern-3: Only one stop episode
Pattern-4: More than one stop episode

Figure 4.7.: The four movement patterns that describe a vehicle’s crossing of an intersection arm.

4.3. METHODOLOGY 89

Figure 4.8.: The four movement patterns that describe a vehicle’s crossing of a junction: (a) unhindered
crossing, (b) deceleration (dotted line) without stopping, (c) stop once (red square), (d) stop more than once
(here two stop events are depicted with two red squares).

Schematically, this idea is illustrated in Figure 4.8. Such a mixture of motion patterns has
been used in Tang et al. (2016), but in a different context. There, the goal was to dynamically
determine the range of an intersection for obtaining the traffic flow speed and intersection
delay under different traffic patterns. Here we define movement patterns for summarizing
the collective behavior of vehicles at an intersection. The selection of the four patterns
was motivated after generating plots of vehicle speed profiles at various intersections and
made the following observations: at a traffic light a mixture of patterns was observed where
proportionally patterns 1 and 4 were distinct compared to the corresponding values at a
priority controlled intersection or at a priority sign. At a yield sign, we observed patterns 2
and 3 to have higher values compared to patterns 1 and 4.

Along with these four patterns computed per intersection arm, that are used as classifica-
tion features, we add in the feature vector additionally the six percentiles of average speed
(10th, 20th, 40th, 60th, 80th and 95th) of the trajectories that cross each junction arm.
These features, again, were motivated from the speed profiles we plotted at different in-
tersections, and observed different speed distributions between intersections controlled by
different regulators. Therefore, a 10-dimensional feature vector (four pattern values plus six
percentile values) is fed to the classifier for TRR. We refer to this method as c-dynamic
model (c- stands for compact, we explain later the difference of the c-dynamic from the
dynamic model). Regarding the implementation of this idea, all steps, from feature ex-
traction to intersection classification, are expressed in Algorithm 11. First, stopping and
deceleration episodes in trajectories are detected using the Algorithm CB-SDoT. Then, for
each intersection arm of the dataset, the classification features are computed from the tra-
jectories crossing it. As illustrated in Figure 4.9, for an intersection that has four arms,
i arm, m arm, j arm, k arm, for each arm and for each trajectory that crosses it, the
stopping and deceleration episodes within half the distance connecting the intersection to
the previous visited intersection (white arrows) are computed. Other existing TRR methods,
compute features within a buffer of a given size. For example, in Golze et al. (2020), stop-
ping episodes are calculated within 100 m of the intersection center. However, such feature
calculations within fixed-size distances can be problematic in areas where one intersection
from another is closer than this distance. Therefore, the proposed approach avoids such a
problem. Then, according to the stop/deceleration episodes detected on each trajectory
crossing an intersection arm, the movement behavior of the trajectory is categorized into

90 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

one of four movement patterns. The percentages of trajectories that follow each pattern per
intersection arm of the dataset are then calculated.

(a) (b)

Figure 4.9.: Each intersection consists of intersection arms that connect it to nearby intersections. Classi-
fication features are calculated per arm, within half the distance of the road segment connecting the current
arm to the previous arm visited by the trajectory (red dashed arrows in (a)). For each trajectory in (b) that
crosses the intersection arm j-arm from west to east, stopping and deceleration episodes are detected within
the orange indicated area along the j-arm in (b).

4.3. METHODOLOGY 91

Algorithm 11: TRR from GPS tracks (c-dynamic approach).

Data: GPS tracks, ground truth map
Result: Predict the traffic regulators by which intersection arms are controlled

1 while not all trajectories have been processed do
2 Find all stopping and deceleration episodes in the trajectory
3 Add stopping and deceleration episodes in DB tables StopTB and DecTB

4 end while
5 for i← 1,numJunctionarms do
6 Find the trajectory TrjIds[] that cross the i junction arm
7 numTrj ← number of TrjIds[]
8 for j ← 1,numTrj do
9 Trj = TrjIds[j];

10 Find the stop events of trajectory Trj that are along the 1/2 length of road
segment between junction arm i and the previous visited junction arm

11 Find the deceleration events of trajectory Trj that are along the 1/2 length of
road segment between junction arm i and the previous visited junction arm

12 Match the crossing behaviour (num. of stop/deceleration events) of the trajectory
Trj to one of the four patterns

13 Estimate the average crossing speed

14 end for
15 p1,p2,p3,p4 ← Compute the % of the four patterns for junction arm i
16 s1,s2,s3,s4,s5,s6 ← Compute the 10th, 20th, 40th, 60th, 80th and 95th average speed

percentiles for junction arm i
17 Add feature vector p1,p2,p3,p4,s1,s2,s3,s4,s5,s6 to DB table FeaturesTB

18 end for
19 Training and testing a classifier with data from FeaturesTB
20 Print classification report

92 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

4.3.4. The Dynamic Approach

The dynamic approach can be considered as an extension of the c-dynamic model, using, in
addition to the ten features used in the latter model, some statistical features (average, vari-
ance, minimum and maximum values) derived from the stopping and deceleration episodes
and from the estimated vehicle speed. Compared to existing TRR methods, for example,
those of Hu et al. (2015); Golze et al. (2020); Saremi and Abdelzaher (2015); Carisi et al.
(2011), this approach has a richer feature vector (86 features in total) that includes, in ad-
dition to stopping features, deceleration- and speed-related features, and the calculation of
the movement episodes is computed within a non-fixed distance from the intersection center
(see Section 4.3.3). All classification features are listed in Table 4.2.

Table 4.2.: Overview of the classification features derived for the dynamic TRR approach.

Physical Feature* Statistical Features **

S
to
p
p
in
g
ep

is
o
d
es

32

Number of stop epis. avg var min max
Duration of last stop epis. avg var min max
Duration of all stop epis. avg var min max
Mean Duration of all stop epis. avg var min max
Median Duration of all stop epis. avg var min max
Distance of last stop epis. avg var min max
Mean Distance of all stop epis. avg var min max
Median Distance of all stop epis. avg var min max

D
ec
el
.
ep

is
o
d
es

32

Number of decel. epis. avg var min max
Duration of last decel. epis. avg var min max
Duration of all decel. epis. avg var min max
Mean Duration of all decel. epis. avg var min max
Median Duration of all decel. epis. avg var min max
Distance of last decel. epis. avg var min max
Mean Distance of all decel. epis. avg var min max
Median Distance of all decel. epis. avg var min max

S
p
ee
d

18

Minimum speed avg var min max
Maximum speed avg var min max
Average speed avg var min max

Percentile avg speed (0.1)
Percentile avg speed (0.2)
Percentile avg speed (0.4)
Percentile avg speed (0.6)
Percentile avg speed (0.8)
Percentile avg speed (0.95)

M
ov
.
P
at
te
rn
s

4

Traj. % with no stop/decel. episodes
Traj. % with decel. episodes
Traj. % with one stop episode
Traj. % with more than one stop

S
u
m 86

* Derived per trajectory, ** Derived from the physical features per intersection arm.

4.3. METHODOLOGY 93

4.3.5. The Hybrid Approach

The hybrid approach uses the features from both the dynamic and static models, i.e., 86
features from the dynamic model and 5 features from the static model, in total 91 features.

4.3.6. Implementation and Classification Settings

Two tree classifiers are used for the classification of the intersection arms: the classifier RF
and the classifier GB. The XGBoost library (Chen and Guestrin, 2016) and the sklearn
library (Pedregosa et al., 2011) were used to implement the GB and RF respectively. All
programming tasks were implemented in Python 3.7. All data (GPS tracks, regulation labels,
centers of intersections, OSM map) were stored in a PostgreSQL open source Database (DB)
with PostGIS extension2. All the data required by the program are retrieved through SQL
queries from the DB. For the extraction of the dynamic features, only the GPS tracks
(DB table GPS Tracks), the center of intersections (Table Intersections) and the angles
of the intersection arms (Table Regulations) are required. As an example of how the data
have been stored in DB is the following; a row from Table Regulation, represents a traffic
regulation which has a unique identification number id (primary key of the Table) and
controls the traffic of the arm of intersection inter id. The angle of the arm is arm angle
(see Figure 4.10 for the reference angle system of intersection arms). The angle attribute is
used for “matching” the trajectories to intersection arms so that the dynamic classification
features can be extracted accordingly. For the extraction of the static features, the OSM of
the area of interest in needed (osm point, osm line).

Figure 4.10.: The reference angle system for describing the intersections arms.

As default feature settings are considered the features extracted from straight trajectories
(excluding trajectories turning at an intersection). The effect of turning trajectories on
classification performance is investigated in Section 5.3.4. In addition, intersection arms
crossed by less than five trajectories are excluded from the learning process (the effect of
the number of trajectories is investigated in Section 5.3.5).

2PostGIS is an open source software program that adds support for geographic objects to the PostgreSQL object-
relational database.

94 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

4.4. Results

Table 4.3 shows the classification accuracy of the four proposed approaches. The GB classi-
fier performs equally well or better than RF for almost all experiments. Only in the c-dynamic
method for the Chicago and Hannover dataset, RF performs slightly better than GB (+10%
accuracy (0.1)). In all other cases, GB performs better or equally well as RF. Comparing
the four methods to each other, the static model has much lower accuracy than the other
models for all datasets. The hybrid approach has the best accuracy compared to the other
three methods (0.95 in Champaign, 0.88 in Hanover, and 0.82 in Chicago), and the dynamic
approach performs better than c-dynamic but worse than hybrid. In the Champaign and
Hanover datasets, the performance of the c-dynamic approach is very close to that of the
dynamic approach (-0.1 worse in accuracy), in contrast to the Chicago dataset where the
difference between the two approaches is larger (-0.4 in accuracy). Another observation is
that in all datasets, the dynamic and hybrid methods perform very similarly: 0.94 versus
0.95 in Champaign (GB), 0.81 versus 0.82 in Chicago (GB) and 0.87 versus 0.88 in Hanover
(GB). This means that the dynamic features already have very good predictive ability and
the additional static features improve the classification model only slightly (+0.1 in accu-
racy). However, the hybrid approach under the GB classifier has the best performance on
all three datasets. The classification report of the hybrid approach as well as the confusion
matrices for the three datasets are given in Table 4.4 and Figure 4.11. From the confusion
matrices, one can see that the three classes in each dataset are predicted with similar accu-
racy and no striking misclassifications “favoring” certain classes are observed. The classes
with the highest FPR across the three datasets are UN in Champaign (Figure 4.11d), TS in
Chicago (Figure 4.11e) and PS in Hanover (Figure 4.11f).

Table 4.3.: Classification accuracy (Acc) and F1-score (F1) of the four TRR models. The highlighted num-
ber(s) per dataset correspond(s) to the best accuracy achieved in the respective dataset.

Method Champaign Chicago Hanover
RF GB RF GB RF GB

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Static 0.67 0.67 0.69 0.69 0.72 0.71 0.72 0.71 0.61 0.61 0.62 0.62
c-Dynamic 0.93 0.93 0.93 0.93 0.78 0.78 0.77 0.77 0.86 0.86 0.85 0.84
Dynamic 0.94 0.94 0.94 0.94 0.81 0.81 0.81 0.81 0.86 0.87 0.87 0.87
Hybrid 0.94 0.94 0.95 0.95 0.82 0.82 0.82 0.82 0.87 0.87 0.88 0.89

Table 4.4.: Classification results of the hybrid approach (GB).

Dataset Recall Precision F-Measure Accuracy

Champaign 0.95 0.95 0.95 0.95
Chicago 0.82 0.84 0.82 0.82
Hanover 0.88 0.89 0.89 0.88

4.5. DISCUSSION 95

(a) Champaign. (b) Chicago. (c) Hanover.

(d) Champaign. (e) Chicago. (f) Hanover.

Figure 4.11.: Confusion matrices and false/true positive rates for the three datasets.

4.5. Discussion

The main findings of this chapter are that the hybrid approach under the GB classifier
predicts with an accuracy of more than 82% three classes of regulators. Examining the
classification results on the three datasets, the following questions are raised:

1. Why is the performance on the Chicago dataset significantly lower than that on the
Champaign dataset?

Two possible factors may account for this difference. One has to do with the lower
sampling rate at which the Chicago traces are sampled and the other has to do with
the size of the Chicago dataset in terms of the number of intersection arms available for
training. The fact that the sampling rate in Chicago is only 3.61 s (in Champaign it is
1 s and in Hanover 1.7 s) may affect the episodes detected by the CB-SDoT algorithm
and therefore may qualitatively and quantitatively affect the features extracted from
the traces. This factor will be addressed in the next Chapter (Section 5.2.2). In terms
of the dataset size, the Champaign dataset contains almost 5 times more examples of
regulators than the Chicago dataset (2,501 rules vs. 568 rules). This factor will be
addressed in a separate chapter later (Chapter 6).

2. How can we improve the classification performance of the proposed TRR approaches?

As already mentioned in the review of existing methods (Sections 3.5 and 3.6), no
dynamic approach has considered the use of features from nearby intersection arms of
the same junction. Saremi and Abdelzaher (2015) has tested this idea in its map-based
model, with very good prediction results. Therefore, it seems a reasonable direction

96 CHAPTER 4. TRAFFIC REGULATION RECOGNITION (TRR) FROM GPS DATA

to look for the answer to the above question. In the next chapter, the methodol-
ogy presented in this chapter, will be tested under an extended feature vector that
encompasses information from all arms of the same intersection.

3. Can classification settings negatively affect classification performance?

As explained in Section 4.3.6, only straight trajectories were used in the classifica-
tion learning process, to avoid a possible bias of the turning behavior that has been
reported in the literature (Hu et al., 2015; Golze et al., 2020). But by excluding turn-
ing trajectories, we significantly limit the dataset, as many intersection arms crossed
exclusively by turning trajectories are completely excluded from the dataset used for
constructing the classification model. As so far none of the existing research studies
has investigated this issue, it seems to be an interesting aspect of the problem that
needs to be clarified. The same argument applies to the minimum number of trajec-
tories that must traverse an intersection arm, in order the latter to be included in the
dataset used in the learning process. In the current experiments, the requirement was
set to five trajectories (Section 4.3.6). Perhaps a larger number could further benefit
the performance.

4.6. Summary

In this chapter, four TRR methods were proposed and tested on three datasets. The hy-
brid approach using features derived from both maps and trajectories was found to be the
most effective. Its classification accuracy on the three datasets is 0.95 (Champaign), 0.82
(Chicago) and 0.88 (Hanover). Three main directions were identified for further investigation
of the problem in the context of improving classification performance: 1) adapting the four
methods to a feature vector that is more inclusive in terms of the information that nearby
intersection arms can also contribute, 2) examine the role of turning trajectories and the
number of trajectories per intersection arm on classification performance; and 3) investigate
how the size of the dataset (labeled examples) affect the predictive quality of the classifiers.
The next chapter deals with the first two points and Chapter 6 deals with the latter.

4.7. Acknowledgements

The methodology described in this chapter as well as its classification performance have been
published in the ISPRS International Journal of Geo-Information under the title Recognition
of Intersection Traffic Regulations From Crowdsourced Data (Zourlidou et al., 2023). The
author of this thesis is the principal investigator and first author of the article, as well as
the creator of all figures.

5. TRR From GPS Data: One-Arm versus All-Arm Models

5.1. Introduction

In this chapter, the four TRR methods discussed in the previous chapter are further in-
vestigated in the context of a modified feature vector that contains information from all
intersection arms of the same intersection (Section 5.2.1). The latter classification models
are called all-arm models to distinguish them from one-arm models explained in the pre-
vious chapter. Section 5.2.3 explores whether training separate models for three-way and
four-way intersections improves the classification performance. In addition, Sections 5.2.4
and 5.2.5 discuss the role of turning trajectories and the number of trajectories per inter-
section arm on classification performance. A detailed analysis of the misclassification cases
in the three datasets is presented in Section 5.3.6. Motivated by the results of the latter, a
post-processing step is proposed to analyze and recover wrongly predicted labels as well as
to predict labels from arms with missing data (Section 5.2.6). All results are presented in
Section 5.3 and discussed in Section 5.4.

5.2. Methodology

5.2.1. One-Arm vs. All-Arm Models

So far, in the four classification models (c-dynamic, dynamic, static, hybrid), each intersec-
tion arm is represented by a set of features extracted exclusively from that arm (one-arm
models). Motivated from the fact that for the classification of an intersection arm, infor-
mation from adjacent intersection arms may also be relevant, each model is enriched with
further features leading to the corresponding all-arm model, where each intersection arm
is represented in the feature vector by a combination of features extracted from all arms
of the same intersection, that from now on will be called context arms. For example, the
i arm of the intersection depicted in Figure 4.9(a) according to the all-arm c-dynamic model
has 4(arms)x10(features)=40 features: 10 features for each arm of the intersection, starting
from i arm and adding features from context arms in a clockwise order:

[p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]i arm, [p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]k arm,
[p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]j arm, [p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]m arm

The j-arm is similarly represented by the following feature vector, starting from j arm and
adding features from the other context arms in a clockwise order:

[p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]j arm, [p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]m arm,
[p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]i arm, [p1,p2,p3,p4,s1,s2,s3,s4,s5,s6]k arm

For the hybrid model, three all-arm variants are investigated. An arm i arm of an intersec-
tion X is defined under the three hybrid variant models as following:

1. Under the hybrid-all static model, all static features from all intersection arms of X
are included in the feature vector, as well as the dynamic features of i arm.

97

98 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

2. Under the hybrid-all dynamic model, all dynamic features from all arms of X are
considered along with the static features of i arm.

3. Under the hybrid model, all static and dynamic features from all arms of intersection
X are included in the feature vector.

Of the existing dynamic and hybrid TRR methodologies, to the author’s knowledge, none
has considered such feature settings.

5.2.2. The Effect of Sampling Rate

One observation looking at the three trajectory datasets is that they have different sampling
rates: Champaign 1 Hz (1 sample every 1 s), Chicago 0.28 Hz (1 sample every 3.6 s) and
Hanover 0.59 Hz (1 sample every 1.7 s). The sampling rate can affect both the calculated
vehicle speed and the detection of stop and deceleration events, as described in Section 4.3.1.
Obviously, the higher the sampling rate, the more accurate the speed calculation is and the
more movement episodes are detected. Therefore, one can assume that the sampling rate
can affect the classification performance. To test this hypothesis, we conducted experiments
in the two datasets with higher sampling rate, Champaign and Hanover, by undersampling
the original datasets and comparing the performance in the undersampled datasets with
that in the original datasets. The Champaign dataset was subsampled at ≈2 s, ≈3 s and
≈4 s. The Hanover dataset was subsampled at ≈4 s1.

5.2.3. Reduced Models

The all-arm models, as explained in the previous section, include features from nearby in-
tersection arms from the same intersection. The problem is that there are two types of
intersections in the dataset: 3-way intersections and 4-way intersections, with three and
four arms, respectively. Suppose we construct a learning model for both types of inter-
sections (default model), in the case of arms belonging to 3-way intersections, some of the
features (those corresponding to the fourth arm) will have null values. To clarify whether
separate learning models for each type of intersection would perform better than the default
model, experiments are conducted by training one classifier for arms belonging to 3-way
intersections and another one for 4-way intersections.

5.2.4. The Effect of Turning/No-Turning Trajectories

Depending on the shape of the intersection they are crossing, vehicles can go straight, turn
left or right. This means that the trajectory datasets contain both straight and curved
trajectories. The effect of turning at an intersection generally affects the driving behavior
before and after the turn compared to a straight-line driving crossing, because the vehicle
must slow down before the turn and accelerate again after the turn. For this reason, other
related studies have excluded curved trajectories from the dataset (Hu et al., 2015; Golze
et al., 2020). By excluding these trajectories, however, the data available for building and
testing a classifier is significantly reduced. In addition, at T-intersections, the arm leading
to the intersections that allows only turns will always be excluded from the dataset, as its

1Since the initial sampling rate of Hanover dataset is 1.7 s, theoretically we can assume that we can undersample
at 1.7x2=3.4 s. In practice though, undersampling turned out to be over 3.4 s, therefore closer to 4 s than to 3 s.

5.2. METHODOLOGY 99

trajectory samples will always be curved. Motivated from these observations, we investi-
gate the effect of using either all available trajectories (all combinations of right, left and
straight trajectories) or exclusively straight trajectories on the classification performance
(Section 5.3.4).

5.2.5. The Effect of Number of Trajectories

We consider whether there is a minimum number of trajectories per intersection arm required
to apply the proposed method (Section 5.3.5). In addition, we investigate whether there is
an optimal number of trajectories per intersection arm with which the classifier performs
best. On the one hand, by setting a minimum number of trajectories as a condition in
order for an intersection arm to be included in the classification process, we shrink the
dataset: the larger this number is, the fewer intersection arms satisfy the condition, as
most intersection arms have only a few trajectories. On the other hand, summarizing the
behavior of the collective movement (classification features) using only a few trajectories
may lead to an incorrect representation of the real movement behavior. This aspect of the
problem is addressed by conducting experiments on the minimum number n of trajectories
that an intersection arm must have to be included in the dataset used for the classification
task:

(a) using all available trajectories crossing an intersection arm, from those arms that
qualify the condition to be crossed by at least n trajectories; and

(b) using exactly n trajectories to compute the classification features of an intersection
arm, from those arms that qualify the condition to be crossed by at least n trajectories.

Thus, in (a), suppose we set the minimum number of trajectories to min = 10, we exclude
from the dataset all intersection arms crossed by fewer than 10 trajectories, and compute
the classification features for the remaining arms using all the trajectories that cross each of
them. If an intersection arm now has, for example, 35 trajectories, we compute the features
based on all 35 trajectories. In (b), conversely, having excluded intersection arms with
fewer than 10 trajectories, we compute the features for the remaining arms using exactly 10
randomly sampled trajectories from each arm.

5.2.6. Application of Domain Knowledge Rules

Table 5.1 shows the combinations of traffic regulators found in intersections in the three
datasets. The Champaign dataset has 350 three-way intersections, 293 of which are con-
trolled with UN-UN-SS, 33 are all-way UN, 15 are all-way SS, and 9 are all-way TS. Similar
combinations are found also in four-way intersections. The Chicago dataset has similar
regulation combinations as the Champaign dataset. In Hannover there are combinations of
UN, PS, YS, SS and TS regulations. Similar combinations are met in four-way intersections
also. One can observe from Table 5.1 that regulator categories are not randomly combined
with each other, but there are underlying rules. To highlight such rules, we illustrate in
Figure 5.1 all possible regulation combinations found in the datasets. We observe that a
traffic signal (TS) coexists only with other TS in the same intersection, in all datasets. More-
over, in Champaign/Chicago, a stop sign (SS) coexists only with other SS or uncontrolled
arms (UN). Furthermore, the position of the regulations in the same intersection is also not
random. One can observe that opposite arms (arms whose angle between them is 150-200
degrees) are controlled with the same regulation. For example, in two-way stop controlled
intersections, in Champaign/Chicago (Figure 5.1f), stop signs control opposite arms, i.e.,

100 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

Table 5.1.: Combinations of traffic regulators at intersections in the three datasets. The numbers in the cells
in the first block of the table refer to number of intersections that belongs to a certain regulation combination
(e.g. UN-UN-SS, PS-PS-YS, etc). In the second block the numbers refer to the percentage of intersections
that belongs to a certain regulation combination out of the total number of intersections (e.g. Champ. 84%
= 293/350).

Dataset three-way intersections four-way intersections

UN
UN
SS

PS
PS
YS

PS
PS
SS

UN
(all)

SS
(all)

TS
(all)

Total UN
UN
SS
SS

PS
PS
YS
YS

PS
PS
SS
SS

UN
(all)

SS
(all)

TS
(all)

Total

Champ. 293 - - 33 15 9 350 220 - - 9 52 80 361
Chicago 36 - - 4 8 8 56 10 - - - 17 71 98
Hanover - 386 5 230 - 88 709 - 82 9 94 - 153 338

Champ. 84% - - 9% 4% 3% 100% 61% - - 3% 14% 22% 100%
Chicago 65% - - 7% 14% 14% 100% 10% - - 0% 17% 73% 100%
Hanover - 55% 1% 32% - 12% 100% - 24% 3% 28% - 45% 100%

(a) All-way uncon. (b) One-way stop. (c) All-way stop. (d) Traffic signals.

(e) All-way uncon. (f) Two-way stop. (g) All-way stop. (h) Traffic signals.

(i) All-way uncon. (j) Priority-stop. (k) Priority-yield. (l) Traffic signals.

(m) All-way uncon. (n) Priority-stop. (o) Priority-yield. (p) Traffic signals. (q) Invalid regula-
tion combination.

Figure 5.1.: Traffic regulation combinations in intersections: (a)-(h) valid in Champaign and Chicago, (i)-
(p) valid in Hanover, (q) an example of invalid regulation combination.

5.2. METHODOLOGY 101

there is no four-way intersection that is 2-way stop controlled and the stop signs regulate
perpendicular arms such as the synthetic example shown in Figure 5.1q.

Similar rules regarding 1) the types of regulations that coexist in the same intersections
and 2) their relative position with each other, are observed in Hanover dataset as well
(Figures 5.1i-5.1p). Such simple domain knowledge rules have been used by Saremi and
Abdelzaher (2015) and Hu et al. (2015), as described in page 69 and 71, but without
investigating how much they contribute to overall accuracy. This thesis investigates further
how such knowledge rules can contribute in increasing the classification accuracy.

One idea for making use of such knowledge rules is to examine at a post-classification
step whether the predicted labels of the arms of the same intersection are in accordance
with these rules, that concern both the type of regulations that are predicted for arms
of the same intersection and the relative position (angle) of them with each other. More
specifically, by checking whether the predicted labels agree with the knowledge rules, both
wrongly predicted labels can be discovered and recovered (corrected) and at the same time
predictions can be made about arms with missing data (arms for which no prediction can
be made due to unavailability of trajectories).

For implementing such domain knowledge rules, this thesis takes into account the probability
of predicted labels, so that only predictions with high probability (we use as threshold >0.80)
are considered in the decision to recover misclassified labels. In addition, the proposed
methodology goes a step further and compares the predictions of context arms, both for
correcting misclassified labels and for predicting labels for arms for which there is no data
(trajectories) to make predictions. In the latter case, predictions are made for arms with
missing data based on the predictions of context arms for which data are available. For
example, for a three-way intersection, if one arm is predicted to be TS with high probability
(e.g., 0.96, which is greater that the threshold of 0.80 we have set), it can be inferred that
the other two arms (for which no trajectory is available to extract features from) are also
TS, making use of the knowledge rule that the regulation TS coexists only with TS in the
same intersection. Another example of implementing domain knowledge checks at a post-
classification step is the following. If in a three-way intersection there are two predictions
for two arms, one TS with probability 0.95 and the other SS with probability 0.79, we can
conclude that the SS prediction is wrong, and therefore we correct SS to TS and also label
the third unlabeled arm of the intersection as TS, too, so that the intersection complies with
the domain knowledge rule that:

If one arm is predicted as TS with high probability (>0.80), then all other context
arms in the intersection are TS too.

We use 0.14 as the correction threshold, i.e., the difference between the two predictions. For
example here the difference is 0.95-0.79=0.16, so the correction of the lower predicted label
is triggered. This means that if the highest predicted label had smaller than 0.14 probability
difference from the other predicted label, no correction action would be taken, on the basis
that although the predictions are inconsistent with each other, their probabilities do not
differ enough to decide which one to correct.

Domain knowledge rule checks for four-way intersections involve checking more conditions
than in three-way intersections, as the combinations of regulations and the number of avail-
able predicted labels (one, two, three or four predicted labels) impose additional conditions
to be examined. For the Champaign and Chicago dataset, an example of a domain knowl-
edge rule check that involves examination also of the angle of the predicted regulation labels
is the following:

102 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

If there is a total of two available predictions for a four-arm intersection and both
are UN, check the angles of the predicted arms. If they are not opposite with each
other and both are predicted with high probability (>0.80), then add two more
UN predictions for the two missing arms (Figure 5.1e). If they are opposite, do
nothing, as the two missing arms may be both either SS (Figure 5.1f) or UN
(Figure 5.1e).

Similar consistency checks shall be carried out for the other cases of predicted labels. Since
Hanover contains different combinations of regulators, the domain knowledge rules differ
from those of Champaign and Chicago. Due to space constraints and the intuitive nature
of the domain knowledge rules, we refrain from listing the other consistency checks. The
results of applying domain knowledge rules in the three datasets in a post-classification step
are given in Section 5.3.7.

5.2.7. Classification Settings

Two tree-based classifiers are used to classify the intersection arms: the RF classifier and
the GB classifier. The XGBoost (XGBoost Python, 2022) library was used for the imple-
mentation. All programming work has been implemented in Python 3.7. Unless otherwise
stated, default feature settings are assumed to be features extracted from straight trajecto-
ries, from intersections containing at least five trajectories. Intersection arms that are crossed
with fewer than five trajectories are excluded from training and testing in the default model.

5.3. Results

This section presents all the classification results of the experiments discussed in the previ-
ous Section (5.2). First the performance of all-arm classification models is presented (Sec-
tion 5.3.1). The best model is then used for all other experiments: testing the performance
of reduced models in Section 5.3.3, testing the effect of turning trajectories on classification
performance in Section 5.3.4, testing the effect of number of trajectories in Section 5.3.5,
conducting a misclassification analysis in Section 5.3.6 and evaluating the application of
domain knowledge rules in Section 5.3.7.

5.3.1. One-arm vs. All-arm Models

Table 5.2 shows the classification accuracy and F1-score of one-arm and all-arm methods
for the two classifiers (RF and GB). We can see that GB classifier performs as well or better
than RF for almost all experiments. Only in the one-arm c-Dynamic model for the Chicago
and Hannover dataset, RF performs slightly better than GB (+0.1 accuracy).

With respect to all-arm models, we observe that the static model performs much better
than the respective one-arm model, but only for the Chicago dataset does it manage to
outperform the c-dynamic. In all other experiments the other models have better accuracy
than the all-arm static model. The c-dynamic model has lower accuracy than the dynamic
model. For all datasets using the GB classifier, the hybrid-all-static model performs the same
or better than the hybrid and hybrid-all-dynamic models and better than the c-dynamic,
dynamic and static models. Similar results are observed for the RF classifier, except for the
Hanover dataset, where the hybrid model has an accuracy of 0.92 compared to the hybrid-
all-static model with an accuracy of 0.91. Therefore, the all-arm hybrid-all-static model with

5.3. RESULTS 103

Table 5.2.: Classification accuracy (Acc) and F1-score (F1) of the TRR models. Highlighted are the best
one-arm and all-arm models for each dataset.

Method Champaign Chicago Hanover
RF GB RF GB RF GB

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

O
n
e-
ar
m

Static 0.67 0.67 0.69 0.69 0.72 0.71 0.72 0.71 0.61 0.61 0.62 0.62
c-Dynamic 0.93 0.93 0.93 0.93 0.78 0.78 0.77 0.77 0.86 0.86 0.85 0.84
Dynamic 0.94 0.94 0.94 0.94 0.81 0.81 0.81 0.81 0.86 0.87 0.87 0.87
Hybrid 0.94 0.94 0.95 0.95 0.82 0.82 0.82 0.82 0.87 0.87 0.88 0.89

A
ll
-a
rm

Static 0.86 0.86 0.86 0.86 0.89 0.89 0.89 0.89 0.86 0.86 0.87 0.87
c-Dynamic 0.94 0.94 0.94 0.94 0.78 0.78 0.78 0.78 0.89 0.89 0.90 0.90
Dynamic 0.94 0.94 0.95 0.95 0.83 0.83 0.84 0.84 0.90 0.90 0.91 0.91
Hybr.-all static* 0.94 0.94 0.95 0.95 0.88 0.87 0.91 0.91 0.91 0.91 0.95 0.95
Hybr.-all dynamic⋄ 0.95 0.95 0.95 0.95 0.82 0.82 0.86 0.85 0.91 0.91 0.93 0.93
Hybrid∇ 0.95 0.95 0.95 0.95 0.88 0.87 0.90 0.90 0.92 0.91 0.95 0.95

* Only the dynamic features from one arm are included, along with the static features from all
intersection arms of the intersection.
⋄ Only the static features from one arm are included, together with the dynamic features from all
intersection arms of the intersection.
∇ The method uses the dynamic features from the adjacent intersection arms and the static features
of all the intersection arms of the intersection.

the GB classifier performs better for all datasets and for this reason this model is selected
to be used as the default model for the experiments in the following sections.

In addition, feature selection and parameter tuning was performed for the all-arm hybrid-all-
static model. In Appendix A.1, plots are provided showing the importance of the features.
Interestingly, the most important features differ from dataset to dataset, even between the
Champaign and Chicago datasets that share the same traffic regulator categories (UN, SS,
TS). In Champaign there are more important features related to deceleration compared to
Chicago, while in Chicago the important features are more related to speed percentiles along
with map features. This fact we can say that was expected, as in Champaign the dynamic
method already performed very well (without using any static features, compare (cf.) dy-
namic and hybrid classification accuracy in one-arm and all-arm models in Table 5.2). Com-
mon significant features for all datasets are the pattern features (p1, p2, p3 and p4). In the
Hanover dataset there are more important features compared to the other two datasets, from
which many are map features (obtained from OSM). Only in the Champaign dataset, the
map-based features are less important compared to the Hanover and Chicago datasets. The
classification results and confusion matrices for the three datasets after feature selection and
parameter tuning are presented in Table 5.3 and Figure 5.2. A detailed classification report
with per class performances can be found in Appendix A.2.

As we can see in Table 5.3, feature selection and parameter tuning increased the accuracy
by 1%, from 0.95 to 0.96 for the Champaign and Hanover datasets, and from 0.91 to 0.92
for the Chicago dataset. In Champaign and Chicago (see Appendix A.2), the stop sign (SS)
category is predicted slightly worse than the other two categories (F-Measure in Champaign:
0.90 (SS), 0.97 (UN), and 0.93 (TS), and in Chicago: 0.84 (SS), 0.95 (UN), and 0.94 (TS)).
In Hanover, the per-class F-Measures are similar for the three classes. This observation is

104 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

Table 5.3.: Classification performance of the hybrid all-static model (GB).

Dataset Recall Precision F-score Accuracy

D
ef
au

lt
p
ar
am

. Champaign 0.95 0.95 0.95 0.95
Chicago 0.91 0.92 0.91 0.91
Hanover 0.95 0.95 0.95 0.95

A
ft
er

tu
n
in
g Champaign 0.96 0.96 0.96 0.96

Chicago 0.92 0.93 0.92 0.92
Hanover 0.96 0.96 0.96 0.96

(a) Champaign. (b) Chicago. (c) Hanover.

(d) Champaign. (e) Chicago. (f) Hanover.

Figure 5.2.: Confusion matrices and false/true positive rates for the three datasets.

also highlighted in the confusion matrices in Figure 5.2, which visually depicts the actual
versus predicted classes. In the same figure, there are also graphs of the FPR and TPR.
We can see in Figures 5.2(d), (e) and (f) that the highest FPRs in the three datasets are
observed in different classes: UN in Champaign (0.09), TS in Chicago (0.077) and PS in
Hanover (0.048). Also, the highest TPRs are observed in the same classes as the highest
FPRs: Champaign: 0.99 (UN), Chicago: 0.95 (TS) and Hanover: 0.97 (PS). The lower
performance in Chicago (accuracy of 0.92) compared to Champaign and Hanover (0.96 and
0.96) could be possibly explained by the fact that the Chicago dataset is significantly smaller
than the other datasets (154 regulators versus 633 (Champaign) and 566 (Hanover)), which
limits the training possibilities. In addition, as already mentioned in 4.2.2, the sampling
rate in Chicago is lower than the other two datasets, which may affect the computation of
the feature calculation (short-term detected episodes).

5.3. RESULTS 105

5.3.2. Testing the Effect of Sampling Rate

Table 5.4 shows the classification performance of TRR methods at different sampling rates.
In the Champaign dataset, we see that the performance between 1 s and 2 s either decreases
by about 1-2% or stays the same. Between 2 s and 3 s, the accuracy remains the same in the
majority of TRR methods and there are two cases where the performance varies by ±1%
(all-arm dynamic models and hybrid all-static models). The drop in accuracy is largest
between 3 s and 4 s, where the difference varies between 1-3%. Regarding the detected
stop and deceleration episodes, it seems that the sampling rate affects them: the higher the
sampling rate, the more events are detected. In the Hanover dataset, between 2 s and 4 s the
accuracy either drops by about 1% or remains the same. When we compare the performance
between Champaign and Hanover, between 2 s and 4 s, we see that in Champaign there is a
decrease of between 2-3%, while in Hanover there is a decrease of 0-1%. When we compare
the performance between Champaign and Chicago at 4 s, we see a difference in accuracy
between 2-12%, with the smallest difference seen in the hybrid all-static model.

A general conclusion from these experiments is that sampling rate can affect classification
performance: in the Champaign dataset, when 1s and 4 s were compared, no method
remained unaffected by subsampling. However, the decrease in performance is not large
enough to explain why the accuracy in Chicago differs so much from that in Champaign
(4 s) (2-12%). If the sampling rate was the only reason for the lower performance in the
Chicago dataset, then Champaign in 4 s would have similar performance to Chicago, which
is not the case. As mentioned previously, perhaps the lower performance in Chicago is due to
the size of the dataset (number of regulators), which may affect the training of the classifier.
Also the fact that the GPS tracks in Chicago are collected from shuttle buses can be another
possible factor that affects the classification, if for example, we assume that there are bus
stops near intersections, and stop episodes are initiated due to bus stops additionally to
those initiated from intersection traffic regulations.

Table 5.4.: Classification accuracy of the TRR methods under different sampling rates (undersampling). The
original datasets are highlighted in grey.

Champaign Chicago Hanover
≈ 1 s ≈ 2 s ≈ 3 s ≈ 4 s ≈ 4 s ≈ 2 s ≈ 4 s

Stop episodes 112,401 64,767 40,491 28,541 11,015 161,436 90,315
Decel. episodes 100,853 42,454 21,897 18,471 5,589 116,349 55,487

O
n
e-
a
rm c-Dynamic 0.93 0.91 0.91 0.88 0.77 0.85 0.84

Dynamic 0.94 0.93 0.93 0.91 0.81 0.87 0.87
Hybrid 0.95 0.94 0.94 0.92 0.82 0.88 0.88

A
ll
-a
rm

c-Dynamic 0.94 0.93 0.93 0.90 0.78 0.90 0.89
Dynamic 0.95 0.94 0.95 0.92 0.84 0.91 0.91
Hybrid (all-static) 0.95 0.95 0.94 0.93 0.91 0.95 0.94

5.3.3. Reduced Models

Table 5.5 shows the classification performance of the reduced models, as explained in Sec-
tion 5.2.3, as well as that of the default model. The detailed classification report with per-
formance per class is provided in Appendix A.3. On all datasets the default model performs
as well or better than the reduced models in terms of F-score. Therefore, in all upcoming
experiments in this thesis the default model will be used.

106 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

Table 5.5.: Classification performance of the reduced and default models.

Dataset Recall Precision F-score Accuracy

Champaign (3-way) 0.96 0.96 0.96 0.96
Champaign (4-way) 0.96 0.96 0.96 0.96
Champaign (default) 0.96 0.96 0.96 0.96

Chicago (3-way) 0.92 0.88 0.89 0.92
Chicago (4-way) 0.93 0.94 0.92 0.93
Chicago (default) 0.92 0.93 0.92 0.92

Hanover (3-way) 0.95 0.96 0.95 0.95
Hanover (4-way) 0.96 0.97 0.96 0.96
Hanover (default) 0.96 0.96 0.96 0.96

5.3.4. Testing the Effect of Turning Trajectories and Examining an Optimal Number of
Trajectories

Figure 5.3 depicts graphs with the classification performance (accuracy) for the three datasets
under different traversal settings: crossing direction and number of trajectories per intersec-
tion arm. In the first case, we examine whether considering samples moving only straight
ahead positively affects classification, assuming that turning behavior affects speed, so ex-
cluding curved trajectories can eliminate their bias. In the second case, we seek whether
there is an optimal number of trajectories that an intersection arm should have during
training and thus exclude from the training dataset intersections with fewer trajectories
than this number.

We looked at all possible turning settings and their combinations: straight trajectories (s in
Figure 5.3), trajectories that turn right (r), left (l), straight and right turn (s r), straight
and left (s l), right and left (r l) and straight, right and left turning trajectories (s r l).
The number after these prefixes in the figure refers to the number n of trajectories used
to select the intersection arms (minimum number of trajectories per intersection arm) and
to calculate the classification features. Not all turning settings are tested with the same
number of trajectories, because for each turning/crossing setting, we require the test data
set to contain at least seven intersection arms per class. E.g., in the Champaign dataset
(Figure 5.3a), we tested the straight trajectories for various numbers 3, 4,..., 20, because for
minimum number of trajectories equal to 21, the number of intersection arms in the test set
(10-fold cross-validation) did not contain more than seven stop controlled (SS) intersection
arms. SS is the type of regulation with the fewer examples in this dataset, and we set such
a number to ensure that the classifier will be tested to at least seven SS examples.

Regarding the effect of turning trajectories on classification performance, we see that using
right, left or right/left traces has lower performance than using straight traces and combi-
nations of straight and turning traces (Figure 5.3a and 5.3b). When using a combination of
straight and turning traces, we cannot see a strong negative effect, but this can perhaps be
explained by the fact that there are significantly more straight crossings than left and right
in the dataset (in Champaign 20,514 straight, 2,619 right and 2,768 left, in Hanover 19,092
straight, 3,394 right and 3,073 left, in Chicago 12,638 straight, 2,820 right and 1,301 left).

A possible explanation for the poor classification performance when using exclusively turning
trajectories (e.g., in Champaign 0.88 accuracy for right turning trajectories when intersection
arms have at least 5 trajectories - see r 5 at Figure 5.3a), is the smaller dataset used for
training compared to the other settings. Table 5.6 shows the number of intersection arms per

5.3. RESULTS 107

(a) Champaign.

(b) Chicago.

(c) Hanover.

Figure 5.3.: Experiments with different turning settings (s : straight trajectories, r : right turning trajec-
tories, l : left turning, s r : straight and right turning, s l : straight and left turning, r l : right and left
turning, s r l: straight, right and left turning trajectories).

control type in Champaign dataset, when each arm has at least five trajectories. We see that
the datasets when only right, left or right/left trajectories are used are much smaller than
the dataset with straight trajectories. Additionally the fact that features are computed from
a few trajectories (as the number of right and left trajectories per intersection arm is small),

108 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

may also explain the bad performance. Therefore, one reason for the poor performance
may be related to the dataset itself (which affects the feature computation and the size
of the dataset) and not solely to the condition we consider here (drive straight through
an intersection or turn). Perhaps the same analysis on a dataset with numerically more
intersection arms sampled from a higher density of turning trajectories would not show
such a strong negative effect of turning trajectories.

Table 5.6.: Dataset size for different trajectory direction settings with minimum number of trajectories per
intersection arm equal to 5 (Champaign dataset).

Trajectory
Direction

Rule
Junction arms

(class/total arms)
Classification
Accuracy

Straight UN 424
0.96SS 52

TS 157 633

Right UN 26
0.88SS 29

TS 59 114

Left UN 36
0.81SS 18

TS 48 102

Right/Left UN 71
0.84SS 59

TS 108 238

All UN 457
0.93SS 100

TS 192 749

Another observation is that in the Champaign dataset the performance when only straight
trajectories are used is better than when straight and turning trajectories are used. E.g.,
with at least 5 straight trajectories the accuracy is 96% and with at least 5 straight/turning
trajectories the accuracy is 93% (Figure 5.3a). In the Hanover dataset (Figure 5.3c), on aver-
age the performance when using only straight trajectories is better than when using straight
and turning trajectories, but the effect is less strong than in then Champaign dataset. For
both datasets, the difference in accuracy between using straight and all trajectories (straight
and curved) is between 1%-3%. Therefore, in both datasets, excluding curved trajectories
has a positive effect on classification performance and the optimal number of straight tra-
jectories is 5.

However, in the Chicago dataset the same observation does not hold, i.e., with at least 15
straight trajectories the accuracy is 88% and with at least 15 straight/turning trajectories
the accuracy is 94% (Figure 5.3b). Although there are not a sufficient number of intersection
arms crossed by turning trajectories for training and testing as in the other two datasets, a
possible explanation for the slightly increased performance when all trajectories are used is
that the training dataset becomes larger when straight/turning trajectories are used than
when only straight trajectories are used, so the classifier learns better. E.g. when at least 5
straight trajectories are used, the dataset contains 49 UN, 29 SS and 76 TS, while when at
least 5 tracks (turning and straight tracks) are used the dataset contains 50 UN, 40 SS and
115 TS.

Therefore, judging from the two larger datasets that have consistent results, we can conclude
that curved trajectories at intersections affect the classification by about 1%-3% in accuracy

5.3. RESULTS 109

and therefore, for the next experiments we will only use straight tracks (minimum number
of tracks per intersection arm equal to 5), excluding all curved tracks at intersections.
The arms of T-intersections that are crossed from trajectories that always need to turn at
the intersection are affected from this condition, as they will be always excluded from the
datasets used for classification. Nevertheless, as discussed in Section 5.2.6, the regulators of
these arms can be recovered with the help of the predicted labels of their context arms and
the usage of domain knowledge rules.

5.3.5. Testing the Effect of the Number of Trajectories on Classification Performance

The number of trajectories used as a minimum requirement for the calculation of classi-
fication features, as well as for the selection of intersection arms for training and testing,
seems to affect performance (Figure 5.4). Comparing the case of using a certain number of
trajectories, that is (i.e.), a subset of all trajectories crossing an intersection arm, with the
case of using all available trajectories per intersection arm (as explained in Section 5.2.5),
the latter case achieves better performance on average. This result holds for all datasets
(cf. Figure 5.3 with Figure 5.4) and seems reasonable, as the more trajectories are used
to compute the classification features (which are statistical values of physical features, as
explained in Section 4.3.4), the better the latter reflect the actual movement behavior.

In the Champaign dataset we see from Figure 5.4a that with just 3 straight trajectories
per intersection arm, we can achieve 92% accuracy. Increasing the number of trajectories
also increases the classification performance. The best result, 96%, is achieved with 20
trajectories. However, when we compare the results with those in Figure 5.3a, we see that
limiting the number of trajectories per arm yields lower classification performance. E.g. with
at least 4 straight trajectories per intersection arm the accuracy is 96%.

In the Hanover dataset, we can also see from Figure 5.3c that when all available traces are
used the performance is better than using a certain number (Figure 5.3c). For accuracy above
91% at least 7 traces per intersection arm are required (Figure 5.4c). The best accuracy 93%
is achieved with 9 trajectories. In contrast, by allowing the use of all available trajectories
per arm, with at least 3 traces per arm, the accuracy is always equal to or greater than
91%, and the best accuracy of 96% is achieved with at least 5 trajectories (Figure 5.3c).

In the Chicago dataset, the same result is also observed with the other two datasets. Using
a certain number of trajectories per arm gives a lower classification accuracy than when all
available trajectories are used (Figure 5.4b vs. Figure 5.3b). However, with only 3 straight
trajectories per arm the accuracy is always equal to or greater than 85% and with only 4
straight trajectories equal to or greater than 86% (Figure 5.4b).

Therefore, for feature computation, excluding the number of trajectories to a certain number
negatively affects the classification performance. However, with only 3 straight trajectories
per intersection arm, the classification accuracy is equal to or greater than 85% across all
datasets (85% in Chicago, 89% in Hanover and 92% in Champaign). Also, with only 5
straight trajectories the accuracy is equal to or greater than 90% (90% in Chicago and 92%
in Champaign and Hanover).

110 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

(a) Champaign.

(b) Chicago.

(c) Hanover.

Figure 5.4.: Experiments with different number of trajectories where classification features are computed
using a certain number of trajectories, i.e., 3, 4, ..., and not all available crossing trajectories.

5.3. RESULTS 111

5.3.6. Misclassification Analysis

This section analyses the incorrect predictions in the three datasets. For each dataset, all
misclassification cases are documented in a table, which provides information on the prob-
ability of the (incorrectly) predicted labels, the possibility of recovering the incorrect labels
using information from context arms, and the rationale for the latter.

5.3.6.1. Misclassification cases in Champaign Dataset

From the 26 wrong predictions (misclassifications) shown in Table 5.7, only 4 predicted
regulation labels can be recovered (arms/regulations with identifiers 331, 1388, 1586 and
2019, shown in blue in Table 5.7) using information from context arms. These 4 regulations
belong to intersections where at least one more prediction is available from the context
arms, they are predicted with much lower probability than the context arm(s), and their
predicted labels contradict a domain knowledge rule (e.g., a TS cannot coexist with a SS
in the same intersection). For example, regulation 331 is predicted as TS with probability
0.4, while its perpendicular context arm is predicted as SS with probability 0.91, and their
predicted labels contradict the domain knowledge rules (TS and SS cannot coexist in the
same intersection). Therefore, the label of arm 331 is retrieved (corrected to SS) based on the
predicted label of its context arm (SS), which is predicted with high probability (0.91, which
is greater than the threshold of 0.80, explained in Section 5.2.6). Another “retrievable” or
“recoverable” example is shown in Figure 5.5b.

(a) Intersection arm id: 106 (non recoverable). (b) Intersection arm id: 1388 (recoverable).

Figure 5.5.: Two examples of misclassified intersection regulations from the Champaign dataset. With blue
diamond is depicted an incorrectly predicted regulation. A red point depicts a correctly predicted regulation.
The red cross depicts the intersection center. The label of the predicted regulations contains the following
information: id number of the intersection arm/ predicted label (only for the wrongly predicted regula-
tions)/actual label/ predicted probability of label 0/ predicted probability of label 1/ predicted probability of
label 2.

As for the predicted regulation labels that cannot be recovered, in general, arms without
context information (Num. adj. equals to 0, in Table 5.7) cannot be subjected to any
subsequent processing (such an example is shown in Figure 5.5a). There are 4 such arms
(106, 1692, 2176 and 2358, shown in red in Table 5.7). In addition, 9 arms are misclassified
with high probability (arms 125, 394, 553, 760, 760, 1237, 1353, 1368, 1500 and 1880
shown in green in Table 5.7), having context arms (1 context arm each) correctly classified
with also high probability (exception is the arm 7602), therefore the information from the

2In this case the context arm of the wrongly predicted arm with id 760, which is correctly predicted with low
probability (0.61) will be (incorrectly) corrected. This is an inevitable flaw of the recovering process.

112 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

Table 5.7.: The wrong predictions in the Champaign dataset (Rec.: whether the regulation is recoverable or
not, Num.Adj.: number of arms from the same intersection having predicted labels (context arms).

Arm
id.

Int.
Type

Rec. Prob. Num.
Adj.

Reasoning for (not) recovering

1 106 4-way No 0.85 0 no predictions available from context arms
2 125 4-way No 0.97 1 context rule is predicted with prob. 0.92
3 331 4-way Yes 0.40 1 context rule is predicted with prob. 0.91
4 394 3-way No 0.99 1 context rule is predicted with prob. 1.0
5 553 3-way No 0.99 1 context rule is predicted with prob. 0.97
6 760 3-way No 1.0 1 context rule is predicted with low prob. 0.611

7 1237 3-way No 0.99 1 context rule is predicted with prob. 1.0
8 1353 4-way No 1.0 2 context rules are predicted with prob. 0.94 and 0.87
9 1368 4-way No 0.94 1 context rule is predicted with prob. 0.99
10 1388 3-way Yes 0.74 1 context rule is predicted with prob. 1.0
11 1500 4-way No 1.0 1 context rule is predicted with prob. 0.94
12 1530 3-way No 1.0 1 context rule (1531) is predicted (wrongly) with prob. 0.85
13 1531 3-way No 0.85 1 context rule (1530) is predicted (wrongly) with prob. 1.0
14 1562 4-way No 0.81 1 context rule (1564) is predicted (wrongly) with prob. 0.93
15 1564 4-way No 0.93 1 context rule (1562) is predicted (wrongly) with prob. 0.81
16 1586 4-way Yes 0.85 1 context rule is predicted with prob. 0.99
17 1692 4-way No 1.0 0 no predictions available from context arms
18 1880 3-way No 1.0 1 context rule is predicted with prob. 0.98
19 1985 4-way No 0.99 1 context rule (1987) is predicted (wrongly) with prob. 0.96
20 1987 4-way No 0.96 1 context rule (1985) is predicted (wrongly) with prob. 0.99
21 2019 3-way Yes 0.48 2 context arms are predicted with the same label (UN)
22 2174 3-way No 0.66 1 context rule is predicted with low prob. (0.79) too
23 2176 4-way No 0.87 0 no predictions available from context arms
24 2288 4-way No 0.98 1 context rule (2290) is predicted (wrongly) with prob. 0.53
25 2290 4-way No 0.53 1 context rule (2288) is predicted (wrongly) with prob. 0.98
26 2358 4-way No 1.0 0 no predictions available from context arms

context arms cannot further clarify the case. It would help, however, if there were available
more than one predictions from context arms, so that the information from two or three
context arms could be compared to the predicted label under examination and validate
whether the predicted regulation label contradicts the predicted regulation labels of the
context arms. In addition, 8 arms, from 4 intersections (2 arms from the same intersection,
therefore 2x4intersections=8) could not be retrieved (1530, 1531, 1562, 1564, 1985, 1987,
2288 and 2290, non highlighted in the table) because all context arms were misclassified and
their predicted labels did not contradict the domain knowledge rules, therefore no retrieval
action could be triggered. Finally, one arm (2174, shown in yellow in Table 5.7) could
not be retrieved, as the context arm, although correctly predicted, was predicted with low
probability (0.79).

In total, from the 26 incorrect predictions, 4 predicted regulation labels (blue) are recover-
able and 22 unrecoverable. From the latter, 4 arms (red) cannot be corrected using domain
knowledge rules because no information from context arms is available. 9 arms (green) are
incorrectly predicted with high probability, and having only one context arm (or two for
4-way intersections) correctly predicted cannot help recover the correct label (if more pre-

5.3. RESULTS 113

dictions from context arms were available, would possibly make these labels recoverable). 8
arms cannot be recovered (white), as they belong to intersections where all arms are incor-
rectly predicted and their predicted labels do not contradict any domain knowledge rule.
Finally, 1 arm (yellow) is incorrectly predicted with low probability, but the context arm is
correctly predicted with also low probability, therefore no recovery action can triggered.

5.3.6.2. Misclassification cases in Chicago Dataset

From the 12 incorrectly predicted regulation labels, 2 regulations (arms with id 83 and 419,
shown in blue in Table 5.8) can be recovered with the help of domain knowledge rules. Such
an example is illustrated in Figure 5.6 where the regulation with id 419 (blue diamond)
is predicted as TS (pred: 2) with (low) probability 0.75, whereas its actual label is SS
(act: 1). Because the predicted labels of its context arms (red points) are predicted with
high probability as SS (act: 1, regulation with id 416 is predicted with probability 1 and
regulation with id 417 with 0.89) and because these two regulations are perpendicular to
each other, it can be inferred that the intersection is all-way stop controlled and therefore
arm 419 is corrected to SS.

Table 5.8.: The wrong predictions in the Chicago dataset. (Rec.: whether the regulation is recoverable or
not, Num.Adj.: number of arms from the same intersection having predicted labels (context arms).

Arm
id.

Int.
Type

Rec. Prob. Num.
Adj.

Reasoning for (not) recovering

1 83 4-way Yes 0.63 1 context rule is predicted with prob. 0.91
2 207 4-way No 0.96 0 no predictions available from context arms
3 215 3-way No 0.96 0 no predictions available from context arms
4 318 4-way No 0.90 0 no predictions available from context arms
5 337 3-way No 0.92 1 context rule (338) is predicted (wrongly) with prob. 0.89
6 338 3-way No 0.89 1 context rule (337) is predicted (wrongly) with prob. 0.92
7 379 3-way No 0.99 0 no predictions available from context arms
8 385 4-way No 0.73 0 no predictions available from context arms
9 419 4-way Yes 0.75 2 context rules are predicted with prob. 1.0 and 0.89
10 427 3-way No 0.63 0 no predictions available from context arms
11 478 4-way No 0.97 1 context rule is predicted with prob. 0.94
12 554 3-way No 0.96 0 no predictions available from context arms

Figure 5.6.: An example of a misclassified regulation, depicted as blue diamond, which is predicted as TS
(pred:2) with probability 0.75, while its actual label is SS (act:1). This regulation is recoverable due to the
information from the predicted labels of its context arms, which are predicted as SS, with probabilities 1.0
and 0.89. Both probabilities are considered high, according to the defined threshold, and because the arms are
perpendicular to each other, it can be inferred that the intersection is all-way stop-controlled. The regulation
with id 419 is then corrected to SS.

114 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

7 regulations cannot be retrieved due to lack of available information from the context arms
(arms with identifiers 207, 215, 215, 318, 379, 385, 427 and 554, shown in red in Table 5.8).
In addition, 2 arms belonging to the same intersection (337 and 338, not highlighted in
Table 5.8) are incorrectly predicted with high probability and their predicted labels do
not contradict any domain knowledge rule, therefore no recovery action can be triggered.
Finally, 1 arm (478, shown in green in Table 5.8) cannot be recovered because both the arm
and its context arm are predicted with high probability.

5.3.6.3. Misclassification cases in Hanover Dataset

From the 25 incorrectly predicted regulation labels, 9 regulations (arms with ids 63, 258,
1206, 1266, 2695, 2897, 3065, 3356 and 3519, shown in blue in Table 5.9) can be recovered.
5 rules cannot be retrieved due to lack of information available from context arms (132,
327, 1093, 1317 and 1840, shown in red in the table). In addition, 2 arms belonging to
the same intersection (438 and 440, not highlighted in the table) are misclassified with
high probability and their predicted labels do not contradict any domain knowledge rule,
therefore no recovery action can be triggered.

Table 5.9.: The wrong predictions in the Hanover dataset. (Rec.: whether the regulation is recoverable or
not, Num.Adj.: number of arms from the same intersection having predicted labels (context arms).

a/a Arm
id.

Int.
Type

Rec. Prob. Num.
Adj.

Reasoning for (not) recovering

1 63 3-way Yes 0.59 1 context rule is predicted with prob. 1.0
2 132 3-way No 0.97 0 no predictions available from context arms
3 237 4-way No 0.90 1 context rule is predicted with prob. 0.99
4 258 4-way Yes 0.51 1 context rule is predicted with prob. 0.90
5 327 4-way No 0.95 0 no predictions available from context arms
6 438 4-way No 0.99 1 cont. rule (440) is predicted UN (wrongly) with prob. 0.51
7 440 4-way No 0.51 1 cont. rule (438) is predicted UN (wrongly) with prob. 0.99
8 577 4-way No 1.0 1 context rule is predicted with prob. 0.89
9 987 4-way No 0.98 1 context rule is predicted with prob. 1.0
10 1030 3-way No 0.97 1 context rule is predicted with prob. 0.97
11 1093 3-way No 0.94 0 no predictions available from context arms
12 1136 4-way No 0.83 1 context rule is predicted with prob. 0.96
13 1206 4-way Yes 0.63 1 context rule is predicted with prob. 0.99
14 1266 4-way Yes 0.70 1 context rule is predicted with prob. 0.96
15 1317 3-way No 0.84 0 no predictions available from context arms
16 1323 4-way No 0.96 1 context rule is predicted with prob. 0.90
17 1840 3-way No 0.85 0 no predictions available from context arms
18 2695 4-way Yes 0.65 1 context rule is predicted with prob. 1.0
19 2872 3-way No 1.0 1 context rule is predicted with prob. 0.92
20 2875 3-way No 1.0 1 context rule is predicted with prob. 1.0.
21 2897 3-way Yes 0.74 1 context rule is predicted with prob. 0.99.
22 3065 3-way Yes 0.52 1 context rule is predicted with prob. 1.0.
23 3134 3-way No 0.98 1 context rule is predicted with prob. 1.0.
24 3356 3-way Yes 0.56 1 context rule is predicted with prob. 1.0.
25 3519 4-way Yes 0.52 1 context rule is predicted with prob. 0.85.

5.3. RESULTS 115

Finally, 8 arms (577, 987, 1030, 1136, 1323, 2872, 2875 and 3134, marked in green) cannot
be recovered because both the arm and its context arm are predicted with high probability.
Such an example is depicted in Figure 5.7, where both (opposite) arms are predicted with
high probabilities with labels that contradict domain knowledge rules, i.e. the arm with id
1323 (blue) is predicted as PS (pred:1) with probability 0.96 and the other (opposite) arm
with id 1322 as UN (act:0) with probability 0.90. Because both are predicted with high
probability (larger than the defined threshold of 0.80), no decision can be taken on which
regulation to correct.

Figure 5.7.: An example of an incorrectly predicted regulation (id:1323) from the Hanover dataset which is
non recoverable, due to the fact that both context arms are predicted with high probabilities (arm 1323 with
0.96 and arm 1322 with 0.90). The label of the predicted regulations contains the following information:
id number of the intersection arm/ predicted label (only for the wrongly predicted regulations)/actual label/
predicted probability of label 0/ predicted probability of label 1/ predicted probability of label 2.

5.3.7. Applying Domain Knowledge Rules

Table 5.103 shows the classification report after applying the domain knowledge rule con-
sistency check, as explained in Section 5.2.6. Figure 5.8 also shows the confusion matrices
along with the FPR/TPR graphs for the three datasets. The first observation from Table 5.10
is that the accuracy increases by 1% in Champaign and Hanover (from 96% to 97%) and by
3% in Chicago (from 92% to 95%). In terms of FPRs, in Champaign the FPRs for UN, SS
and TS are: 3.6%, 1.2%, 0.7% respectively and in Chicago 1.3%, 1.9% and 6.5%. In Hanover
the FPRs for UN, PS and TS are 1.3%, 2%, 0.5%. Compared to the FPRs before applying
the knowledge rules (cf. Figure 5.2 with 5.8), in Champaign the FPR for UN decreased from
9% to 3.6% (60% decrease), in Chicago the FPR for TS decreased from 7.7% to 6.5% (15.6%)

3A detailed classification report with performance by class is given in Appendix A.4.

Table 5.10.: Classification results of the default model before and after applying domain knowledge rules for
recovering incorrect predictions and predicting regulation labels, when possible, for arms with no available
trajectory data.

Dataset Recall Precision F-score Accuracy

D
ef
au

lt Champaign 0.96 0.96 0.96 0.96
Chicago 0.92 0.93 0.92 0.92
Hanover 0.96 0.96 0.96 0.96

A
ft
er

ap
p
ly
in
g

k
n
ow

le
d
ge

ru
le
s

Champaign 0.97 0.97 0.97 0.97
Chicago 0.94 0.94 0.94 0.95
Hanover 0.98 0.97 0.98 0.97

116 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

(a) Champaign. (b) Chicago. (c) Hanover.

(d) Champaign. (e) Chicago. (f) Hanover.

Figure 5.8.: Confusion matrices and false/true positive rates for the three datasets after applying consistency
checks using domain knowledge rules.

and for SS decreased from 3.2% to 1.8% (44% decrease), and in Hanover the FPR for PS
decreased from 4.8% to 2% (58.3% decrease). Moreover, the average FPR (TPR) across all
regulator classes decreased (increased) in Champaign from 3.5% (91%) to 1.8% (95.8%), in
Chicago from 4.3% (90.5%) to 3.2% (93.2%) and in Hanover from 2.6% (95.3%) to 1.3%
(97.5%) respectively.

Figure 5.9 shows the confusion matrices before the domain knowledge rules are applied
(Figures 5.9a, 5.9d, 5.9g), after applying the domain knowledge rules to retrieve only possible
incorrectly predicted regulations (Figures 5.9b, 5.9e, 5.9h) and after both recovering possible
wrongly predicted labels and predicting labels from missing arms (Figures 5.9c, 5.9f and
5.9i). Both recovering incorrect predictions and predicting labels for arms with missing data
are done in the same step, i.e., in the same consistency check-step an arm is checked if its
predicted label is consistent with the domain knowledge rules, a decision is made, when
possible, for predicting regulation labels for the context arms with missing data.

In Champaign we can see from Figures 5.9a and 5.9b, that the 4 recoverable regulators
shown in Table 5.7 were recovered (UN from 421 to 423 and SS from 43 to 45) and that 1
regulator was recovered incorrectly (a TS was changed to UN, cf. last row in Figure 5.9b
from 143, which was the correct predicted number of TS in Figure 5.9a, was decreased to
142), as an inevitable result of the application of domain knowledge rules that discussed
in page 112. In total, 310 predictions were made from arms with missing data (cf. Figure 5.9b
and 5.9c), of which only 4 were incorrect (99% accuracy). This means that the predictions
for the context arms with no data available, are not only accurate, but lead to an increase
in predicted arms equal to 49% of the original dataset without using any data (original
dataset: 638 arms, after applying domain knowledge rules: 948 predictions).

5.3. RESULTS 117

In Chicago, the 2 recoverable regulators shown in Table 5.8 were recovered (cf. Figure 5.9d
and 5.9e, the true positives increased from 142 to 144). In addition, 47 new predictions were
made on arms with missing data, representing a 30.5% increase of the original dataset (cf.
Figure 5.9e and 5.9f), of which only one was incorrect (98% accuracy).

Similarly, in Hanover the 9 recoverable regulators shown in Table 5.9 were recovered (cf.
Figure 5.9g and 5.9h, the true positives increased from 541 to 550). 159 new regulators were
predicted from arms with missing data, accounting for 29.4% of the original dataset (cf.
Figure 5.9h and 5.9i), of which all were correct (100% accuracy).

(a) Champ: initial. (b) Champ: corrected rules. (c) Champ: corrected and inferred.

(d) Chic: initial (e) Chic: corrected rules. (f) Chic: corrected and inferred.

(g) Han: initial. (h) Han: corrected rules. (i) Han: corrected and inferred.

Figure 5.9.: Confusion matrices before checking for consistency the predicted labels using domain knowledge
rules (a, d, g), after recovering incorrect predictions with the usage of domain knowledge rules (b, e, h), and
after both correcting incorrect predicted labels and inferring regulation for context arms with no available
trajectory data (c, f, i).

118 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

Therefore, by applying domain knowledge rules, there is a gain in accuracy between 1% and
3%, but more importantly, accurate predictions (99% in Champaign, 98% in Chicago and
100% in Hanover) can be made to a number of arms with incomplete data that corresponds
to 29%-49% of the original data. Furthermore, the FPR of the class with the highest FPR
decreases between 15.6% to 60% (15.6% in Chicago, 60% in Champaign and 58.3% in
Hanover), validating this thesis’ proposal to use domain knowledge rules for both recovering
misclassified regulators and for predicting regulators for arms with no trajectory data.

5.4. Discussion

The main findings of this chapter are the following:

1. The TRR method proposed in this chapter (hybrid all static model), which combines data
from trajectories and OSM and makes use of information of context intersection arms, can
provide accurate predictions for rule sets consisting of UN, SS, PS, and TS: 97% accuracy
in Champaign and Hanover, and 95% in the smaller Chicago dataset.

2. Including information in the feature vector from context intersection arms proved bene-
ficial for the classification: all-arm classification models outperformed single-arm models.

3. The sampling rate can affect the performance of the classification. A low sampling rate
affects both the calculated speed values from GPS traces and the detected stopping and
deceleration episodes. The accuracy of the hybrid-all-static model decreased between 1-2%
when the sampling interval was doubled from 2 s to 4 s.

4. The GB classifier performs as well or better (increase in F1-score between 1%-4%) than
RF for all experiments (cf. all-arm models in Table 5.2).

5. The negative effect on accuracy, as validated by the two larger datasets, when both
straight and curved trajectories are used, was found to be between 1%-3%. Therefore, the
exclusion of curved trajectories has a positive effect on the classification performance.

6. The optimal number of trajectories per intersection arm for the computation of classifi-
cation features found to be five straight trajectories.

7. Eliminating the number of trajectories that cross the intersections arms to a certain num-
ber, for the computation of the classification features, negatively affects the classification
performance. However, with only three straight trajectories per intersection arm, the clas-
sification accuracy is equal to or greater than 85% across all datasets (85% in Chicago, 89%
in Hanover and 92% in Champaign). With only five straight trajectories, the accuracy is
equal to or greater than 90% (90% in Chicago and 92% in Champaign and Hanover).

8. Domain knowledge rules in general can help recover incorrect predictions in cases where
there are predictions available from the context arms and there is inconsistency in the
predicted labels, expressed (and detected) as a significant difference in the predicted proba-
bilities of the labels (threshold value for probability difference used: 0.14). If all regulations
of the same intersection are predicted with high probability (cases marked in green in the
tables analysing the misclassifications), then unless there is a majority arm label agreement,
no recovering action can be triggered. In the three datasets examined, the majority of inter-
section arms has only 1 or no context arms. In total, of the 63 incorrectly predicted arms
in the three datasets, only 3 arms have more than 1 context arm (2 context arms), where
each arm can be examined by comparing its predicted label with the two predicted labels
of its context arms. The more context arms are available, the more potential for domain

5.5. SUMMARY 119

rules to be used to recover incorrect predictions. Furthermore, domain rules cannot help in
cases where all context arms are misclassified, but the predicted labels do not contradict
the rules (cases marked in white in the relevant tables), for example, all arms are predicted
as TS, when in fact they are SS, since all-way-stop controlled is a valid regulation for an
intersection. By applying domain knowledge rules, there is a gain in accuracy between 1%
and 3%, but more importantly, accurate predictions can be made on a number of arms with
incomplete data corresponding to 29%-49% of the original data. Interestingly, the (incom-
plete) arms predicted solely based on the information of context arms are predicted with
high accuracy: 99% in Champaign, 98% in Chicago and 100% in Hanover. In addition, the
FPR of the class with the highest FPR decreases between 15.6% to 60% (15.6% in Chicago,
60% in Champaign and 58.3% in Hanover), validating the proposal of this thesis to use
domain knowledge rules to both recover incorrect predicted regulation labels and to predict
regulators for arms with no available trajectory data.

An interesting direction to extend this study would be on how traffic regulations can be
predicted with high accuracy under limited labeled data. As discussed in Section 4.2, labeling
arms with regulations for a TRR learning task, is a manual and costly process, and although
there are many trajectory datasets that one can use for TRR, the need for labeled data
makes the latter unsuitable for this purpose. One idea is to explore unsupervised methods,
such as clustering, where the data needs not to be labeled. A second idea is to explore
semi-supervised methods, such as self-training (Van Engelen and Hoos, 2020), where only
limited labelled data is used to train a classifier. A third idea is to explore the possibility
of transferring learning from one city to another, i.e., training a classifier with labeled data
from a city X and predicting target labels in a city Y, assuming no labeled data is available
from the latter city. These ideas are explored in Chapter 6.

5.5. Summary

In this chapter, a new TRR method (hybrid all-static) was proposed which combines data
from trajectories and OSM and uses information from context intersection arms. The method-
ology was tested in three datasets containing 3-way and 4-way intersections, controlled by
UN, SS, TS (Champaign, Chicago) and UN, PS, TS (Hanover). Curved trajectories found
to have a negative effect on the classification accuracy by 1%-3%, therefore extracting clas-
sification features only from straight trajectories can positively affect the classification per-
formance. The minimum optimal number of trajectories per intersection arm was found to
be five straight trajectories. Furthermore, limiting the number of trajectories to a certain
number negatively affects the classification performance. However, with only three straight
trajectories per intersection arm, the classification accuracy is equal to or greater than 85%
across all datasets (85% in Chicago, 89% in Hanover and 92% in Champaign). With only
five straight trajectories, the accuracy is equal to or greater than 90% (90% in Chicago and
92% in Champaign and Hanover). Finally, by applying a set of domain knowledge rules to
the predicted labels on an intersection level, we were able to recover misclassified regulators
and predict labels from arms with no data. By applying domain knowledge rules, there is
a gain in accuracy of between 1% and 3%, but more importantly, accurate predictions can
be made on a number of arms with no available trajectory data corresponding to 29%-49%
of the original data. Interestingly, the regulators from (incomplete) arms predicted solely
based on the context arm information are predicted with high accuracy 99% in Champaign,
98% in Chicago and 100% in Hanover. The proposed model (using at least five trajectories
per intersection arm) after recovering potentially identified incorrect predictions by applying

120 CHAPTER 5. TRR FROM GPS DATA: ONE-ARM VERSUS ALL-ARM MODELS

domain knowledge rules achieved an accuracy of 97% in Champaign and Hanover, and 95%
in Chicago (F1-score: 0.97, 0.98 and 0.94 respectively).

5.6. Acknowledgements

The methodology described in this chapter, as well as the other experiments proposed, tested
and presented here, are published in the ISPRS International Journal of Geo-Information un-
der the title Recognition of Intersection Traffic Regulations From Crowdsourced Data (Zourli-
dou et al., 2023). The author of this thesis is the principal investigator and first author of
the article, as well as the creator of all figures.

6. TRR with Sparsely Labeled and Stream Data

6.1. Introduction

In this chapter, the default TRR model is examined under different scenarios of availability
of labeled data. Starting with the scenario of having available only trajectories and the free
OSM, i.e. no regulation labels for training a classifier, it is investigated whether the use of
clustering and some mean statistics of the data instances clustered in the same cluster can
lead to an accurate classification of intersection arms (Section 6.2). Section 6.3.1 explores the
scenario where a small amount of labeled data is available and both labeled and unlabeled
data are used in the training process (self-training). The same scenario is also explored in
Section 6.3.2 by selecting a small set of data to be labeled with a process that queries data
instances for which the classifier is less confident about their predicted target labels (active
learning). Section 6.3.3 tests the idea of using clustering for selecting the data instances
to be labeled (cluster-then-label). A comparison of all classification methods is presented in
Section 6.3.4. In addition, in Section 6.4, it is investigated whether learning is transferable
between cities (learning transferability), assuming that there is no labeled data from a city
A whose regulations need to be predicted, but do exist labeled data from another city B.
We then examine whether training a classifier with data from city B can provide accurate
predictions for the regulators of city A. Finally, Section 6.5 tests the default TRR model in
incremental learning settings.

6.2. TRR with Clustering

Clustering for grouping data instances in certain categories is not common, as after clustering
one needs to match clusters to target categories. However, in the context of the TRR
problem, Hu et al. (2015) have tested the idea of using clustering for grouping the intersection
arms in three categories (UN, SS, TS), achieving classification accuracy of 80%. More
specifically, after applying clustering, they used the mean statistics of the crossing speed
and the duration of the last stop episode within the clustered dataset instances of each
cluster to match the three clusters in regulation categories. The hypothesis of this idea
is that if clustering is done successfully, then the target labels can be recovered by the
characteristic mean values of the above mentioned features. As authors explain (Hu et al.,
2015, p. 23) “common sense tells us, for example, if a car does stop at a traffic regulator,
then a red light would be the regulator that causes the longest wait; and when considering
the lowest passing speeds a car demonstrates when crossing different intersections, at the
uncontrolled ones we would observe the highest speed compared to traffic lights or stop
signs”.

We adopted this idea and tested it on the three datasets. The K-means algorithm (Sec-
tion 2.3.3.1) was used to cluster the data into three categories. After clustering, the mean
values of the two features were calculated. Table 6.1 shows these values for each cluster.
For the Champaign and Chicago dataset, we assumed that the cluster having the largest
average duration of the last stopping episode corresponds to traffic light category (cluster

121

122 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

Table 6.1.: Mean values of the duration of the last stop episode and of the average crossing speed, calculated
from the data assigned to each cluster.

Dataset Classification Feature Cluster
A

Cluster
B

Cluster
C

Champaign average speed (kmh) 49.6 29.61 22.87
duration of last stop episode (s) 1.75 12.09 6.16

Chicago average speed (kmh) 23.9 40.4 29.2
duration of last stop episode (s) 6.6 2.5 11.7

Hanover average speed (kmh) 32.67 36.88 25.48
duration of last stop episode (s) 20.19 3.21 24.46

Table 6.2.: Classification performance after matching clusters to regulator labels.

Dataset Recall Precision F-score Accuracy

Champaign 0.75 0.79 0.77 0.79
Chicago 0.77 0.75 0.75 0.75
Hanover 0.68 0.73 0.69 0.73

(a) Champaign. (b) Chicago. (c) Hanover.

(d) Champaign. (e) Chicago. (f) Hanover.

Figure 6.1.: Confusion matrices and false/true positive rates for the three datasets after applying K-means
clustering.

6.2. TRR WITH CLUSTERING 123

(a) Chicago: predicted labels. (b) Chicago: actual labels.

(c) Hanover: predicted labels. (d) Hanover: actual labels.

Figure 6.2.: Predicted labels vs. actual labels. The x-axis corresponds to the average crossing speed and y-axis
to the duration of last stopping episode. In Chicago, green corresponds to SS, blue corresponds to TS and
red to UN. In Hanover, green corresponds to PS, blue to TS and red to UN.

B for Champaign and cluster C for Chicago) and the cluster with the largest average speed
corresponds to uncontrolled intersections1, which is cluster A for Champaign and cluster
B for Chicago. The remaining cluster is then assigned to the stop sign. For the Hanover
dataset, similar knowledge matching rules were applied. The priority sign was assigned
to the cluster with the highest speed (cluster B), and since clusters A and C have very
similar values for stopping time, the cluster from these two clusters with the highest speed
was assigned to the traffic signal category (cluster A) and the remaining cluster C was
assigned to the uncontrolled arms2. The performance of the classification after these two

1In Champaign and Chicago, as it will be discussed in Section 6.4, the vast majority of uncontrolled arms coexist
with arms with stop signs at the same intersection (cf. Table 6.4), so vehicles passing through uncontrolled arms,
cross the intersection at high speed.

2In Hanover, as it will be discussed in Section 6.4, the uncontrolled arms coexist in the same intersection only with
the uncontrolled arms (cf. Table 6.4), which means that a vehicle passing through such intersections will have
to slow down/stop to check/yield for traffic coming from the right, so its speed will be lower than at a priority
controlled arm or a traffic light.

124 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

steps (clustering and cluster-label matching) is reported in Table 6.2 (a detailed report with
per class performance is given in Table A.5 in the Appendix on page 153). Indeed, the
accuracy is close to the accuracy of 0.8 reported in Hu et al. (2015). However, the confusion
matrices (Figure 6.1) show that in the two largest datasets, the class SS in Champaign
and UN in Hanover are largely, if not completely misclassified. The difference between the
predicted labels and the actual ones is also illustrated in Figure 6.2. In Chicago the three
classes are almost equally well distinguished (cf. Figure 6.2a with Figure 6.2b). However, in
Hanover the class with the fewer examples (UN) is largely misclassified (cf. Figure 6.2c with
Figure 6.2d). Testing other clustering techniques, such as DBSCAN and spectral clustering,
did not yield better results. Therefore, we conclude that not having labeled data and using
clustering for TRR, can only provide poor classification performance. In the next section,
we investigate whether using small amounts of labeled data, all regulatory categories can
be accurately identified.

6.3. TRR with Self-Training, Active Learning and Cluster-then-Label

6.3.1. TRR with Self-Training: Using Labeled and Unlabeled Data

In the case where there is a small amount of labeled data available (in our context, in-
tersection arms for which both trajectory data and regulation labels are available) and an
additional large amount of unlabeled data (in our context, intersection arms crossed by
trajectories), self-training approaches can be used to exploit both labeled and unlabeled
available data. Here we test the Algorithm 5, explained in 2.3.4.1, using as confidence
threshold 0.95 and as stopping criterion the labeling of all unlabeled data. Only the two
largest datasets were used for the experiments, as the Chicago dataset was too small for the
requirements of the methodology (a small amount of labeled data is needed plus a bigger
amount of unlabeled data). The SelfTrainingClassifier function, provided by the Python
library sklearn.semi supervised, was used for the implementation.

The settings of the experiments are shown in Figure 6.3. Here, we split the dataset into
training and testing datasets, so that the classification accuracy of all experiments (base-
line vs. self-training) refers to performance measured on the same dataset. More specifically,
experiments were performed for different amounts of labeled data starting with 2% of the to-
tal available data set and gradually increasing the amount of training data in 2% increments
up to 42%, as illustrated in Figure 6.4. The 2% of data corresponds to 12 intersection arms
for the Champaign dataset and 11 for the Hanover dataset. As Figure 6.4 illustrates, each
successive experiment uses the same training examples used in the previous experiment plus
2% new training examples, randomly selected from the pool of unused training examples
(blue in Figure 6.3). Once new labeled examples are sampled for training (all labeled data
are illustrated in green in Figure 6.3), the remaining (training) data are masked as unlabeled
data (depicted in blue). The classification accuracy of the TRR model using self-training
is compared to the performance of the same TRR model trained using the same labeled

Figure 6.3.: Settings of self-training experiments using different sizes of labeled/unlabeled data.

6.3. TRR WITH SELF-TRAINING, ACTIVE LEARNING AND CLUSTER-THEN-LABEL 125

(a) Champaign. (b) Hanover.

Figure 6.4.: Classification performance using self-training under different amounts of labeled/unlabeled train-
ing data. The percentages of data used as training data of x-axis refer to labeled data.

examples used in the corresponding self-training experiment (we call it baseline from now
on). In other words, the baseline model is trained with the same labeled examples as the
self-training model, but the difference between them is that the latter uses for training in
addition to labeled data, unlabeled data as well. The performance of both models is tested
in the same test dataset, depicted in red in Figure 6.3. To sum up the experiment settings,
we split the dataset into training and testing data; the baseline model is trained on the
labeled data (green) and tested on the testing dataset (red), and the self-training model is
trained on the labeled and unlabeled data (green and blue) and tested on the testing dataset
(red).

Figure 6.4 shows the classification results of self-training in the two datasets. In the Cham-
paign dataset (Figure 6.9a), the classifier using self-training with labeled data that corre-
sponds from 2% of the total available data, until 18% (and additionally 73% to 57% re-
spectively unlabeled data), performs worst than the baseline model. After using above 120
labeled examples (it corresponds to 20% of the total amount of data), the self-training model
starts to outperform slightly the baseline model. In the Hanover dataset (Figure 6.4b), for
4% of labeled data the self-training model outperforms the baseline model but then starts
performing worst than the later until 26% of the data. After that, both models perform
similarly. In both datasets, after around 144 labeled examples the two models perform sim-
ilarly. Before that number, the self-training model fails to outperform the baseline model
almost in all experiments. Therefore, we conclude that using self-training under the datasets
characteristics (e.g., number of examples) and the experimental settings (percentages of
labeled-unlabeled examples) we tested, in the context of the TRR problem, no improvement
in performance is achieved compared to the baseline model.

6.3.2. TRR with Active Learning

In this section, we investigate whether querying the labels of intersection arms for which
the classifier makes less confident predictions, as explained in Section 2.3.5, can yield better
performance than randomly acquiring labels. Or in other words, whether we can use ac-
tive learning to reduce the number of labeled examples needed to train a classifier that can

126 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

Figure 6.5.: Active learning framework for traffic regulation recognition.

generalize well on unseen data (test dataset). Figure 6.5 illustrates an active learning frame-
work for TRR. For the implementation, we used the function models.ActiveLearner from the
Python modAL framework (Danka and Horvath, 2018). The active learning algorithm has
been described in Section 2.3.5 (Algorithm 7).

The settings for the experiments are shown in Figure 6.6. Similar to the experiments for
testing self-training, the experiments here were run for different amounts of labeled data,
starting with 2% of the total available data set and gradually increasing the amount of train-
ing data in 2% increments up to 42%, as shown in Figure 6.7. The 2% of data corresponds
to 12 intersection arms for the Champaign dataset and 11 for the Hanover dataset. Each
successive experiment uses the same training examples used in the previous experiment plus
2% of new training examples selected randomly from the pool of unused training examples
for the baseline model and selected using pool-based uncertainty sampling for the active
learning model, as explained in Section 2.3.5. The classification accuracy of the TRR model
with active learning is compared to the performance of the baseline model trained with
the same amount of labeled examples. In order to compare the classification performance
between self-training and active learning on exactly the same test dataset, we used the same
training/test settings here as for self-training. Therefore, the baseline model was trained on
randomly selected labeled data (green in Figure 6.3) and tested on the test dataset (red),
and the active learning model was trained on the actively labeled training data (dark green
in Figure 6.6) and tested on the test dataset (red, which is the same dataset used for testing
the baseline and self-training models).

Figure 6.7 shows the classification results of active learning in the two datasets. In both
datasets, the model trained with active learning outperforms the baseline model. In partic-
ular, in the Champaign dataset (Figure 6.7a), the classification accuracy reaches 95% with

Figure 6.6.: Settings of active-learning experiments with different sizes of actively labeled training data.
Successive experiments query a larger amount of labels from a hypothetical human domain expert (annotator),
as explained in Section 2.3.5.

6.3. TRR WITH SELF-TRAINING, ACTIVE LEARNING AND CLUSTER-THEN-LABEL 127

(a) Champaign. (b) Hanover.

Figure 6.7.: Classification performance using active learning under different amounts of (actively) labeled
training data.

only 24 actively labeled data instances (4%). The baseline model achieves similar perfor-
mance with 132 data instances (22%). Moreover, the active learning model starts converging
at 36 data instances (accuracy 96%-97%), while the baseline model converges at an accuracy
of over 95% at 192 instances (32%). In the Hanover dataset (Figure 6.7b), the active learn-
ing model achieves 88% accuracy with only 22 instances (4%). The corresponding accuracy
of the baseline model is 72%. The active learning model starts converging with 44 examples
(8%) (accuracy 95%), while the baseline model needs 132 examples (24%) to achieve an ac-
curacy close to that value. Also for both datasets, with just 44 examples which corresponds
for example to 11 four-way intersections, one can expect an accuracy of over 95%.

Thereof, it can be concluded that using active learning under the dataset characteristics
(e.g., number of examples) and experimental settings (percentage of labeled data) we tested
in the context of the TRR problem, can lead to an increase in classification performance
compared to the baseline model when trained with the same amount of training data.

6.3.3. TRR with the Cluster-then-Label Algorithm

Here we test Algorithm 6 (cluster-then-label), which is explained in Section 2.3.4.2 on page
59. The classification performance is shown in Figure 6.8. Briefly, given a set of unlabeled
data and a number k corresponding to the number of data instances to be manually labeled,
we cluster the data with the K-means algorithm into k clusters (k corresponds to the number
of arms of the x-axis of Figure 6.8). Then, for each cluster, the data instance x closest to
the centroid of the cluster is labeled. After that, the XGBoost classifier is trained with
the examples labeled in the previous step and is ready for predicting unlabeled data. A
variation of this algorithm is to propagate the label of the x data instance to p percent
of the data instances that belong to the same cluster with x, and repeat this process for
all k clusters. We refer to this classification process as cluster-then-label-propagation. Both
cluster-then-label and cluster-then-label-propagation learning were tested and compared to
the baseline model. Label propagation in the second model was implemented by propagating
the label of each cluster centroid x to all data instances of the same cluster with x (parameter
p of Algorithm 6 was set to 100%).

128 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

(a) Champaign. (b) Hanover.

Figure 6.8.: Classification performance of cluster-then-label and cluster-then-label-propagation under differ-
ent amounts of labeled training data.

In both datasets, the cluster-then-label learning performs better without label propagation
than with label propagation, with very few exceptions and very little difference in per-
formance when this is the case (e.g., for 12% of the labeled data in Champaign). More
specifically, the cluster-then-label learning in Champaign outperforms the baseline model
in all experiments from 2% to 30%, and after this value the two models are very close in
terms of accuracy. The fewer labeled examples there are, the greater the difference in perfor-
mance between the baseline model and the cluster-then-label classification. However, for the
Hanover dataset the same observations do not hold. Although cluster-then-label performs
better than cluster-then-label-propagation in all experiments up to 40% of the labeled data,
a significant difference between the two models is only seen for 2% and 4% of the labeled
data. After these values, both models perform similarly.

Therefore, it is difficult to make a general statement about the performance of cluster-then-
label learning compared to the baseline model. It can only be stated that the use of cluster-
then-label learning is more efficient than the baseline model under the characteristics of the
datasets (e.g.., number of examples) and experimental settings (percentage of labeled data)
that we tested in the context of the TRR problem for very small amounts of labeled data
such as 11 or 21 data instances (cf. 2% and 4% in Hanover and Champaign, respectively),
and it cannot guarantee further improvement for larger values of labeled data, since such
improvement was observed only in Champaign and not in Hanover.

6.3.4. Comparison of All Tested Methods

The performance of all learning methods tested and discussed in this Section 6.3 is shown
in Figure 6.9. Active learning clearly outperforms all learning methods including the base-
line model. Moreover, it can be seen that all methods, after being trained with 40% of
the available data (240 arms in Champaign and 220 arms in Hanover), end up predicting
the intersection rules with similar accuracy. From a practical point of view, however, the
possibility of using active learning to achieve high prediction accuracy with less training
data remains interesting: by selecting the intersection arms to be manually labeled using
a sampling strategy from those suggested by the active learning framework, the number of

6.4. LEARNING TRANSFERABILITY: TRAINING ON CITY A AND PREDICTING ON CITY B 129

(a) Champaign. (b) Hanover.

Figure 6.9.: Classification performance of cluster-then-label, cluster-then-label-propagation and baseline
model under different amounts of labeled training data.

training data required for accurate predictions is significantly reduced. For both datasets,
we found that with just 44 examples which corresponds for example to 11 four-way intersec-
tions, one can expect an accuracy of over 95%. Compared to the number of data instances of
the baseline model that achieves the same accuracy (132 in both datasets), active learning
reduces the number of training data by 66.7%.

6.4. Learning Transferability: Training on City A and Predicting on City B

This section examines the scenario of predicting regulations of a city B, using a classifier
trained with data from another city, say city A. Such a scenario is illustrated in Figure 6.10.

Figure 6.10.: Experiments on transferability of learning are applied as illustrated in the right figure. A TRR
classifier is trained on data from a city A and then applied to data from a city B. The classification accuracy
is denoted as Ac. If training and predicting are performed on the same dataset, as illustrated in the left
figure, then the accuracy is denoted as Acorig.

Here the assumption is that learning can be transferable within cities. To test this hypoth-
esis, six experiments were conducted within the three cities of Champaign, Chicago, and
Hanover. The settings of the experiments and the Ac classification accuracy of the experi-
ments are presented in Table 6.3. The classification accuracy of each experiment is compared

130 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

Table 6.3.: Classification results of the six experiments on the transferability of learning between cities. Ac:
accuracy on the Predict dataset when training is done with data from the city given in the Training dataset
column; ∆Ac = AcOrig − Ac, where AcOrig is the accuracy when training is done in the same city as the
Predict dataset (AcOrig is given in the lower block of rows of the table). The best accuracy per experiment
across the different TRR methods is indicated in bold.

Static Dynamic Dynamic Hybrid Hybrid
(all-arm) (one-arm) (all-arm) (one-arm) (all-static)

Exp. Training
Dataset

Predict
Dataset

Regulators Ac ∆Ac Ac ∆Ac Ac ∆Ac Ac ∆Ac Ac ∆Ac

1 Champ. Chic. UN, SS, TS 0.63 0.18 0.75 0.05 0.73 0.12 0.73 0.09 0.80 0.11
2 Chic. Champ. UN, SS, TS 0.53 0.30 0.83 0.10 0.82 0.13 0.83 0.11 0.78 0.16

3 Han. Champ. UN, TS 0.45 0.48 0.35 0.60 0.33 0.62 0.41 0.54 0.53 0.43
4 Champ. Han. UN, TS 0.77 0.20 0.92 0.05 0.90 0.07 0.92 0.06 0.91 0.07

5 Han. Chic. UN, TS 0.73 0.22 0.66 0.21 0.62 0.29 0.65 0.22 0.82 0.12
6 Chic. Han. UN, TS 0.78 0.19 0.84 0.13 0.82 0.15 0.85 0.13 0.86 0.12

AcOrig AcOrig AcOrig AcOrig AcOrig

Chic. Chic. UN, SS, TS 0.81 0.80 0.85 0.82 0.91
Champ. Champ. UN, SS, TS 0.83 0.93 0.95 0.94 0.94
Chic. Chic. UN, TS 0.95 0.87 0.91 0.87 0.94
Champ. Champ. UN, TS 0.93 0.95 0.95 0.95 0.96
Han. Han. UN, TS 0.97 0.97 0.97 0.98 0.98

(a) Exp1: Train in Champ. and pre-
dict in Chic. (acc: 0.80).

(b) Exp2: Train in Chic. and predict
in Champ. (acc: 0.78).

(c) Exp3: Train in Han. and predict
in Champ. (acc: 0.53).

(d) Exp4: Train in Champ. and pre-
dict in Han. (acc: 0.91).

(e) Exp5: Train in Han. and predict
in Chic. (acc: 0.82).

(f) Exp6: Train in Chic. and predict
in Han. (acc: 0.86).

Figure 6.11.: Confusion matrices of the hybrid all-static model for the six experiments.

to the corresponding Acorig accuracy if the training was done with data from the same city
as the test, as depicted in Figure 6.10 (left). The difference between Acorig and Ac is given

6.4. LEARNING TRANSFERABILITY: TRAINING ON CITY A AND PREDICTING ON CITY B 131

in ∆Ac column in Table 6.3. Comparing the classification results of the six experiments, the
following observations can be made, that lead also to critical questions:

1. The hybrid all-static method scored better than the other TRR methods in four of
the six experiments. Figure 6.11 shows the confusion matrices of the hybrid all-static
model for the six experiments. This finding contrasts with the finding discussed in
Chapter 5 (cf. Table 5.2), where the hybrid all-static models scored better than the
other models in all three datasets. The question is why in two experiments the hybrid
all-static did not work as expected.

2. The dynamic all-arm model, in all six experiments performed slightly worse than the
dynamic one-arm model. This finding contrasts with the finding discussed in Chapter
5 (cf. Table 5.2), where the dynamic all-arm models scored slightly better than the
dynamic one-arm models in all three datasets. The question is why in all experiments
the dynamic all-arm models performed worse than the dynamic one-arm models.

3. The static model performed worse than the hybrid all-static in all experiments, which
is consistent with the finding discussed in Chapter 5 (cf. Table 5.2, the hybrid all-static
scored better than the static all-arm models in all three datasets).

4. In five of six experiments, the best accuracy in the TRR methods tested is above 0.80.
Only in Exp3, the accuracy is very low (0.53 in hybrid all-static). Also, in Exp3 and
Exp5 the ∆Ac of the dynamic models (one-arm and all-arm) as well as that of the
hybrid one-arm model has a very high value: e.g., for the hybrid one-arm model in
Exp3, ∆Ac = 0.54 and in Exp5, ∆Ac = 0.22. Moreover, the difference in accuracy
between Exp3 and Exp4, and between Exp5 and Exp6 is remarkable. For example,
when training is done in Hanover and predicting in Champaign, we observe very poor
performance in the dynamic and hybrid models. When training is done in Champaign
and predicting in Hanover the performance is high. The question is how to explain
such a large value of ∆Ac and why the performance within the same cities differs so
much when the cities swap training and predicting positions.

5. For the six experiments, the original trajectory datasets were used, which, as explained
previously, have different sampling rates. In Section 5.3.2, it was shown that increasing
the GPS sampling interval has a negative effect on the classification accuracy. However,
here the training is done not only with data from different geographical locations but
also with different characteristics in terms of their sampling interval. Therefore, it would
be interesting to examine whether having the training and test datasets similar sampling
rates, would positively affect the classification performance. To test this hypothesis, we
will (under)sample the Champaign and Hanover datasets as follows: for Exp1 and
Exp2 undesample Champaign to ≈ 4 s (to be closer to Chicago’s sampling interval),
for Exp3 and Exp4 undersample Champaign to ≈ 2 s (to be closer to Hanover’s
sampling interval) and for Exp5 and Exp6 undersample Hanover to ≈ 4 s (to be closer
to Chicago’s sampling interval).

Exploring the questions raised by the above observations, the following explanations can be
given:

1. (Explanation of observation 1) The hybrid all-static method scored better than the
other TRR methods in four of the six experiments. In Exp2 the dynamic one-arm
and the hybrid-one-arm models scored better than the hybrid all-static model (0.83 vs
0.78). A similar case is Exp4, where the dynamic one-arm and hybrid-one arm scored
an accuracy 0.92 and the hybrid all-arm model scored 0.91. Here we will attempt to

132 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

explain the 0.05 difference in accuracy of Exp2. In Exp2, we can see that the static
model performs poorly (accuracy 0.53) compared to the other TRR models (dynamic
one-arm: 0.83, dynamic all-arm: 0.82, hybrid one-arm: 0.83 and hybrid all-arm: 0.78).
The large difference in accuracy in the static model (∆Ac=0.30), could be explained
by the fact that the Chicago dataset geographically covers an area of 3.9 km x 2.5 km,
while the Champaign dataset covers an area of 12.2 km x 13 km (cf. Figure 4.1). When
the classifier is trained on the Chicago dataset and then tries to predict regulators in
the Champaign dataset, the map-based individualities of the larger test dataset, as
reflected in the static features from all context arms, may not be able to be captured
by a classifier that has been trained on a much smaller dataset (static all-arm model
accuracy=0.53). This observation may also explain why the hybrid all-static (accuracy
0.78) that uses all the static features from the context arms of an intersection has 5%
worse performance than the dynamic one-arm model and the hybrid one-arm model
(accuracy 0.83). Therefore, in transferability learning settings, static information from
context arms can generally benefit TRR models unless the training dataset is much
smaller than the test dataset, as in Exp2, a finding that is consistent with the finding
discussed in Chapter 5 (cf. Table 5.2, the hybrid all-static and hybrid all-arm models
scored better than the hybrid one-arm models on all three datasets).

2. (Explanation of observation 2) The dynamic all-arm model, in all six experiments
performed slightly worse than the dynamic one-arm model. In order to investigate in
what ways the dynamic information from context arms differs within the training the
test datasets, we investigated what kind of dynamic information is found within an
intersection, i.e., how many arms are crossed by at least five straight trajectories and
by what regulations they are controlled, within each intersection of the datasets. This
information for all intersections containing arms that are sampled with at least five
straight trajectories for the three datasets is presented in Table 6.5. For example, in
Champaign there are 170 three-way and 197 four-way intersections that are sampled
with at least one arm crossed by five straight trajectories. From the 170 three-way
intersections, 115 intersections (5th column) have two UN arms (UN UN) that are
sampled by at least five straight trajectories each, 3 intersections have two arms reg-
ulated by UN and SS (7th column) and are sampled accordingly, etc. As we can see
in Table 6.5, the dynamic information between datasets differs in both qualitative and
quantitative aspects. Between Champaign and Chicago the difference is smaller, but
still one can see that in training settings, a classifier trained on the Champaign dataset
will use examples for recognising UN regulated arms, which in the dynamic all-arm
settings will contain information from context arms that are regulated as UN SS (see
4th and 22nd column in Table 6.3), UN (5th and 23rd columns), SS (7th column)
and individual arm UN related information (no information from context arms avail-
able, see 11th and 26th columns). For the same training task for UN recognition in
the Chicago dataset, the classifier will use examples which contain information from
context arms regulated as UN (5th), and from individual arm information only (11th
and 26th columns).

The same observation that the context information differs between the two datasets
applies to the other two rules too (TS and SS). This may be the reason why the dynamic
all-arm models perform worse than dynamic one-arm models in all experiments, since

6.4. LEARNING TRANSFERABILITY: TRAINING ON CITY A AND PREDICTING ON CITY B 133

Table 6.4.: Combinations of traffic regulators at intersections in the three datasets. The numbers refer to number of intersections.

Dataset three-way junctions four-way junctions

UN
SS

YS
PS

PS
SS

UN
(all)

SS
(all)

TS
(all)

Total UN
SS

YS
PS

PS
SS

UN
(all)

SS
(all)

TS
(all)

Total

Champ. 293 0 0 33 15 9 350 220 0 0 9 52 80 361
Chicago 36 0 0 4 8 8 56 10 0 0 0 17 71 98
Hanover 0 386 5 230 0 88 709 0 82 9 94 0 153 338

Table 6.5.: Combinations of traffic regulators at the intersections of the three datasets, where intersection arms are crossed by at least five straight trajectories.
The numbers refer to number of intersections.

Three-way intersections Four-way intersections

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

TS
TS
TS

YS
YS
PS

UN
UN
UN

UN
UN
SS

UN
UN

YS
PS

UN
SS

PS
PS

SS
SS

TS
TS

UN PS SS TS Total TS
TS
TS
TS

SS
SS
SS
SS

UN
UN
UN
UN

TS
TS
TS

SS
SS
SS

UN
UN
UN

UN
UN
SS

UN
UN

SS
SS

TS
TS

UN PS SS TS Total

Champ. 0 0 0 2 115 0 3 0 3 7 38 0 2 0 170 12 1 0 10 0 0 2 70 16 34 30 0 12 10 197
Chic. 0 0 0 0 9 0 0 0 2 3 25 0 6 3 48 0 0 0 2 1 0 0 0 3 20 9 0 11 24 70
Han. 2 1 1 0 30 1 0 101 0 22 14 51 0 5 228 2 0 1 9 0 1 0 8 1 41 19 10 0 16 108

134 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

training in learning transferability experiments is done with information that differs
compared to that used by the same classifier for predicting. For the Exp3, Exp4, Exp5
and Exp6 the information between the training and predicting datasets differs even
more. A classifier trained on the Hanover dataset will use examples for recognising UN
regulated arms, which in the dynamic all-arm settings will contain information from
context arms that are regulated as UN UN (see 3rd and 21st column in Table 6.3),
UN (5th and 23rd columns), UN UN UN (18th column), and individual arm informa-
tion (11th and 26th columns). For the same training task for UN recognition in the
Champaign dataset, the classifier will use examples which contain information from
context arms regulated as UN SS (4th and 20nd column), UN (5th and 23rd columns),
SS (7th column) and from individual arm UN related information only (11th and 26th
columns).

3. (Explanation of observation 4) The fact that the accuracy in Exp3 for the dynamic and
hybrid models is low (e.g. 0.35 and 0.41 for the one-arm models respectively), where
training is done in Hanover and predicting in Champaign, but in Exp4 where training
is done in Champaign and predicting in Hanover, is high (0.92 for both models) can be
explained by considering not only on regulation terms but on the movement behaviour
imposed by the rules of an intersection.

More specifically, in Table 6.4, we can see per intersection type (three-way and four-
way intersections), the combinations of regulations in the three datasets. Although the
Champaign and Hanover datasets have common regulations (UN, TS), the movement
behaviour imposed by the rule UN differs in the two cities. In Hanover the UN coexists
at the intersection with other UN rules and requires the vehicle to yield for traffic
coming from the right, which means that it can decelerate or/and stop to check for
traffic coming from the right. Figure 6.12a shows a typical example of a UN controlled
intersections in Hanover, where one can see that due of the buildings and the parked
vehicles near the intersection, the driver must at least slow down to check for traffic
coming from the right. In Champaign and Chicago the UN rule coexists at intersections
with SS (UN, UN, SS in three-way intersections and UN, UN, SS, SS in four-way) or
with UN (all-way UN for three-way and four-way intersections). The behaviour of
vehicles at all-way UN intersections will be similar to that in Hanover. However, at
UN-SS controlled intersections, vehicles crossing uncontrolled arms can pass through
the intersections unhindered -without slowing down- basically because early before the
intersection drivers can check whether the characteristic octagonal stop sign is present
on the right intersection arm. By seeing the SS early, drivers don’t have to decelerate
at all before the intersection. In addition, the physiognomy of Champaign is that, that
allows good visibility near intersections, so stop signs as shown in Figure 6.12b, or the
stop line as shown in Figure 6.12c are easily seen by drivers.

Therefore, when a classifier is trained on the Hanover dataset, it learns as UN the
movement behavior of decelerating/stopping for right-traffic yielding. When this clas-
sifier is applied to the Champaign or Chicago dataset (for predicting labels), UN arms
that coexist with SS and drivers cross them unhindered, are misclassified as TS instead
of UN (Figure 6.13a and 6.13c). However, when the classifier is trained in Champaign
or Chicago, it learns to identify as UN the two different types of movement behaviour
at UN controlled arms (decelerating/stopping or unhardened). When this classifier is
applied to the Hanover dataset, it can recognize UN arms because it has been trained
with relevant data (Figure 6.13b and 6.13d). The same observation and explanation
holds for Exp5 and Exp6.

6.4. LEARNING TRANSFERABILITY: TRAINING ON CITY A AND PREDICTING ON CITY B 135

(a) Hanover.

(b) Champaign

(c) Champaign

Figure 6.12.: Examples of uncontrolled intersections in Hanover (all-way UN) and in Champaign (UN-SS).
In red are framed stop signs and a stop line.

136 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

(a) Exp3: Train in Han., predict in Champ. (acc: 0.35).(b) Exp4: Train in Champ., predict in Han. (acc: 0.92).

(c) Exp5: Train in Han., predict in Chic. (acc: 0.66). (d) Exp6: Train in Chic., predict in Han. (acc: 0.84).

Figure 6.13.: Confusion matrices of the dynamic one-arm model for Exp3, Exp4, Exp5, and Exp6.

Table 6.6.: Classification results of the six experiments on the transferability of learning between cities (hybrid
all-static approach). Ac: accuracy on the Predict dataset when training is done with data from the city given
in the Training dataset column; ∆Ac = AcOrig −Ac, where AcOrig is the accuracy when training is done in
the same city as the Predict dataset. The results under the “original” columns refer to the experiments which
use the GPS data with their original sampling rate. The “undersampled” results, refer to the experiments
where the Champaign and Hanover datasets are (under)sampled (see page 131, observation 5, for the settings
of undersampling). The best accuracy per experiment is indicated in bold.

Hybrid (all-static)
original data undersampled data

Exp. Train Predict Reg. Ac AcO ∆Ac Ac AcO ∆Ac

1 Champaign Chicago UN, SS, TS 0.80 0.91 0.11 0.73 0.91 0.18
2 Chicago Champaign UN, SS, TS 0.78 0.94 0.16 0.75 0.93 0.18

3 Hanover Champaign UN, TS 0.53 0.96 0.43 0.46 0.96 0.50
4 Champaign Hanover UN, TS 0.91 0.98 0.07 0.80 0.98 0.18

5 Hanover Chicago UN, TS 0.82 0.94 0.12 0.61 0.94 0.33
6 Chicago Hanover UN, TS 0.86 0.98 0.12 0.85 0.98 0.13

6.5. INCREMENTAL (ONLINE) LEARNING 137

4. (Explanation of observation 5) Table 6.6 shows the classification accuracy of the six
experiments, both using the original data and undersampled data. In all experiments,
the classification accuracy is greater when the original data is used, which means that
undersampling a dataset, so that the two datasets involved in the learning/prediction
process have similar sampling rate, does not positively affect the classification accuracy.
Therefore, these experiments recommend no subsampling preprocessing of the datasets
in the context of learning transferability.

A general conclusion of the above findings and discussions is that cross-city transferability
learning is feasible, but with reduced accuracy. For cities of the same country, such as
Chicago-Champaign, we found a decrease in accuracy between 11% and 16% (cf. ∆Ac of
hybrid all-static in Table 6.3, Exp1 and Exp2). Between cities of different countries, on
best case the accuracy is 7% smaller than when the classifier is trained and predicts with
data of the same city, and on worst case 43% (cf. ∆Ac of hybrid all-static in Table 6.3,
Exp3-Exp6). The hybrid all-static model performed better than the other TRR models in
the majority of experiments, and would therefore be recommended as the default model for
transferability learning purposes. Moreover, in terms of transferability of learning between
cities of different countries, the four experiments Exp3, Exp4, Exp5 and Exp6 showed that
learning has some limitations stemming from the fact that they were conducted between a
subset of regulators (UN, TS) that Hanover and Champaign and Hanover and Chicago have
in common, rather than across the entire set of regulators as was done in Exp1 and Exp2. In a
real-world scenario, eliminating the traffic regulation task in two regulation categories would
be neither useful nor realistic. However, even in a scenario where the regulators of the two
cities are only partly the same and the same regulator may impose different traffic behaviors
(such as UN in Hanover and UN in Champaign and Chicago), learning transferability can be
feasible under the certain training conditions discussed previously (see discussion on Exp3
and Exp4). In addition, the fact that the reason that learning was not successful in Exp3
and Exp5 was the different context of intersection rules between the cities, (all-way UN
controlled intersections in Hanover and all-way UN and UN-SS controlled intersections in
Champaign/Chicago), can support the argument that transferability of learning between
cities in different countries can be possible when cities share the same intersection rules (in
contrast to the scenario with partly the same regulations tested in the experiments between
Hanover and Champaign and between Hanover and Chicago).

6.5. Incremental (Online) Learning

Here we propose a hypothetical TRR incremental learning scenario, depicted in Figure 6.14.
To the author’s knowledge, such a scenario has not been explored to date. Suppose a
mobile phone application which, upon detecting driving motion, starts recording GPS traces.
The traces are uploaded to the application’s server where features are extracted and data
instances are generated and request real-time predictions for traffic regulations. The mobile
application also has a participatory component, through which drivers can volunteer to
answer simple voice questions such as “are you now crossing an intersection with a traffic
light?”, with a “Yes” or “No”. The application records the response and encodes it as a
real-time label of the referenced intersection arm, which is used directly for evaluating the
current TRR learning component and incrementally training it as well.

In contrast to batch learning, which has been used in all the studies presented so far in
this thesis, incremental learning deals with data streams. As Read et al. (2012) point out,
a data stream has also different requirements from the traditional batch learning setting,

138 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

Figure 6.14.: A TRR incremental learning scenario.

with most significant be the following: (1) be ready to predict at any point; (2) data may be
evolving over time; and (3) expect an infinite stream, but process it under infinite resources
(time and memory). An instance of a data stream in the context of TRR is a description of
an intersection arm, encoded with features extracted from the trajectories and OSM, that
can arrive at any time to request a prediction. The classifier then provides a prediction for
the traffic regulation of the requested data instance (arm) using its current learning model
(Figure 6.14, left component). Labeled data can also arrive at any time. A prediction is
then made using the current trained model. The current learning model is then evaluated
by comparing its latest prediction with the actual label of the data instance. The clas-
sifier performance is updated to reflect the current classification performance and as the
last step of this online process, the learning model is trained with the data instance (Fig-
ure 6.14, TRR incremental train(X)). For the implementation of this scenario, the Python
machine learning library River (Montiel et al., 2020) and in particular the function ensem-
ble.AdaptiveRandomForestClassifier was used.

Figure 6.15 shows the classification accuracy of the incremental TRR model for the three
datasets. A prediction is made every time a data instance arrives. However in Figure 6.15,
the accuracy is plotted every 10 data instances in order to have all the predictions of the
data stream of each dataset on one graph. The performance for each data instance is given
in the Appendix on page 155 (Figure A.2, A.3, A.4, A.5, A.6). A first observation from
the three graphs is that compared to the performance of the corresponding default batch
learning model (Chapter 5), the incremental classifier performs worst, which is a known
advantage of batch learning over incremental learning (Carbonara and Borrowman, 1998).
More specifically, on the Champaign dataset, the classifier after seeing 630 examples achieves
an accuracy of 92%, while the default model in the same dataset achieves an accuracy of
95% (3% difference, cf. Table 5.2). In the Chicago dataset the difference is more pronounced.
After seeing 150 examples, the online model has an accuracy of 75%, while the corresponding
batch model has an accuracy of 91% (16% difference). In Hanover, after seeing 560 exam-
ples, the incremental model has an accuracy of 83%, while the batch model has 95% (12%

6.5. INCREMENTAL (ONLINE) LEARNING 139

(a) Champaign.

(b) Chicago.

(c) Hanover.

Figure 6.15.: Classification performance in the three datasets under a TRR incremental learning scenario.

difference). Also, in Champaign and Hanover convergence is observed after 250 examples.
Chicago has fewer than 250 examples, so no such conclusion can be drawn.

Furthermore, in Hanover around the 220th example the accuracy starts to drop until the
250th example where it starts to increase again slowly (more precisely the accuracy falls
between 221-254, Figure A.3). Visualising the examples from 1 to 220 (green spheres in
Figure 6.16a) and from 221-254 (red spheres, Figure 6.16a and Figure 6.16c), we can see
that the accuracy drops because consecutive predictions are made within a residential area
with few examples having been used for training from this area until that time point (18
green examples versus 30 red examples). Also the intersections in this area are mostly
uncontrolled intersections where drivers drive at very low speeds as one intersection from
the other is very close (cf. with the intersections outside the circled area of Figure 6.16c). We
understand the drop in performance as an inefficacy of the classifier to predict regulations

140 CHAPTER 6. TRR WITH SPARSELY LABELED AND STREAM DATA

(a) (b)

(c)

Figure 6.16.: Data instances of the Hanover dataset in order of arrival (1 is the first instance of the stream
to arrive, 2 is the second, etc.): from 1 to 220 data instances (green spheres), 221-254 (red spheres) and
255-566 (blue spheres). The circled area shown in (c) corresponds to the dotted circled areal indicated in
(a).

6.6. SUMMARY 141

of such street context due to incomplete training. After the 254th example, the accuracy
starts to increase and since many predictions from the same area follow (see blue examples
in Figure 6.16b), we can conclude that the classifier learns better after trained with the
examples indicated in red.

The goal of implementing these experiments was only to show how the TRR problem could be
handled in a data streaming environment. The data streams used in the above experiments
are hypothetical and their properties do not reflect the properties that a real TRR data
stream would have. A real TRR data stream would be an infinite stream of millions of data
instances per day, covering a large number of intersections and evolving over time, allowing
for dynamic detection of changes in regulations.

In addition, under the concept of concept drift discussed in page 61, intersections that have
time-dependent settings (e.g., traffic lights that during the night turn into uncontrolled in-
tersections) could also be detected. Clearly, due to the limitations of the datasets, no further
conclusions can be drawn on issues related to change detection, suitability of batch size3, etc.
However, the idea of dynamic TRR, as proposed in this paragraph, could also be explored
in more fluidly regulated environments, such as shared spaces. Public spaces are designed
to create spaces that are primarily pedestrian-friendly and incorporate relevant design el-
ements to pursue this goal. As a result, streets that incorporate the principles of shared
spaces tend to have reduced vehicle speeds, increased pedestrian safety and accessibility,
and environmental quality (Beitel et al., 2018). The most successful shared space systems
are based on simplicity, which is achieved by removing conventional barriers, bollards and
signs (Beitel et al., 2018). Although there are no formal traffic regulations, such as stop
signs and traffic signals, they impose restrictions on traffic, such as the low speed limit
mentioned earlier. Therefore, an interesting research direction would be to detect hidden
traffic regulations in an incremental manner on streets that incorporate shared spaces.

6.6. Summary

In this chapter, the default TRR model was tested under different scenarios of availability of
labeled data. The scenario of no availability of labeled data was explored under the concept of
clustering and transferability of learning between cities. It was found that clustering cannot
provide accurate predictions and that learning can be transferable between cities, but with
reduced accuracy than if the classifier predicted regulators from the same city that it had
been trained on. The scenario of availability of a small amount of labeled data was explored
under the umbrella of self-training, active learning and cluster-then-label (with/without
label-propagation). The most accurate predictions of the above tested learning methods were
achieved through active learning, which was found to reduce the number of required labeled
data for training by 66.7% on the two datasets used for testing. Finally, a hypothetical
scenario was described where trajectory data arrives as data streams and predictions are
made in an on-line manner. A possible extension of the idea of incremental TRR in the
context of shared spaces was also discussed.

3Here we tested instance-incremental learning (Read et al., 2012), where training is done with only one example.
Another option would be batch-incremental learning, where training is done in batches of data.

7. Conclusions and Outlook

7.1. Research Questions Addressed in this Thesis

This thesis addressed the traffic regulation recognition (TRR) problem, under different
trajectory and classification feature settings (number of trajectories, one-arm features vs.
all-arm features), which to author’s knowledge has not been done before. Three datasets
were used for testing the proposed methodology from the cities of Champaign (US), Chicago
(US) and Hanover (DE). The datasets concerned three-way and four-way intersections con-
trolled by the following traffic regulations: traffic signals (TS), stop signs (SS), priority signs
(PS) and uncontrolled intersections (UN). More specifically:

1. It presented a new methodology for TRR by analysing GPS traces, where in the classifi-
cation feature vector, information from context intersection arms (i.e., arms belonging
to the same intersection) is also included (all-arm models).

– It proposed a modification of a well-known clustering technique for detecting
short-term movement events such as stopping and slowing episodes.

– It provided an extensive evaluation of the proposed methodology, which was miss-
ing from the literature of TRR from GPS traces. Three datasets that include dif-
ferent regulation types collected from different cities were used for testing the
proposed methodology. It was found that including information in the feature
vector from context intersection arms proved beneficial for classification: all-arm
models outperformed single-arm models (one-arm models use information only
from one intersection arm). Moreover, the hybrid all-static model, which com-
bines data from trajectories and map data (here OSM), found to provide accu-
rate results for regulation sets consisting of controlled intersections of UN, SS,
PS, and TS: 97% accuracy in Champaign and Hanover, and 95% in the smaller
Chicago dataset. Compared to state-of-the art methodologies, such that of Hu
et al. (2015), the proposed methodology provided more accurate predictions (acc:
91% vs. 97%, measured in the same dataset-Champaign). Also compared to
the latest published work on the field (Cheng et al., 2022) (see page 74), which
uses the same Hanover trajectory dataset used in this thesis, as well as satellite
images, fed in a Conditional Variational Autoencoder, this thesis methodology
provided better classification performance (acc: 90% vs. 97%, measured in the
same dataset-Hanover).

– It proposed an additional consistency check of the predicted labels at an inter-
section level, correcting misclassified regulators when possible. It was found that
domain knowledge rules in general can help recover incorrect predictions in cases
where there are predictions available from the context arms and there is inconsis-
tency in the predicted labels, expressed (and detected) as a significant difference
in the predicted probabilities of the labels (threshold value for probability dif-
ference used: 0.14). If all regulations of the same intersection are predicted with
high probability, then unless there is a majority regulation label agreement, no
recovering action can be triggered. By applying domain knowledge rules, there

143

144 CHAPTER 7. CONCLUSIONS AND OUTLOOK

is a gain in accuracy between 1% and 3%, but more importantly, accurate pre-
dictions can be made on a number of arms with incomplete data corresponding
to 29%-49% of the original data. Interestingly, the (incomplete) arms predicted
solely based on the information of context arms are predicted with high accuracy:
99% in Champaign, 98% in Chicago and 100% in Hanover. In addition, the FPR
of the class with the highest FPR decreases between 15.6% to 60% (15.6% in
Chicago, 60% in Champaign and 58.3% in Hanover), validating the proposal of
this thesis to use domain knowledge rules to both recover misclassified arms and
to predict regulators for arms without trajectory data. After applying such rules
the classification accuracy in the three dataset was increased to: 97% (from 96%)
in Champaign and Hanover and 95% (from 92%) in Chicago.

– It explored the effect of sampling rate on the classification performance. It was
found that a low sampling rate value affects both the calculated speed values from
GPS traces and the detected stopping and deceleration episodes. The accuracy of
the hybrid-all-static model decreased between 1-2% when the sampling interval
was doubled from 2 s to 4 s.

2. It investigated the classification performance of the proposed TRR method under dif-
ferent trajectory settings.

– It explored the effect of turning trajectories on classification performance. It was
found that the negative effect on accuracy, as validated by the two larger datasets,
when both straight and curved trajectories are used, is between 1%-3%. There-
fore, the exclusion of curved trajectories has a positive effect on classification
performance.

– It examined the minimum number of trajectories per intersection required to
achieve optimal accuracy. It was found that the optimal number of trajectories
per intersection arm for the computation of classification features is five straight
trajectories. Moreover, restricting the number of tracks to a certain number nega-
tively affects the classification performance. With only three straight trajectories
per intersection arm, classification accuracy is equal to or greater than 85% across
all datasets (85% in Chicago, 89% in Hanover and 92% in Champaign). With five
straight trajectories, the accuracy is equal to or greater than 90% (90% in Chicago
and 92% in Champaign and Hanover).

3. It investigated the classification performance of the methodology under sparsely labeled
data. More specifically, it explored the following possible solutions: clustering, self-
learning, active-learning, cluster-then-label, and learning transferabilty between cities.
It was found that clustering cannot provide accurate predictions and that learning can
be transferable between cities, but with reduced accuracy than if the classifier predicted
regulators from the same city that used for training. The most accurate predictions of
the above tested learning methods were achieved through active learning. It was found
to reduce the number of required labeled data for training by 66.7% on both datasets
used for testing.

4. Finally, a hypothetical scenario was described where information arrives as data streams.
Instead of processing all data at one time for building the TRR learning model, one
observation is processed at a time and the learning model is updated incrementally. A
possible extension of the idea of incremental TRR in the context of shared spaces was
also discussed.

7.2. OUTLOOK 145

7.2. Outlook

An important aspect of the problem that needs to be considered is whether the proposed
approach would perform equally well in smaller cities, where driving behaviour is influenced
by factors other than traffic regulations, e.g., pedestrians who, knowing that vehicles are
moving at low speed, cross intersections more freely. Moreover, it would be interesting to test
the performance of the proposed hybrid model under various settings of missing OSM data.
In the three datasets tested in this dissertation, very often speed-related data were missing
from OSM, but the performance remained high. It would be interesting to investigate under
what conditions of missing data, the performance would be affected to the extent that,
for example, the dynamic model would be preferable to the hybrid model. Furthermore,
an alternative way to those proposed in this thesis for addressing the problem of sparsely
labeled data, would be to use transfer learning, where few labeled data from the target city
would be used to determine the local context, given that the classifier would have acquired
its learning capability from (non sparsely) data obtained from other than target city.

Another interesting topic to investigate is whether the number of required trajectories differs
between locations controlled by the same regulation. For example, what is the variation in
the required number of trajectories for intersections regulated by a stop signal? Such an
analysis can be done by finding the minimum required number of trajectories that predict the
regulation with high probability at the intersection arm level (separately for each arm) and
then finding the variation in the number of trajectories within intersection arms of the same
regulation. In this study we found the minimum number of trajectories (five) by applying the
same analysis to all arms, without finding the optimal number of trajectories per intersection
arm. With this recommended analysis, intersection features could be identified that make
certain locations (and perhaps classes of regulations) easier to identify, regarding their traffic
control, than other locations (or regulation categories). Also, the results of this analysis,
could support possible methodological interventions on the thesis proposed methodology.

Furthermore, the way in which the trajectory density affects the classification would be
another parameter of the TRR problem that deserves further investigation. Since not all
intersections attract the same traffic, the datasets are irregular, e.g. a section of a city is
sampled from dozens of trajectories and other parts from only a few tracks. This aspect
is not taken into account in the current settings of splitting the datasets into training and
test sets. Perhaps splitting the dataset taking this aspect into account would provide even
better results. Moreover, the accurate predictions of traffic regulations that the proposed
methodology showed to be capable of, can motivate the idea to crowd-source additional rule
categories that can be added to maps and exploited by location-aware applications. The
latter in generally try to optimize transportation or offer an optimal way to reach a location
B starting from a location A based on personalized criteria, e.g. avoiding tolls, highways,
etc. For example, Krisp and Keler (2015) go one step further than existing personalized
navigation and route finding services and propose the idea of providing routing suggestions
to drivers avoiding complicated crossings in urban areas. A complicated crossing can be an
intersection where the road network is intersected by bike lanes and tram tracks. Similarly, a
complex crossing may be a left turn at an intersection that is not controlled by a traffic light.
Conversely, an easy intersection may be a controlled intersection with stop everywhere. Such
recommendations may be useful to inexperienced drivers or drivers who for whatever reason
are not comfortable driving in an urban environment. Traffic controls could also be explored
in the context of intersection complexity and incorporated into the intersection complexity
assessment for personalized route recommendations. Therefore, the results of this study can
be encouraging for further research aimed at benefiting the citizens of smart cities.

List of Acronyms

ADAS Advance Driver Assistance Systems

CB-SDoT Clustering Based Detection of Stop and Deceleration Episodes of Trajectories

CB-SMoT Clustering Based Stops and Moves of Trajectories

CC Conventional Crowdsourcing

cf. compare

CNN Convolutional Neural Network

CVAE Conditional Variational Autoencoder

DB Database

FNR False Negative Rate

FPR False Positive Rate

GB Gradient Boost

GIS Geographic Information System

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

i.e. that is

LBS Location Based Services

NN Neural Network

OSM OpenStreetMap

PS Priority Sign

RF Random Forest

RoI Region of Interest

SSL Semi-Supervised Learning

SC Spatial Crowdsourcing

SS Stop Sign

TNR True Negative Rate

TPR True Positive Rate

TRR Traffic Regulation Recognition

TS Traffic Signals

UN Uncontrolled

YS Yield Sign

Index

A
accidents, 17
accuracy, 51
active learning, 125
ADAS, 4
air pollution, 4
all-arm model, 97
animal behaviour, 29
anomaly detection, 2
automatic map update, 3
automatic road network

extraction, 3
autonomous driving, 3
autonomous vehicles, 4

B
bagging, 48
batch learning, 61, 137
BeiDou, 24
bicycle paths’ roughness, 2
binary classifier, 42
BIRCH, 30
boosting, 48
bootstrap, 48
border point, 55
braking incidents, 2
bumps, 2

C
cascading patterns, 30
CB-SMoT, 34
change detection, 3
classification, 41, 42
cluster, 29, 34
clustering, 30, 31, 34, 41, 52,

121
cluster-then-label, 127
collective behaviour, 27
common sequences, 34
complete clustering, 53
complexity rating, 6
complicated crossings, 6

computer vision, 10
conceptual view

(trajectories), 2
conflict points, 19
confusion matrix, 50
context arms, 97
contextual data, 33
core point, 55
coupling patterns, 30
crossroad, 17
crowd-sensing, 1
crowd-sourcing, 10

D
data anomalies, 31
data cleaning, 31, 32
data fusion, 4
data integration, 31
data reduction, 31
data stream, 61, 137
data transformation, 32
DBSCAN, 31, 34, 54
decision tree, 31
deduction, 42
density-based clustering, 54
deterministic classifier, 42
detour, 26
discriminative classifier, 43
domain expert, 31
downsampling,

undersampling, 25
driver intention, 4
driving analysis, 4
driving behaviour, 12
DTW, 30

E
earthquake warning, 2
eco-friendly routing, 4
ecology, 29
ensembles, 46
entity, 27
exclusive clustering, 53
exploratory analysis, 31

F
F1-score, 52
fatalities, 17
feature engineering, 41

flock, 29
FNR, 51
FPR, 51
framework, 31, 32
fuel consumption, 4
fuel-efficient maps, 4
fuzzy clustering, 53
Fuzzy C-Mean, 31

G
Galileo, 24
generative models, 43
geodata, 1
geographic data, 1
Geolife(dataset), 25
geospatial data, 1
gini score, 45
global classifier, 43
GLONASS, 24
GNSS, 24
google maps, 4
google street view, 7
GPS log, 2
GPS navigator, 26
GPS receiver, 10
GPS traces, tracks, 3, 10
GPS, systematic errors, bias,

random errors, 23
GPX, 25
green maps, 4

H
Hausdorff distance, 30
hidden patterns, 2
hierarchical (nested)

clustering, 53
historic traffic patterns, 4
honking, 2
human activities, 2
hypothesis, 12

I
impurity score, 45
incremental (online)

learning, 61, 137
induction, 42
interchange, 17
interesting locations, places,

2, 29

147

148 INDEX

intersection, 17
intersection arm, approach,

68
intersection design, 19
intersection detection, 3
intersection travel time, 2
iPhone, 10

J
J48, 31

K
kernel density estimation, 31
K-means, 34, 53, 127

L
LCSS, 30
learning algorithm, 42
learning rate, 49
learning types, 41
line simplification, 32
linear classifier, 43
linear neighborhood, 36
local classifier, 43

M
machine learning, 40
macro average score, 52
map update, 3
mapillary, 7
map-matching, 32
meeting point, 29
mobile mapping, 7
modAL (Python library),

126
move, 35
movement attractor, 29
movement pattern, 2, 12, 27,

29
multiclass classifier, 42
multi-way stop, 20

N
Naive Bayes, 31
navigation devices, 3
noise point, 55
nonlinear classifier, 43

O
object recognition, 10
one-arm model, 97
one-way stop, 20

opportunistic sensing, 1
OSM, 10
outliers, 30
overalapping clustering, 53

P
partial clustering, 53
participatory sensing, 1
partitional (unnested)

clustering, 53
pasting, 48
path, 26
pattern, 2, 29
pattern recognition, 2
PCA, 30
performance metrics, 49
periodic pattern, 29
periodicity, 29
personalised routing,

recommendations, 6
PostGIS, 93
PostgreSQL, 93
precision, 51
pre-processing, 32
priority control, sign, 20
probabilistic classifier, 42
pseudo-labels, 58
Python, 93, 102, 124, 126,

138

R
random forest, 31, 48
random patches, 48
random subspaces, 48
randomised trees, 48
recall, 51
RedMiner, 32
region of interest, 29
regression, 41
regulation-aware maps, 5
reinforcement learning, 42
risk assessment, 4
River library (Python), 138
road names and classes, 2
road network inference, 3
ROI, 29
roundabout, 19, 20, 22
route, 26
route recommendation, 4, 6
routepoint, 26

S
sampling frequency, rate,

period, 24
satellites, 22
Scikit-Learn, 45, 49
scissor cross, 19
self-learning, 58
self-training, 58, 124
semantic enrichment, 33
semantic trajectories, 2, 33,

34
semantics, 32, 33
semi-supervised learning, 42,

57
sensitivity, 51
sensors, 1
shared spaces, 141
signal lost, 24
signalized intersections, 22
significant locations, 2
similarity distance measures,

30
skewed cross, 19
sklearn (Python library), 45,

93, 124
smartphone, 1, 10
social media, 2
sparsely labeled data, 121
spatial crowdsourcing, 1
spatiotemporal change, 31
spatiotemporal data, 27, 29
spatiotemporal data mining,

29
spatiotemporal hotspots, 31
spatiotemporal

partiotioning, 30
spatiotemporal prediction,

30
spatiotemporal samples, 3
spatiotemporal

summarization, 30
spatiotemporal trajectory, 2
specificity, 51
speed-profiles, 71
sport scene analysis, 29
ST-DBSCAN, 30
stop episode, 34
stop sign, 20
stops and moves, 2, 34
street level photos, 7

INDEX 149

StVo, 20
sudden events, 2
supervised learning, 41
surveillance, 29
surveying, 6

T
tele-coupling patterns, 30
T-intersection, 19
TNR, 51
TPR, 51
track, 26
trackpoint, 26
traffic condition, 2
traffic control signals (traffic

lights), 20, 22
traffic participants, 19

traffic regulations, rules,
controls, regulators,
3, 4, 20

traffic sign recognition, 10
traffic signs, 20
trajectory, 2, 25, 27
trajectory behavior, 27
trajectory compression, 32
trajectory mining, 32
trajectory pattern,

T-pattern, 27
transferability, 129
travel time, 2
trip arrival prediction, 2
two-way stop, 20

U
uncontrolled intersection, 20

unsupervised learning, 41, 52
up-to-date maps, 3
urban sensing, 2
urban transport, 2

W
waypoint, 26
weighted average score, 52
Weka, 32

X
XGBoost, 49, 93, 102, 127
X-intersection, 19
XML, 25

Y
yield control, sign, 20
Y-intersection, 19

A. Appendix

Table A.1.: Classification results of the hybrid one-arm model (GB).

Dataset Label Recall Precision F-Measure Accuracy Support

Champaign

UN 0.97 0.96 0.97 424
SS 0.89 0.87 0.86 52
TS 0.90 0.94 0.92 157

W.Avg. 0.95 0.95 0.95 633

0.95

Chicago

UN 0.80 0.86 0.81 49
SS 0.83 0.83 0.82 29
TS 0.84 0.83 0.83 76

W.Avg. 0.82 0.84 0.82 154

0.82

Hanover

UN 0.84 0.71 0.76 76
PS 0.89 0.91 0.90 315
TS 0.89 0.94 0.91 175

W.Avg. 0.88 0.89 0.89 566

0.88

Table A.2.: Classification results of the hybrid all-static model (tuned GB).

Dataset Label Recall Precision F-Measure Accuracy Support

Champaign

UN 0.99 0.96 0.97 424
SS 0.83 1.0 0.90 52
TS 0.91 0.95 0.93 157

W.Avg. 0.96 0.96 0.96 633

0.96

Chicago

UN 0.94 0.97 0.95 49
SS 0.83 0.86 0.84 29
TS 0.95 0.93 0.94 76

W.Avg. 0.92 0.93 0.92 154

0.92

Hanover

UN 0.96 0.91 0.93 76
PS 0.97 0.96 0.97 315
TS 0.93 0.97 0.95 175

W.Avg. 0.96 0.96 0.96 566

0.96

151

152 APPENDIX A. APPENDIX

Table A.3.: Classification results of the reduced and default models.

Dataset Label Recall Precision F-Measure Accuracy Support

Champaign (3-way)

UN 0.99 0.98 0.98 267
SS 0.75 0.80 0.77 12
TS 0.82 0.90 0.81 25

W.Avg. 0.96 0.96 0.96 304

0.96

Champaign (4-way)

UN 0.99 0.95 0.97 157
SS 0.88 1.0 0.92 40
TS 0.95 0.96 0.95 132

W.Avg. 0.96 0.96 0.96 329

0.96

Champaign (default)

UN 0.99 0.96 0.97 424
SS 0.83 1.0 0.90 52
TS 0.91 0.95 0.93 157

W.Avg. 0.96 0.96 0.96 633

0.96

Chicago (3-way)

UN 0.98 0.95 0.95 41
SS 0.80 0.70 0.73 10
TS 0.70 0.70 0.70 9

W.Avg. 0.92 0.88 0.89 60
0.92

Chicago (4-way)

UN 0.80 0.60 0.67 8
SS 0.75 0.90 0.80 19
TS 0.95 0.96 0.96 67

W.Avg. 0.93 0.94 0.92 94

0.93

Chicago (default)

UN 0.94 0.97 0.95 49
SS 0.83 0.86 0.84 29
TS 0.95 0.93 0.94 76

W.Avg. 0.92 0.93 0.92 154

0.92

Hanover (3-way)

UN 0.96 1.0 0.97 45
SS 0.98 0.96 0.97 277
TS 0.83 0.92 0.87 65

W.Avg. 0.95 0.96 0.95 387

0.95

Hanover (4-way)

UN 0.90 1.0 0.94 31
PS 0.92 0.98 0.94 38
TS 0.99 0.95 0.97 110

W.Avg. 0.96 0.97 0.96 179

0.96

Hanover (default)

UN 0.96 0.91 0.93 76
PS 0.97 0.96 0.97 315
TS 0.93 0.97 0.95 175

W.Avg. 0.96 0.96 0.96 566

0.96

153

Table A.4.: Classification results of the hybrid all-static model after applying consistency check with domain
knowledge rules.

Dataset Label Recall Precision F-Measure Accuracy Support

Champaign

UN 0.96 0.99 0.97 426
SS 0.97 0.97 0.97 285
TS 0.98 0.91 0.94 237

W.Avg. 0.97 0.97 0.97 948

0.97

Chicago

UN 0.96 0.94 0.95 49
SS 0.93 0.88 0.90 43
TS 0.95 0.97 0.96 109

W.Avg. 0.94 0.94 0.94 201

0.95

Hanover

UN 0.94 0.98 0.96 121
PS 0.97 0.98 0.98 315
TS 0.99 0.97 0.98 282

W.Avg. 0.98 0.97 0.98 718

0.97

Table A.5.: Clustering results (K-means) of the hybrid all-static model.

Dataset Label Recall Precision F-
Measure

Accuracy Support

Champaign

UN 0.89 0.91 0.90 424
SS 0.00 0.00 0.00 52
TS 0.62 0.71 0.66 157

W.Avg. 0.75 0.79 0.77 633

0.79

Chicago

UN 0.65 0.73 0.69 49
SS 0.63 0.83 0.72 29
TS 0.90 0.72 0.80 76

W.Avg. 0.77 0.75 0.75 154

0.75

Hanover

UN 0.29 0.07 0.11 76
PS 0.73 0.90 0.81 315
TS 0.75 0.71 0.73 175

W.Avg. 0.68 0.73 0.69 566

0.73

154 APPENDIX A. APPENDIX

(a) Champaign.

(b) Chicago.

(c) Hanover.

Figure A.1.: Feature importance.

155

Figure A.2.: Incremental learning in the Champaign dataset (figure continues on the next page).

156 APPENDIX A. APPENDIX

Figure A.3.: Incremental learning in the Champaign dataset (continuing from the previous figure).

157

Figure A.4.: Incremental learning in the Chicago dataset.

158 APPENDIX A. APPENDIX

Figure A.5.: Incremental learning in the Hanover dataset (figure continues on the next page).

159

Figure A.6.: Incremental learning in the Hanover dataset (continuing from the previous figure).

List of Figures

1.1. Trajectories from moving objects in different movement modes: (a) walking,
(b) cycling, (c) car driving and (d) sailing. 3

1.2. (a) Google maps eco-friendly routing. (b) Eco-routing is still not available to
everyone1. 5

1.3. Some examples of traffic signs. 5
1.4. Intersections for which OSM contains traffic regulation relevant information

(in green circles). For all other intersections no such information is present.
Accessed on 04.08.2022. 7

1.5. Google Street View coverage (blue lines). The images were accessed on
09.08.2022. 8

1.6. Coverage of Mapillary Street level Imagery (green lines). The images were
accessed on 10.08.2022. 9

1.7. Both images show intersections controlled by traffic signals. Successive sam-
ples during the activation of the turn signal/blinker and brake are indicated
in red and yellow respectively. The spatial trajectory of the moving vehicle is
indicated in blue. 11

1.8. This figure shows the recorded routes of two different vehicles in an area. Blue
trajectories denote the routes. Blinker and brake occurrences are shown in
red and yellow, respectively. With green and purple circles we denote clusters
of similar spatial behavior. Sequences of blinker and brake followed by change
of direction indicate turn pattern (green circle) and sequences of braking until
stopping indicate stop maneuver (purple circle). Black dotted circles denote
brake instances being observed at a single trajectory (not all the drivers
that pass from this location brake, so this behavior cannot be considered as
pattern). 12

1.9. Schematic illustration of the main objective of this thesis: enriching maps
with traffic regulators from low cost data such as GPS trajectories. 13

2.1. Vehicle conflict points at a T-intersection: �merging, ◦ crossing, • and
diverging points. 17

2.2. Different types of intersections. 18
2.3. Images from intersections controlled by different regulations2. 21
2.4. The GPS segments. 23
2.5. Two trajectories that represent the same traveled path, sampled with different

sampling periods (blue with T period and orange with 3T period). 25
2.6. Type of GPS data that can be stored in a GPX file: waypoints, routes and

tracks. 26
2.7. A sample of the content of a GPX file, containing a track consisted of two

trackpoints, with sampling period of 1 second. 26
2.8. Four movement patterns identified in the spatiotemporal data (trajectories)

of four moving objects: interesting location, meeting point, moving clusters
(flock) and periodic behaviour. 28

2.9. The process of spatiotemporal data mining (Sharma et al., 2022). 31
2.10. The framework for semantic trajectory mining (Alvares et al., 2009). 32

161

162 List of Figures

2.11. Enriching trajectories with semantic information based on stop and move
detections. 33

2.12. Two trajectories T1 and T2 with stop episodes S1 and S2 on the same location
(blue). 37

2.13. A single trajectory with starting point p1 and ending point pn. The region
which the trajectory is observed on, includes four candidate stops C1, C2, C3,
C4 (marked in blue), at two of which the moving object stops (S3 stops at C2

and S4 at C3). CB-SMoT can also detect unknown stopping locations, such
as S1 and S2 (marked in pink). Although C1 is crossed by the trajectory, no
stopping episode is detected at it, as the requirement for staying more that
∆c1 is not met. 37

2.14. Hotspots where the speed of vehicles is less than 10 kmh (red color). In blue
are depicted the trajectory samples. 39

2.15. Speed profile of a vehicle before crossing a traffic light controlled intersection.
Both graphs correspond to the same vehicle trajectory. (a) shows the speed
of the last 60 meters, while (b) shows the speed of the last 20 seconds, both
measured from the centre of the intersection. 39

2.16. Implementation steps for solving a problem with machine learning. 41

2.17. A decision tree that decides whether someone goes to work or stays at home.
The binary features (true, false) are is weekend , pending urgent task, is holiday.
Someone goes to work unless it is a weekend and there isn’t any pending ur-
gent task at work, or it is a weekday and a holiday and no urgent work is
pending at work. 44

2.18. An example of a binary decision tree on the modified Iris dataset (2 classes)
for different (max) values of depth: (a-b) 1, (c-d) 2 and (e-f) 10. 46

2.19. Voting classifiers. Class 1: (90% + 30% + 45% + 40% + 80%)/5 = 57%.
Class 2: (10% + 70% + 55% + 60% + 20%)/5 = 43%. 47

2.20. A random forest (lower right figure) created from eight decision trees. Targets
from different classes are indicated in different color and shape (balls and
asterisks). Decision boundaries are illustrated in yellow and orange color. . 49

2.21. The sequential process of building a gradient boosted decision tree model.
New predictors are added iteratively, by training each new tree on the residual
errors of the predecessor tree. 50

2.22. The evolution of a single decision tree to random forest, gradient boosted de-
cision trees and the recent implementation of the latter for faster predictions
(XGBoost library). 50

2.23. An example of the K-means clustering algorithm, where data instances are
assigned to three clusters (pink, yellow, blue), within three iterations of point
assignment and centroid update. The centroids of clusters are indicated by
asterisks. 54

2.24. The DBSCAN algorithm for different values of parameters. 55

2.25. Core, border and noise points (min samples = 10). 55

2.26. The pool-based active learning process. 60

2.27. (a) Batch learning, (b) Incremental (online) learning. 61

3.1. Taxonomy of methods for traffic regulation recognition from GPS data. . . . 65

3.2. Intersection arms of (a) a three-way and (b) a four-way intersection. 68

4.1. The three datasets used in this study. 81

4.2. Examples of groundtruth maps. 82

List of Figures 163

4.3. Tools for constructing groundtruth maps of intersection regulations. 83

4.4. Stopping (red) and deceleration (yellow) episodes detected in one trip (from
east to west). The numbers in blue indicate the vehicle’s speed in kmh. . . . 84

4.5. Stopping episodes (in red) detected in the Chicago dataset. 85

4.6. Illustration of the distance-related features (end-to-end distance, semi-distance
and closest distance) of the static method that represent the north-south in-
tersection arm (indicated in grey color) of a four-way intersection (in yellow). 87

4.7. The four movement patterns that describe a vehicle’s crossing of an intersec-
tion arm. 88

4.8. The four movement patterns that describe a vehicle’s crossing of a junction:
(a) unhindered crossing, (b) deceleration (dotted line) without stopping, (c)
stop once (red square), (d) stop more than once (here two stop events are
depicted with two red squares). 89

4.9. Each intersection consists of intersection arms that connect it to nearby in-
tersections. Classification features are calculated per arm, within half the
distance of the road segment connecting the current arm to the previous arm
visited by the trajectory (red dashed arrows in (a)). For each trajectory in (b)
that crosses the intersection arm j-arm from west to east, stopping and de-
celeration episodes are detected within the orange indicated area along the
j-arm in (b). 90

4.10. The reference angle system for describing the intersections arms. 93

4.11. Confusion matrices and false/true positive rates for the three datasets. 95

5.1. Traffic regulation combinations in intersections: (a)-(h) valid in Champaign
and Chicago, (i)-(p) valid in Hanover, (q) an example of invalid regulation
combination. 100

5.2. Confusion matrices and false/true positive rates for the three datasets. 104

5.3. Experiments with different turning settings (s : straight trajectories, r : right
turning trajectories, l : left turning, s r : straight and right turning, s l :
straight and left turning, r l : right and left turning, s r l: straight, right and
left turning trajectories). 107

5.4. Experiments with different number of trajectories where classification features
are computed using a certain number of trajectories, i.e., 3, 4, ..., and not all
available crossing trajectories. 110

5.5. Two examples of misclassified intersection regulations from the Champaign
dataset. With blue diamond is depicted an incorrectly predicted regulation.
A red point depicts a correctly predicted regulation. The red cross depicts
the intersection center. The label of the predicted regulations contains the fol-
lowing information: id number of the intersection arm/ predicted label (only
for the wrongly predicted regulations)/actual label/ predicted probability of
label 0/ predicted probability of label 1/ predicted probability of label 2. . . 111

5.6. An example of a misclassified regulation, depicted as blue diamond, which is
predicted as TS (pred:2) with probability 0.75, while its actual label is SS
(act:1). This regulation is recoverable due to the information from the pre-
dicted labels of its context arms, which are predicted as SS, with probabilities
1.0 and 0.89. Both probabilities are considered high, according to the defined
threshold, and because the arms are perpendicular to each other, it can be
inferred that the intersection is all-way stop-controlled. The regulation with
id 419 is then corrected to SS. 113

164 List of Figures

5.7. An example of an incorrectly predicted regulation (id:1323) from the Hanover
dataset which is non recoverable, due to the fact that both context arms are
predicted with high probabilities (arm 1323 with 0.96 and arm 1322 with
0.90). The label of the predicted regulations contains the following infor-
mation: id number of the intersection arm/ predicted label (only for the
wrongly predicted regulations)/actual label/ predicted probability of label
0/ predicted probability of label 1/ predicted probability of label 2. 115

5.8. Confusion matrices and false/true positive rates for the three datasets after
applying consistency checks using domain knowledge rules. 116

5.9. Confusion matrices before checking for consistency the predicted labels using
domain knowledge rules (a, d, g), after recovering incorrect predictions with
the usage of domain knowledge rules (b, e, h), and after both correcting
incorrect predicted labels and inferring regulation for context arms with no
available trajectory data (c, f, i). 117

6.1. Confusion matrices and false/true positive rates for the three datasets after
applying K-means clustering. 122

6.2. Predicted labels vs. actual labels. The x-axis corresponds to the average cross-
ing speed and y-axis to the duration of last stopping episode. In Chicago,
green corresponds to SS, blue corresponds to TS and red to UN. In Hanover,
green corresponds to PS, blue to TS and red to UN. 123

6.3. Settings of self-training experiments using different sizes of labeled/unlabeled
data. 124

6.4. Classification performance using self-training under different amounts of la-
beled/unlabeled training data. The percentages of data used as training data
of x-axis refer to labeled data. 125

6.5. Active learning framework for traffic regulation recognition. 126

6.6. Settings of active-learning experiments with different sizes of actively labeled
training data. Successive experiments query a larger amount of labels from a
hypothetical human domain expert (annotator), as explained in Section 2.3.5. 126

6.7. Classification performance using active learning under different amounts of
(actively) labeled training data. 127

6.8. Classification performance of cluster-then-label and cluster-then-label-propagation
under different amounts of labeled training data. 128

6.9. Classification performance of cluster-then-label, cluster-then-label-propagation
and baseline model under different amounts of labeled training data. 129

6.10. Experiments on transferability of learning are applied as illustrated in the
right figure. A TRR classifier is trained on data from a city A and then
applied to data from a city B. The classification accuracy is denoted as Ac.
If training and predicting are performed on the same dataset, as illustrated
in the left figure, then the accuracy is denoted as Acorig. 129

6.11. Confusion matrices of the hybrid all-static model for the six experiments. . . 130

6.12. Examples of uncontrolled intersections in Hanover (all-way UN) and in Cham-
paign (UN-SS). In red are framed stop signs and a stop line. 135

6.13. Confusion matrices of the dynamic one-arm model for Exp3, Exp4, Exp5,
and Exp6. 136

6.14. A TRR incremental learning scenario. 138

6.15. Classification performance in the three datasets under a TRR incremental
learning scenario. 139

List of Figures 165

6.16. Data instances of the Hanover dataset in order of arrival (1 is the first instance
of the stream to arrive, 2 is the second, etc.): from 1 to 220 data instances
(green spheres), 221-254 (red spheres) and 255-566 (blue spheres). The circled
area shown in (c) corresponds to the dotted circled areal indicated in (a). . 140

A.1. Feature importance. 154
A.2. Incremental learning in the Champaign dataset (figure continues on the next

page). 155
A.3. Incremental learning in the Champaign dataset (continuing from the previous

figure). 156
A.4. Incremental learning in the Chicago dataset. 157
A.5. Incremental learning in the Hanover dataset (figure continues on the next page).158
A.6. Incremental learning in the Hanover dataset (continuing from the previous

figure). 159

List of Tables

2.1. Intersection design considerations (Design-Manual, 2021). 19

2.2. A confusion matrix of a binary classification problem. 51

3.1. Reviewed articles in chronological order. 66

3.2. Extracted information from the reviewed articles. 67

4.1. Datasets used for testing the proposed methods. 80

4.2. Overview of the classification features derived for the dynamic TRR approach. 92

4.3. Classification accuracy (Acc) and F1-score (F1) of the four TRR models. The
highlighted number(s) per dataset correspond(s) to the best accuracy achieved
in the respective dataset. 94

4.4. Classification results of the hybrid approach (GB). 94

5.1. Combinations of traffic regulators at intersections in the three datasets. The
numbers in the cells in the first block of the table refer to number of inter-
sections that belongs to a certain regulation combination (e.g. UN-UN-SS,
PS-PS-YS, etc). In the second block the numbers refer to the percentage of
intersections that belongs to a certain regulation combination out of the total
number of intersections (e.g. Champ. 84% = 293/350). 100

5.2. Classification accuracy (Acc) and F1-score (F1) of the TRR models. High-
lighted are the best one-arm and all-arm models for each dataset. 103

5.3. Classification performance of the hybrid all-static model (GB). 104

5.4. Classification accuracy of the TRR methods under different sampling rates
(undersampling). The original datasets are highlighted in grey. 105

5.5. Classification performance of the reduced and default models. 106

5.6. Dataset size for different trajectory direction settings with minimum number
of trajectories per intersection arm equal to 5 (Champaign dataset). 108

5.7. The wrong predictions in the Champaign dataset (Rec.: whether the reg-
ulation is recoverable or not, Num.Adj.: number of arms from the same
intersection having predicted labels (context arms). 112

5.8. The wrong predictions in the Chicago dataset. (Rec.: whether the regulation
is recoverable or not, Num.Adj.: number of arms from the same intersection
having predicted labels (context arms). 113

5.9. The wrong predictions in the Hanover dataset. (Rec.: whether the regulation
is recoverable or not, Num.Adj.: number of arms from the same intersection
having predicted labels (context arms). 114

5.10. Classification results of the default model before and after applying domain
knowledge rules for recovering incorrect predictions and predicting regulation
labels, when possible, for arms with no available trajectory data. 115

6.1. Mean values of the duration of the last stop episode and of the average cross-
ing speed, calculated from the data assigned to each cluster. 122

6.2. Classification performance after matching clusters to regulator labels. 122

167

168 List of Tables

6.3. Classification results of the six experiments on the transferability of learning
between cities. Ac: accuracy on the Predict dataset when training is done
with data from the city given in the Training dataset column; ∆Ac = AcOrig−
Ac, where AcOrig is the accuracy when training is done in the same city as the
Predict dataset (AcOrig is given in the lower block of rows of the table). The
best accuracy per experiment across the different TRR methods is indicated
in bold. 130

6.4. Combinations of traffic regulators at intersections in the three datasets. The
numbers refer to number of intersections. 133

6.5. Combinations of traffic regulators at the intersections of the three datasets,
where intersection arms are crossed by at least five straight trajectories. The
numbers refer to number of intersections. 133

6.6. Classification results of the six experiments on the transferability of learning
between cities (hybrid all-static approach). Ac: accuracy on the Predict
dataset when training is done with data from the city given in the Training
dataset column; ∆Ac = AcOrig − Ac, where AcOrig is the accuracy when
training is done in the same city as the Predict dataset. The results under
the “original” columns refer to the experiments which use the GPS data
with their original sampling rate. The “undersampled” results, refer to the
experiments where the Champaign and Hanover datasets are (under)sampled
(see page 131, observation 5, for the settings of undersampling). The best
accuracy per experiment is indicated in bold. 136

A.1. Classification results of the hybrid one-arm model (GB). 151
A.2. Classification results of the hybrid all-static model (tuned GB). 151
A.3. Classification results of the reduced and default models. 152
A.4. Classification results of the hybrid all-static model after applying consistency

check with domain knowledge rules. 153
A.5. Clustering results (K-means) of the hybrid all-static model. 153

Bibliography

Abreu, F. H. O., Soares, A., Paulovich, F. V., Matwin, S., 2021. A trajectory scoring tool for local anomaly
detection in maritime traffic using visual analytics. ISPRS International Journal of Geo-Information
10 (6).

Agamennoni, G., Nieto, J., Nebot, E., 2009. Mining gps data for extracting significant places. In: Proceedings
of the IEEE International Conference on Robotics and Automation. pp. 855–862.

Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C., 2015. A comparison and evaluation of map construction
algorithms using vehicle tracking data. GeoInformatica 19 (3), pp. 601–632.

Alshayeb, S., Stevanovic, A., Effinger, J. R., 2021. Investigating impacts of various operational conditions
on fuel consumption and stop penalty at signalized intersections. International Journal of Transportation
Science and Technology.

Alvares, L. O., Bogorny, V., Kuijpers, B., de Macedo, J. A. F., Moelans, B., Vaisman, A., 2007. A model for
enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual ACM
International Symposium on Advances in Geographic Information Systems. GIS ’07. ACM, New York,
NY, USA, pp. 22:1–22:8.

Alvares, L. O., Oliveira, G., Heuser, C. A., Bogorny, V., 2009. A framework for trajectory data preprocessing
for data mining. In: SEKE. Knowledge Systems Institute Graduate School, pp. 698–702.

Aly, H., Basalamah, A., Youssef, M., 2017. Automatic rich map semantics identification through
smartphone-based crowd-sensing. IEEE Transactions on Mobile Computing 16 (10), pp. 2712–2725.

Andersen, O., Torp, K., 2017. Sampling frequency effects on trajectory routes and road network travel time.
In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. SIGSPATIAL ’17. Association for Computing Machinery, New York, NY, USA.

Andrzejewski, W., Boinski, P., 2021. Maximal mixed-drove co-occurrence patterns. In: Bellatreche, L., Du-
mas, M., Karras, P., Matulevičius, R. (Hrsg.), Advances in Databases and Information Systems. Springer
International Publishing, Cham, pp. 15–29.

Ardianto, S., Chen, C., Hang, H., 2017. Real-time traffic sign recognition using color segmentation and SVM.
In: Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP).
pp. 1–5.

Ashbrook, D., Starner, T., 2003. Using gps to learn significant locations and predict movement across
multiple users. Personal Ubiquitous Computing 7 (5), pp. 275–286.

Atev, S., Masoud, O., Papanikolopoulos, N., 2006. Learning traffic patterns at intersections by spectral
clustering of motion trajectories. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. pp. 4851–4856.

Balali, V., Golparvar-Fard, M., 2016. Evaluation of multiclass traffic sign detection and classification meth-
ods for U.S. roadway asset inventory management. Journal of Computing in Civil Engineering 30 (2),
pp. 04015022.

Beitel, D., Stipancic, J., Manaugh, K., Miranda-Moreno, L., 2018. Assessing safety of shared space using
cyclist-pedestrian interactions and automated video conflict analysis. Transportation Research Part D:
Transport and Environment 65, pp. 710–724.

Bermingham, L., Lee, I., 2018. A probabilistic stop and move classifier for noisy gps trajectories. Data
Mining and Knowledge Discovery 32 (6), pp. 1634–1662.

169

170 Bibliography

Biagioni, J., Eriksson, J., 2012. Inferring road maps from global positioning system traces. Transportation
Research Record: Journal of the Transportation Research Board 2291, pp. 61–71.

Bifet, A., Holmes, G., Pfahringer, B., 2010. Leveraging bagging for evolving data streams. In: Balcázar,
J. L., Bonchi, F., Gionis, A., Sebag, M. (Hrsg.), Machine Learning and Knowledge Discovery in Databases.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 135–150.

Birant, D., Kut, A., 2007. ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data and
Knowledge Engineering 60 (1), pp. 208–221.

Butt, U. M., Letchmunan, S., Hassan, F. H., Ali, M., Baqir, A., Sherazi, H. H. R., 2020. Spatio-temporal
crime hotspot detection and prediction: a systematic literature review. IEEE Access 8, pp. 166553–
166574.

Cao, L., Krumm, J., 2009. From gps traces to a routable road map. In: Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems. GIS ’09. ACM,
New York, NY, USA, pp. 3–12.

Carbonara, L., Borrowman, A., 1998. A comparison of batch and incremental supervised learning algorithms.
In: Żytkow, J. M., Quafafou, M. (Hrsg.), Principles of Data Mining and Knowledge Discovery. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 264–272.

Carisi, R., Giordano, E., Pau, G., Gerla, M., 2011. Enhancing in vehicle digital maps via gps crowdsourcing.
In: Proceedings of the Eighth International Conference on Wireless On-Demand Network Systems and
Services. pp. 27–34.

Chapelle, O., Scholkopf, B., Zien, A., 2006. Semi-supervised learning. 2006. Cambridge, Massachusettes:
The MIT Press View Article 2.

Chen, M., Yang, J., Hu, L., Hossain, M. S., Muhammad, G., 2018. Urban healthcare big data system
based on crowdsourced and cloud-based air quality indicators. IEEE Communications Magazine 56 (11),
pp. 14–20.

Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. ACM, New
York, NY, USA, pp. 785–794.

Cheng, H., Lei, H., Zourlidou, S., Sester, M., 2022. Traffic control recognition with an attention mechanism
using speed-profiles and satellite imagery data. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 43, pp. 287–293.

Comito, C., Falcone, D., Talia, D., 2016. Mining human mobility patterns from social geo-tagged data.
Pervasive and Mobile Computing 33, pp. 91–107.

Dang, V.-C., Kubo, M., Sato, H., Yamaguchi, A., Namatame, A., 2014. A simple braking model for detecting
incidents locations by smartphones. In: Proceedings of the Seventh IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA). pp. 1–5.

Danka, T., Horvath, P., 2018. modAL: A modular active learning framework for Python. Available on arXiv
at https://arxiv.org/abs/1805.00979.

Davies, J. J., Beresford, A. R., Hopper, A., 2006. Scalable, distributed, real-time map generation. IEEE
Pervasive Computing 5 (4), pp. 47–54.

De Groeve, J., Van de Weghe, N., Ranc, N., Neutens, T., Ometto, L., Rota-Stabelli, O., Cagnacci, F., 2016.
Extracting spatio-temporal patterns in animal trajectories: an ecological application of sequence analysis
methods. Methods in Ecology and Evolution 7 (3), pp. 369–379.

Depauw, L., Blondeel, H., De Lombaerde, E., De Pauw, K., Landuyt, D., Lorer, E., Vangansbeke, P.,
Vanneste, T., Verheyen, K., De Frenne, P., 2022. The use of photos to investigate ecological change.
Journal of Ecology 110 (6), pp. 1220–1236.

https://arxiv.org/abs/1805.00979

Bibliography 171

Design-Manual, 2021. Design Manual. Washington State, Department of Transportation.
URL https://wsdot.wa.gov/publications/manuals/fulltext/M22-01/1300.pdf

Efentakis, A., Grivas, N., Pfoser, D., Vassiliou, Y., 2017. Crowdsourcing turning-restrictions from map-
matched trajectories. Information Systems 64, pp. 221–236.

El-Rabbany, A., 2002. Introduction to GPS. Artech House, Norwood, MA, 02062.

Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H., 2008. The pothole patrol: using
a mobile sensor network for road surface monitoring. In: Proceedings of the 6th International Conference
on Mobile Systems, Applications, and Services. MobiSys ’08. ACM, New York, NY, USA, pp. 29–39.

Ester, M., Kriegel, H. P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD ’96). pp. 226–231.

Fathi, A., Krumm, J., 2010. Detecting road intersections from gps traces. In: Fabrikant, S., Reichenbacher,
T., van Kreveld, M., Schlieder, C. (Hrsg.), Geographic Information Science. vol. 6292 from Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 56–69.

Feng, Z., Zhu, Y., 2016. A survey on trajectory data mining: techniques and applications. IEEE Access 4,
pp. 2056–2067.

Feuerhake, U., 2016. Recognition of repetitive movement patterns - the case of football analysis. ISPRS
International Journal of Geo-Information 5 (11).

Fitzner, D., Sester, M., 2016. Field motion estimation with a geosensor network. ISPRS International
Journal of Geo-Information 5 (10).

Fox, A., Kumar, B. V., Chen, J., Bai, F., 2017. Multi-lane pothole detection from crowdsourced undersam-
pled vehicle sensor data. IEEE Transactions on Mobile Computing 16 (12), pp. 3417–3430.

Ganti, R. K., Pham, N., Ahmadi, H., Nangia, S., Abdelzaher, T. F., 2010. GreenGPS: a participatory
sensing fuel-efficient maps application. In: Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services. MobiSys ’10. ACM, New York, NY, USA, pp. 151–164.

Gastaldi, M., Meneguzzer, C., Rossi, R., Lucia, L. D., Gecchele, G., 2014. Evaluation of air pollution impacts
of a signal control to roundabout conversion using microsimulation. Transportation Research Procedia 3,
pp. 1031–1040, 17th Meeting of the EURO Working Group on Transportation, EWGT2014, 2-4 July
2014, Sevilla, Spain.

Géron, A., 2019. Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and
techniques to build intelligent system (2nd ed.). O’Reilly.

Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D., 2007. Trajectory pattern mining. In: Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’07.
ACM, New York, NY, USA, pp. 330–339.

Given, L. M., 2008. In the SAGE encyclopedia of qualitative research methods. SAGE Publications, Ch.
Naturalistic data, pp. 547–547.

Goldberg, A., Zhu, X., Singh, A., Xu, Z., Nowak, R., 2009. Multi-manifold semi-supervised learning. In:
van Dyk, D., Welling, M. (Hrsg.), Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics. vol. 5. PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida
USA, pp. 169–176.

Golze, J., Zourlidou, S., Sester, M., 2020. Traffic regulator detection using gps trajectories. KN - Journal
of Cartography and Geographic Information.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., Holmes, G., Abdessalem,
T., 2017. Adaptive random forests for evolving data stream classification. Machine Learning 106 (9-10),
pp. 1469–1495.

https://wsdot.wa.gov/publications/manuals/fulltext/M22-01/1300.pdf

172 Bibliography

Gong, L., Liu, X., Wu, L., Liu, Y., 2016. Inferring trip purposes and uncovering travel patterns from taxi
trajectory data. Cartography and Geographic Information Science 43 (2), pp. 103–114.

Goodchild, M. F., Fu, P., Rich, P., 2007. Sharing geographic information: an assessment of the Geospatial
One-Stop. Annals of the Association of American Geographers 97 (2), pp. 250–266.

Google Maps, 2022. Google Maps: eco-routing. https://www.gstatic.com/gumdrop/sustainability/
google-maps-eco-friendly-routing.pdf, accessed: 2022-08-12.

Google Street View, 2022. Google Street View: street view imagery. https://www.google.com/

streetview/, accessed: 2022-08-08.

Gudmundsson, J., Laube, P., Wolle, T., 2008. Movement patterns in spatio-temporal data. Encyclopedia of
GIS 726, pp. 732.

Gummidi, S. R. B., Xie, X., Pedersen, T. B., 2019. A survey of spatial crowdsourcing. ACM Transactions
on Database Systems. 44 (2).

Guo, B., Yu, Z., Zhang, D., Zhou, X., 2014. From participatory sensing to mobile crowd sensing. CoRR
abs/1401.3090.

Guo, D., 2008. Mining traffic condition from trajectories. In: Proceedings of the Fifth International Confer-
ence on Fuzzy Systems and Knowledge Discovery, 2008. FSKD ’08. vol. 4. pp. 256–260.

Harris, P., Comber, A., Tsutsumida, N., 2017. Specifying regression models for spatio-temporal data sets.

He, L., Niu, X., Chen, T., Mei, K., Li, M., 2022. Spatio-temporal trajectory anomaly detection based on
common sub-sequence. Applied Intelligence 52 (7), pp. 7599–7621.

He, S., Bastani, F., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S., Madden, S., 2018. RoadRunner:
improving the precision of road network inference from gps trajectories. In: Proceedings of the 26th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems. SIGSPATIAL
’18. ACM, New York, NY, USA, pp. 3–12.

Heipke, C., 2010. Crowdsourcing geospatial data. ISPRS Journal of Photogrammetry and Remote Sensing
65 (6), pp. 550–557.

Hong, S., Vatsavai, R. R., 2016. A scalable probabilistic change detection algorithm for very high resolution
(VHR) satellite imagery. In: Proceedings of the IEEE International Congress on Big Data (BigData
Congress). pp. 275–282.

Hu, H., Li, G., Bao, Z., Cui, Y., Feng, J., 2016. Crowdsourcing-based real-time urban traffic speed es-
timation: from trends to speeds. In: Proceedings of the 32nd IEEE International Conference on Data
Engineering (ICDE). pp. 883–894.

Hu, S., Su, L., Liu, H., Wang, H., Abdelzaher, T. F., 2015. SmartRoad: smartphone-based crowd sensing
for traffic regulator detection and identification. ACM Transactions on Sensor Networks 11 (4), pp. 55:1–
55:27.

Hu, W., Xie, D., Tan, T., 2004. A hierarchical self-organizing approach for learning the patterns of motion
trajectories. IEEE Transactions on Neural Networks 15 (1), pp. 135–144.

Huang, H., Zhang, L., Sester, M., 2014. A recursive Bayesian filter for anomalous behavior detection in
trajectory data. Springer International Publishing, Cham, pp. 91–104.

Huang, S., Lin, H., Chang, C., 2017. An in-car camera system for traffic sign detection and recognition.
In: Proceedings of the Joint 17th World Congress of International Fuzzy Systems Association and 9th
International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). pp. 1–6.

Jiang, F., Tsaftaris, S., Wu, Y., Katsaggelos, A., 2009. Detecting anomalous trajectories from
highway traffic data. http://www.ccitt.northwestern.edu/documents/2009.Jiang_Tsaftaris_Wu_

Katsaggelos_pub.pdf, accessed: 2015-12-05.

https://www.gstatic.com/gumdrop/sustainability/google-maps-eco-friendly-routing.pdf
https://www.gstatic.com/gumdrop/sustainability/google-maps-eco-friendly-routing.pdf
https://www.google.com/streetview/
https://www.google.com/streetview/
http://www.ccitt.northwestern.edu/documents/2009.Jiang_Tsaftaris_Wu_Katsaggelos_pub.pdf
http://www.ccitt.northwestern.edu/documents/2009.Jiang_Tsaftaris_Wu_Katsaggelos_pub.pdf

Bibliography 173

Kalinic, M., Jukka, M., 2018. Kernel density estimation (KDE) vs. hot-spot analysis-detecting criminal
hot spots in the city of San Francisco. In: Accepted Papers from the 21st AGILE Conference on Geo-
Information Science, 12-15 June, Lund, Sweden.

Karachiwalla, R., Pinkow, F., 2021. Understanding crowdsourcing projects: a review on the key design
elements of a crowdsourcing initiative. Creativity and Innovation Management 30 (3), pp. 563–584.

Kawale, J., Chatterjee, S., Ormsby, D., Steinhaeuser, K., Liess, S., Kumar, V., 2012. Testing the signif-
icance of spatio-temporal teleconnection patterns. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Kosonen, M., Henttonen, K., 2015. Cheer the crowd? Facilitating user participation in idea crowdsourcing.
International Journal of Technology Marketing 10 (1), pp. 95–110.

Krisp, J. M., Keler, A., 2015. Car navigation - computing routes that avoid complicated crossings. Interna-
tional Journal of Geographical Information Science 0 (0), pp. 1–13.

Lam, H. T., 2016. A concise summary of spatial anomalies and its application in efficient real-time driv-
ing behaviour monitoring. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. Association for Computing Machinery, New York, NY,
USA.

Lane, N. D., Eisenman, S. B., Musolesi, M., Miluzzo, E., Campbell, A. T., 2008. Urban sensing systems:
opportunistic or participatory. In: Proceedings of the 9th ACM Workshop on Mobile Computing Systems
and Applications (HOTMOBILE ’08).

Laube, P., 2009. Volume 3: Behaviour Monitoring and Interpretation - BMI. Ch. Progress in movement
pattern analysis, pp. 43–71.

Laureshyn, A., Aström, K., Brundell-Freij, K., 2009. From speed profile data to analysis of behavior classi-
fication by pattern recognition techniques. {IATSS} Research 33 (2), pp. 88–98.

Lee, S., Lee, C., Mun, K. G., Kim, D., 2022. Decision tree algorithm considering distances between classes.
IEEE Access 10, pp. 69750–69756.

Lefèvre, S., Guzman, J. I., Laugier, C., 2011. Context-based estimation of driver intent at road intersections.
In: Proceedings of the IEEE Symposium on Computational Intelligence in Vehicles and Transportation
Systems (CIVTS). pp. 67–72.

Lefèvre, S., Laugier, C., Ibañez-Guzmàn, J., 2012. Risk assessment at road intersections: comparing inten-
tion and expectation. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). pp. 165–171.

Li, J., Qin, Q., Han, J., Tang, L.-A., Lei, K. H., 2015. Mining trajectory data and geotagged data in social
media for road map inference. Transactions in GIS 19 (1), pp. 1–18.

Lian, J., Zhang, L., 2018. One-month Beijing taxi gps trajectory dataset with taxi ids and vehicle status.
In: Proceedings of the First Workshop on Data Acquisition To Analysis. DATA ’18. Association for
Computing Machinery, New York, NY, USA, pp. 3â4.

Liao, Z., Xiao, H., Liu, S., Liu, Y., Yi, A., 2021. Impact assessing of traffic lights via gps vehicle trajectories.
ISPRS International Journal of Geo-Information 10 (11).

Lughofer, E., 2012. Hybrid active learning for reducing the annotation effort of operators in classification
systems. Pattern Recognition 45 (2), pp. 884–896.

Maciag, P. S., Kryszkiewicz, M., Bembenik, R., 2019. Discovery of closed spatio-temporal sequential patterns
from event data. In: Procedia Computer Science. vol. 159. pp. 707–716.

Makris, D., Ellis, T., 2002. Spatial and probabilistic modelling of pedestrian behaviour. In: Proceedings of
the British Machine Vision Conference 2002, BMVC 2002, Cardiff, UK, 2-5 September 2002. pp. 1–10.

174 Bibliography

Makris, D., Ellis, T., 2003. Automatic learning of an activity-based semantic scene model. In: Proceedings
of the IEEE Conference on Advanced Video and Signal Based Surveillance. pp. 183–188.

Makris, D., Ellis, T., 2005. Learning semantic scene models from observing activity in visual surveillance.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 35 (3), pp. 397–408.

Mapillary, 2022. Mapillary: a street-level imagery platform. https://www.mapillary.com/, accessed: 2022-
04-20.

Mapscape, 2022. Incremental updating. http://www.mapscape.eu/telematics/incremental-updating.
html, accessed: 2022-08-08.

Mariescu-Istodor, R., Fränti, P., 2018. CellNet: inferring road networks from gps trajectories. ACM Trans-
actions on Spatial Algorithms and Systems 4 (3), pp. 8:1–8:22.

Mathur, S., Jin, T., Kasturirangan, N., Chandrashekharan, J., Xue, W., Gruteser, M., Trappe, W., 2010.
ParkNet: Drive-by sensing of road-side parking statistics. In: Proceedings of the 8th International Con-
ference on Mobile Systems, Applications, and Services (MobiSys’10). pp. 123–136.

Méneroux, Y., Guilcher, A., Saint Pierre, G., Hamed, M., Mustiere, S., Orfila, O., 2020. Traffic signal detec-
tion from in-vehicle gps speed profiles using functional data analysis and machine learning. International
Journal of Data Science and Analytics 10, pp. 101–119.

Merry, K., Bettinger, P., 2019. Smartphone gps accuracy study in an urban environment. PLoS One 14 (7).

Minson, S. E., Brooks, B. A., Glennie, C. L., Murray, J. R., Langbein, J. O., Owen, S. E., Heaton, T. H.,
Iannucci, R. A., Hauser, D. L., 2015. Crowdsourced earthquake early warning. Science Advances 1 (3).

Mitchell, T. M., 1997. Machine Learning, 1. Edition. McGraw-Hill, Inc., USA.

Mohan, P., Padmanabhan, V. N., Ramjee, R., 2008. Nericell: rich monitoring of road and traffic conditions
using mobile smartphones. In: Proceedings of the 6th ACM conference on Embedded network sensor
systems. pp. 323–336.

Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H. M.,
Read, J., Abdessalem, T., Bifet, A., 2020. River: machine learning for streaming data in Python. CoRR
abs/2012.04740.

Morris, B., Trivedi, M., 2009. Learning trajectory patterns by clustering: experimental studies and compar-
ative evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2009. CVPR 2009. pp. 312–319.

Mou, L., Bruzzone, L., Zhu, X. X., 2019. Learning spectral-spatial-temporal features via a recurrent convo-
lutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience
and Remote Sensing 57 (2), pp. 924–935.

Muckell, J., Olsen, P. W., Hwang, J.-H., Lawson, C. T., Ravi, S. S., 2014. Compression of trajectory data:
a comprehensive evaluation and new approach. GeoInformatica 18 (3), pp. 435–460.

Muller, C., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody, G., Overeem, A., Leigh, R., 2015.
Crowdsourcing for climate and atmospheric sciences: current status and future potential. International
Journal of Climatology 35 (11), pp. 3185–3203.

Munoz-Organero, M., Ruiz-Blaquez, R., Sánchez-Fernández, L., 2018. Automatic detection of traffic lights,
street crossings and urban roundabouts combining outlier detection and deep learning classification tech-
niques based on gps traces while driving. Computers, Environment and Urban Systems 68, pp. 1–8.

Niehöfer, B., Burda, R., Wietfeld, C., Bauer, F., Lueert, O., 2009. GPS community map generation for
enhanced routing methods based on trace-collection by mobile phones. In: Proceedings of the First In-
ternational Conference on Advances in Satellite and Space Communications. pp. 156–161.

https://www.mapillary.com/
http://www.mapscape.eu/telematics/incremental-updating.html
http://www.mapscape.eu/telematics/incremental-updating.html

Bibliography 175

Niu, X., Wang, S., Wu, C. Q., Li, Y., Wu, P., Zhu, J., 2021. On a clustering-based mining approach with
labeled semantics for significant place discovery. Information Sciences 578, pp. 37–63.

Palma, A. T., Bogorny, V., Kuijpers, B., Alvares, L. O., 2008. A clustering-based approach for discovering
interesting places in trajectories. In: Proceedings of the ACM Symposium on Applied Computing. SAC
’08. ACM, New York, NY, USA, pp. 863–868.

Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M. L.,
Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z., 2013. Semantic trajectories
modeling and analysis. ACM Computing Surveys. 45 (4).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: machine learning in Python. Journal of Machine
Learning Research 12 (Oct), pp. 2825–2830.

Peker, A. U., Tosun, O., Akin, H. L., Acarman, T., 2014. Fusion of map matching and traffic sign recognition.
In: Proceedings of the IEEE Intelligent Vehicles Symposium. pp. 867–872.

Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R., Ratti, C., 2010. Human behavior
understanding. Springer Berlin Heidelberg, Ch. Activity-aware map: identifying human daily activity
pattern using mobile phone data, pp. 14–25.

Picaut, J., Fortin, N., Bocher, E., Petit, G., Aumond, P., Guillaume, G., 2019. An open-science crowdsourc-
ing approach for producing community noise maps using smartphones. Building and Environment 148,
pp. 20–33.

Piciarelli, C., Foresti, G., 2005. Toward event recognition using dynamic trajectory analysis and prediction.
In: Proceedings of the IEE International Symposium on Imaging for Crime Detection and Prevention,
2005. ICDP 2005. IET, pp. 131–134.

Pribe, C. A., Rogers, S. O., 1999. Learning to associate observed driver behavior with traffic controls.
Transportation Research Record: Journal of the Transportation Research Board 1679 (1), pp. 95–100.

Quddus, M. A., Ochieng, W. Y., Noland, R. B., 2007. Current map-matching algorithms for transport
applications: state-of-the art and future research directions. Transportation Research Part C: Emerging
Technologies 15 (5), pp. 312–328.

Read, J., Bifet, A., Pfahringer, B., Holmes, G., 2012. Batch-incremental versus instance-incremental learning
in dynamic and evolving data. In: Hollmén, J., Klawonn, F., Tucker, A. (Hrsg.), Advances in Intelligent
Data Analysis XI. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 313–323.

Rocha, J. A. M. R., Times, V. C., Oliveira, G., Alvares, L. O., Bogorny, V., 2010. DB-SMoT: A direction-
based spatio-temporal clustering method. In: Proceedings of the 5th IEEE International Conference in
Intelligent Systems. pp. 114–119.

Rodosthenous, C. T., Michael, L., 2021. A crowdsourcing methodology for improved geographic focus iden-
tification of news-stories. In: ICAART (2). pp. 680–687.

Romano, B., Jiang, Z., 2017. Visualizing traffic accident hotspots based on spatial-temporal network kernel
density estimation. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. SIGSPATIAL ’17. Association for Computing Machinery, New York,
NY, USA.

Salpietro, R., Bedogni, L., Di Felice, M., Bononi, L., 2015. Park Here! a smart parking system based on
smartphones’ embedded sensors and short range Communication Technologies. In: Proceedings of the 2nd
IEEE World Forum on Internet of Things (WF-IoT). pp. 18–23.

Saremi, F., 2016. Participatory sensing fuel-efficient navigation system greengps. Dissertation, University of
Illinois at Urbana-Champaign.

176 Bibliography

Saremi, F., Abdelzaher, T. F., 2015. Combining map-based inference and crowd-sensing for detecting traffic
regulators. In: Proceedings of the 12th IEEE International Conference on Mobile Ad Hoc and Sensor
Systems. pp. 145–153.

Satzoda, R. K., Martin, S., Ly, M. V., Gunaratne, P., Trivedi, M. M., 2013. Towards automated drive
analysis: a multimodal synergistic approach. In: Proceedings of the 16th International IEEE Conference
on Intelligent Transportation Systems (ITSC 2013). pp. 1912–1916.

Sester, M., Feuerhake, U., Kuntzsch, C., Zhang, L., 2012. Revealing underlying structure and behaviour
from movement data. KI - Künstliche Intelligenz 26.

Settles, B., 2009. Active learning literature survey. Computer Sciences Technical Report 1648, University of
Wisconsin–Madison.
URL http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf

Sharma, A., Jiang, Z., Shekhar, S., 2022. Spatiotemporal data mining: a survey. URL https://arxiv.org/

abs/2206.12753

Shekhar, S., Jiang, Z., Ali, R. Y., Eftelioglu, E., Tang, X., Gunturi, V. M. V., Zhou, X., 2015. Spatiotem-
poral data mining: a computational perspective. ISPRS International Journal of Geo-Information 4 (4),
pp. 2306–2338.

Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Porto, F., Vangenot, C., 2008. A conceptual
view on trajectories. Data and Knowledge Engineering 65 (1), pp. 126–146.

Spinsanti, L., Celli, F., Renso, C., 2010. Where you stop is who you are: understanding people’s activities
by places visited. CEUR.

Tan, P.-N., Steinbach, M., Karpatne, A., Kumar, V., 2018. Introduction to data mining, 2. Edition. Pearson.

Tang, J., Deng, M., Huang, J., Liu, H., Chen, X., 2019. An automatic method for detection and update
of additive changes in road network with gps trajectory data. ISPRS International Journal of Geo-
Information 8 (9).

Tang, L., Kan, Z., Zhang, X., Yang, X., Huang, F., Li, Q., 2016. Travel time estimation at intersections
based on low-frequency spatial-temporal gps trajectory big data. Cartography and Geographic Information
Science 43 (5), pp. 417–426.

topografix.com, 2022. Official GPX webpage: Resources. https://www.topografix.com/gpx_resources.
asp, accessed: 2022-08-18.

U.S. Federal Aviation Administration, 2022. Satellite navigation - GPS - how it works.
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/

navservices/gnss/gps/howitworks, accessed: 2022-08-17.

Van Engelen, J. E., Hoos, H. H., 2020. A survey on semi-supervised learning. Machine Learning 109 (2),
pp. 373–440.

Vij, D., Aggarwal, N., 2018. Smartphone based traffic state detection using acoustic analysis and crowd-
sourcing. Applied Acoustics 138, pp. 80–91.

Wage, O., Sester, M., 2021. Joint estimation of road roughness from crowd-sourced bicycle acceleration
measurements. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
V-4-2021, pp. 89–96.

Wang, J., Wang, C., Song, X., Raghavan, V., 2017. Automatic intersection and traffic rule detection by
mining motor vehicle gps trajectories. Computers, Environment and Urban Systems 64, pp. 19–29.

Wang, S., Niu, X., Fournier-Viger, P., Zhou, D., Min, F., 2022. A graph based approach for mining significant
places in trajectory data. Information Sciences 609, pp. 172–194.

http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
https://arxiv.org/abs/2206.12753
https://arxiv.org/abs/2206.12753
https://www.topografix.com/gpx_resources.asp
https://www.topografix.com/gpx_resources.asp
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps/howitworks
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps/howitworks

Bibliography 177

Wei, L., Li, Z., Gong, J., Gong, C., Li, J., 2021. Autonomous driving strategies at intersections: scenarios,
state-of-the-art, and future outlooks. In: Proceedings of the IEEE International Intelligent Transportation
Systems Conference (ITSC). pp. 44–51.

Weng, Y.-C., 2007. Spatiotemporal changes of landscape pattern in response to urbanization. Landscape
and Urban Planning 81 (4), pp. 341–353.

Wisch, M., Hellmann, A., Lerner, M., Hierlinger, T., Labenski, V., Wagner, M., Feifel, H., Robescu, O.,
Renoux, P., Groult, X., 2019. Car-to-car accidents at intersections in Europe and identification of use
cases for the test and assessment of respective active vehicle safety systems. In: Proceedings of the 26th
International Technical Conference on the Enhanced Safety of Vehicles (ESV), Eindhoven, 2019.

Wu, J., Zhu, Y., Ku, T., Wang, L., 2013. Detecting road intersections from coarse-gained gps traces based
on clustering. Journal of Computers 8 (1), pp. 2959–2965.

XGBoost Python, 2022. XGBoost Python Library. https://xgboost.readthedocs.io/en/stable/

python/index.html, accessed: 2022-02-15.

Xiang, L., Gao, M., Wu, T., 2016. Extracting stops from noisy trajectories: a sequence oriented clustering
approach. ISPRS International Journal of Geo-Information 5 (3).

Xiao, X., Gao, R., Xing, W., Li, C., Liu, L., 2021. How many bumps in your city? Personalized bump seeker
with mobile crowdsensing. IEEE Transactions on Instrumentation and Measurement 71, pp. 1–12.

Yin, H., Gao, H., Wang, B., Li, S., Li, J., 2022. Efficient trajectory compression and range query processing.
World Wide Web 25 (3), pp. 1259–1285.

Yuan, H., Li, G., 2021. A survey of traffic prediction: from spatio-temporal data to intelligent transportation.
Data Science and Engineering 6, pp. 63–85.

Zhang, T., Ramakrishnan, R., Livny, M., 1997. BIRCH: A new data clustering algorithm and its applications.
Data mining and knowledge discovery 1 (2), pp. 141–182.

Zhao, Y., Li, S., Hu, S., Su, L., Yao, S., Shao, H., Wang, H., Abdelzaher, T., 2017. Greendrive: A
smartphone-based intelligent speed adaptation system with real-time traffic signal prediction. In: Pro-
ceedings of the 8th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS). pp. 229–
238.

Zheng, A., Casari, A., 2018. Feature engineering for machine learning: principles and techniques for data
scientists, 1. Edition. O’Reilly Media, Inc.

Zheng, Y., Fu, H., Xie, X., Ma, W.-Y., Li, Q., 2011. Geolife gps trajectory dataset - user guide. Geolife gps
trajectories 1.1 Edition.

Zhou, X., Zhang, L., 2016. Crowdsourcing functions of the living city from Twitter and Foursquare data.
Cartography and Geographic Information Science 43 (5), pp. 393–404.

Zhu, Y., Liu, X., Wang, Y., 2013. Pervasive urban sensing with large-scale mobile probe vehicles. Interna-
tional Journal of Distributed Sensor Networks 2013.

Zimmermann, M., Kirste, T., Spiliopoulou, M., 2009. Finding stops in error-prone trajectories of moving
objects with time-based clustering. vol. 53. pp. 275–286.

Zourlidou, S., Fischer, C., Sester, M., 2019. Classification of street junctions according to traffic regulators.
In: Kyriakidis, P., Hadjimitsis, D., Skarlatos, D. & Mansourian, A. (Eds.), 2019. Accepted Short Pa-
pers and Posters from the 22nd AGILE Conference on Geo–information Science. Cyprus University of
Technology 17–20 June 2019, Limassol, Cyprus.

Zourlidou, S., Golze, J., Sester, M., 2022a. [Dataset] GPS trajectory dataset of the region of Hannover,
Germany. URL https://doi.org/10.25835/9bidqxvl

https://xgboost.readthedocs.io/en/stable/python/index.html
https://xgboost.readthedocs.io/en/stable/python/index.html
https://doi.org/10.25835/9bidqxvl

178 Bibliography

Zourlidou, S., Golze, J., Sester, M., 2022b. [Dataset] Traffic regulator ground-truth information for the
Chicago trajectory dataset. URL http://dx.doi.org/10.25835/0vifyzqi

Zourlidou, S., Golze, J., Sester, M., 2022c. [Dataset] Traffic regulator ground-truth information of the city
of Hannover, Germany. URL https://doi.org/10.25835/cqg0x1el

Zourlidou, S., Golze, J., Sester, M., 2022d. Traffic regulation recognition using crowd-sensed gps and map
data: a hybrid approach. AGILE: GIScience Series 3, pp. 22.

Zourlidou, S., Sester, M., 2015a. Road regulation sensing with in-vehicle sensors. In: A. Comber, B. Bucher
and S. Ivanovic (Eds.): Proceedings of the 3rd AGILE Phd School, Champs sur Marne, France, 15–17
September 2015, published at http://ceur-ws.org.

Zourlidou, S., Sester, M., 2015b. Towards regulation-aware navigation: a behavior-based mapping approach.
In: Accepted Short Papers from the 18th AGILE Conference on Geographic Information Science, Lisbon,
Portugal.

Zourlidou, S., Sester, M., 2019. Traffic regulator detection and identification from crowdsourced data–a
systematic literature review. ISPRS International Journal of Geo-Information 8 (11).

Zourlidou, S., Sester, M., Hu, S., 2023. Recognition of intersection traffic regulations from crowdsourced
data. ISPRS International Journal of Geo-Information 12 (1).

http://dx.doi.org/10.25835/0vifyzqi
https://doi.org/10.25835/cqg0x1el

Stefania Zourlidou
Curriculum Vitae

Personal Data

Date and Place of Birth: Panorama Thessaloniki, Greece, 09.03.1981

Education

2014–2023 Ph.D. student
Leibniz Universität Hannover, Germany
Institute of Cartography and Geoinformatics
Thesis Topic: “Traffic Regulation Recognition from GPS Trajectories”
Supervisor: Prof. Dr.-Ing. habil. Monika Sester

2016–2017 Promotion plus+ qualifiziert.
Graduiertenakademie, Leibniz Universität Hannover
A two-semester program that provides doctoral students with manage-
ment competencies for career outside academia

2004–2005 MS.c. in Intelligent Systems
University College London (UCL), U.K.
Department of Computer Science
Thesis Topic: “Machine Learning Estimation for Financial Time Series”.
Supervisor: Prof. Dr.-Ing. Fernando Perez-Cruz

1999–2004 Degree in Computer Science
University of Ioannina, Greece
Department of Computer Science
Thesis Topic: “Development of a Computational System for the Estima-
tion of Human Quadriceps Muscles Length Variation, with the help of a
Gait Analysis System”
Supervisor: Prof. Dr.-Ing. Chrysostomos Stylios

Professional Experience

08.2014– Research Associate
26.12.2018 Leibniz Universität Hannover, Germany
(full-time) Institute of Cartography and Geoinformatics

27.12.2018– Total Maternity Leave: 29 months ≈ 2.5 years
(part-time)

08.2014– External Research Associate
07.09.2017 IAV Automotive Engineering, Gifhorn, Germany

10.2005– Various Teaching (4 years) and Administrative (4 years) Positions
08.2013 Greek Ministry of National Education and Religious Affair,

Greece

Acknowledgements

I would like to express my deep gratitude to the two professors, Prof. Christian Heipke
and Prof. Jörg Müller, who were on the dissertation committee, for their valuable recom-
mendations and comments. Moreover, I would like to express my gratitude to the following
persons:

My supervisor Prof. Monika Sester : I thank her for the time she spent in our one-to-
one meetings, her ideas, her critical ear, for keeping an open door, and motivating me to
find alternatives instead of insisting on fixing things that do not work as expected. This
saved me a lot of time and I have since established it as a rule of my life. I thank her for
her understanding in the numerous challenges I faced during my studies. Any opportunity
related to research I asked her for, she accepted and did her best to support me. Above all
I thank her for her enthusiasm and high-performance culture which indeed is infectious!

From my colleagues at ikg: special thanks to Prof. Claus Brenner for his comments on my
presentations at the institute and his insights. Some of his hilarious comments during our
institute meetings at ikg I will never forget! Many thanks to Colin Fischer for helping me
somewhere in the middle of my studies to move forward by suggesting a very different way
of dealing with a problem I was stuck on. There was a time in my research when I felt
I had hit a wall and although the solution we worked on together is not included in this
thesis, thanks to this collaboration I got the chance to look at the problem from a new
viewpoint and arrived at the solution I was looking for. Colin, I am grateful to you for
this. In addition, I thank Jens Golze, Hao Cheng and Udo Feuerhake for all the projects
we worked on together. I learned a lot from all of you! In addition, I thank my colleague,
friend and talented cook Anna Malinovskaya for lunch-breaks, recipes, birthday gifts and
visits during my maternity leave. I also thank the ikg secretary Evelin Schramm for her
friendly personality, beautiful birthday cards and support in various procedural matters.
Finally, I thank my hiwi students, Maximilian Idahl, Swarnalatha Pasam and Yuanhang
Wu for supporting me on various tasks in my research, and to the students I supervised on
their postgraduate thesis, as I learn from them too! Finally, I deeply thank Dr. Shaohan
Hu for providing access to a valuable dataset at a time when I was desperately looking for
data to test and compare my methodology.

I am grateful to the Equal Opportunities Office (Hochschulbüro für ChancenVielfalt) of
Leibniz University Hanover for supporting me financially during the last six months of my
studies in order to complete and submit my thesis. Ms. Elke Buchholz, head of the office,
helped me to complete the application and thanks to the funding I received, I was able to
complete my dissertation. Without this support, I am not sure if I would have been able
to write the dissertation, working another job and taking care of two young children. I am
also grateful to IAV GmbH for supporting my research for three years, and to the Deutsche
Forschungsgemeinschaft (DFG) for also supporting my work at various stages.

I cannot express in words my gratitude to my parents. They both worked very hard through-
out their lives to raise and educate me and my sisters and to provide us with everything we
needed to fulfill our dreams for our future. I am also grateful to my sisters for their love,
encouragement and for always being there for me. I will be forever grateful for you.

Finally, I thank my husband for his support and love over the years, but most of all for
creating a family together that is beyond any dream I could have ever had. Maria and Sofia,
you are the brightest stars in the sky of my soul. I love you.

Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und

Geoinformatik der Leibniz Universität Hannover

(Eine vollständige Liste der Wiss. Arb. ist beim Geodätischen Institut, Nienburger Str. 1, 30167 Hannover erhältlich.)

Nr. 357 MAAS, Klassifikation multitemporaler Fernerkundungsdaten unter Verwendung

 Alina Elisabeth: fehlerbehafteter topographischer Daten (Diss. 2020)

Nr. 358 NGUYEN, Uyen: 3D Pedestrian Tracking Using Neighbourhood Constraints (Diss. 2020)

Nr. 359 KIELER, Birgit: Schema-Matching in räumlichen Datensätzen durch Zuordnung von

 Objektinstanzen (Diss. 2020)

Nr. 360 PAUL, Andreas: Domänenadaption zur Klassifikation von Luftbildern (Diss. 2020)

Nr. 361 UNGER, Jakob: Integrated Estimation of UAV Image Orientation with a Generalised Building

 Model (Diss. 2020)

Nr. 362 COENEN, Max: Probabilistic Pose Estimation and 3D Reconstruction of Vehicles from Stereo

 Images (Diss. 2020)

Nr. 363 GARCIA FERNANDEZ, Simulation Framework for Collaborative Navigation: Development - Analysis –

 Nicolas: Optimization (Diss. 2020)

Nr. 364 VOGEL, Sören: Kalman Filtering with State Constraints Applied to Multi-sensor Systems and

 Georeferencing (Diss. 2020)

Nr. 365 BOSTELMANN, Systematische Bündelausgleichung großer photogrammetrischer Blöcke einer

 Jonas: Zeilenkamera am Beispiel der HRSC-Daten (Diss. 2020)

Nr. 366 OMIDALIZARANDI, Robust Deformation Monitoring of Bridge Structures Using MEMS Accelero-

 Mohammad: meters and Image-Assisted Total Stations (Diss. 2020)

Nr. 367 ALKHATIB, Hamza: Fortgeschrittene Methoden und Algorithmen für die computergestützte

 geodätische Datenanalyse (Habil. 2020)

Nr. 368 DARUGNA, Improving Smartphone-Based GNSS Positioning Using State Space Augmentation

 Francesco: Techniques (Diss. 2021)

Nr. 369 CHEN, Lin: Deep learning for feature based image matching (Diss. 2021)

Nr. 370 DBOUK, Hani: Alternative Integrity Measures Based on Interval Analysis and Set Theory

 (Diss. 2021)

Nr. 371 CHENG, Hao: Deep Learning of User Behavior in Shared Spaces (Diss. 2021)

Nr. 372 MUNDT Schätzung von Boden- und Gebäudewertanteilen aus Kaufpreisen bebauter

Reinhard Walter: Grundstücke (Diss. 2021)

Nr. 373 WANG, Xin: Robust and Fast Global Image Orientation (Diss. 2021)

Nr. 374 REN, Le: GPS-based Precise Absolute and Relative Kinematic Orbit Determination of

 Swarm Satellites under Challenging Ionospheric Conditions (Diss. 2021)

Nr. 375 XU, Wei: Automatic Calibration of Finite Element Analysis Based on Geometric Boundary

 Models from Terrestrial Laser Scanning (Diss. 2021)

Nr. 376 FENG, Yu: Extraction of Flood and Precipitation Observations from opportunistic

 Volunteered Geographic Information (Diss. 2021)

Nr. 377 YANG, Chun: A hierarchical deep learning framework for the verification of geospatial databases

 (Diss. 2021)

Nr. 378 MEHLTRETTER, Uncertainty Estimation for Dense Stereo Matching using Bayesian Deep Learning

 Max: (Diss. 2021)

Nr. 379 KAZIMI, Bashir: Self Supervised Learning for Detection of Archaeological Monuments in LiDAR

 Data (Diss. 2021)

Nr. 380 PETERS, Torben: Learning Multi-View 2D to 3D Label Transfer for Semi-Supervised Semantic

 Segmentation of Point Clouds (Diss. 2022)

Nr. 381 WASSINK, Martin: Kommunal- und Regionalentwicklung durch Kooperation und Teilung von

 Verantwortung in ländlichen Räumen - eine multiperspektivische Untersuchung an

 Beispielen aus dem Raum Steinwald/Fichtelgebirge (Diss. 2022)

Nr. 382 GOLDSCHMIDT, Die Berücksichtigung künftiger Entwicklungen bei der Verkehrswertermittlung

Jürgen: (Diss 2022)

Nr. 383 KRUSE, Christian: Impact maps from bomb craters detected in aerial wartime images using marked

 point processes (Diss. 2023)

Nr. 384 ZOURLIDOU, Traffic Regulation Recognition from GPS Data (Diss. 2023)

 Stefania:

	Introduction
	From GPS tracks to Traffic Regulations
	Motivation for Learning Intersection Traffic Regulations
	Research Gap
	Motivation for Learning Traffic Regulations from GPS Data
	Research Objectives, Challenges and Contributions
	Outline of the Thesis
	Summary
	Acknowledgements

	Theoretical Background
	Intersections and Intersection Traffic Regulations
	Intersections
	Intersection Traffic Regulations

	Spatiotemporal Data and Movement Trajectories
	The Global Positioning System
	Sampling Frequency
	The GPS Exchange Format: GPX
	Movement Patterns in Spatiotemporal Data
	Spatiotemporal Data Mining
	Semantic Enrichment of Trajectories
	Detecting Stop and Moves: the CB-SMoT Algorithm

	Machine Learning
	Machine Learning and Types of Learning
	Supervised-Learning: Classification
	Unsupervised-Learning: Clustering
	Semi-supervised Learning
	Active-Learning
	Incremental Learning

	Acknowledgements

	Related Work
	Existing Traffic Regulation Recognition Approaches
	Static Categorization
	Map-based Category
	Image-based Category

	Dynamic Categorization
	Episode-based Category
	Speed-profile Category
	Movement-summarization Category

	Hybrid-based Categorization
	Discussion
	Knowledge Gap
	Acknowledgements

	Traffic Regulation Recognition (TRR) from GPS Data
	Introduction
	Datasets
	Dataset Requirements and Limitations
	Datasets for Testing the Proposed Methods
	Groundtruth Map Construction

	Methodology
	Detection of Stop and Deceleration Episodes
	The Static Approach
	The c-Dynamic Approach
	The Dynamic Approach
	The Hybrid Approach
	Implementation and Classification Settings

	Results
	Discussion
	Summary
	Acknowledgements

	TRR From GPS Data: One-Arm versus All-Arm Models
	Introduction
	Methodology
	One-Arm vs. All-Arm Models
	The Effect of Sampling Rate
	Reduced Models
	The Effect of Turning/No-Turning Trajectories
	The Effect of Number of Trajectories
	Application of Domain Knowledge Rules
	Classification Settings

	Results
	One-arm vs. All-arm Models
	Testing the Effect of Sampling Rate
	Reduced Models
	Testing the Effect of Turning Trajectories and Examining an Optimal Number of Trajectories
	Testing the Effect of the Number of Trajectories on Classification Performance
	Misclassification Analysis
	Applying Domain Knowledge Rules

	Discussion
	Summary
	Acknowledgements

	TRR with Sparsely Labeled and Stream Data
	Introduction
	TRR with Clustering
	TRR with Self-Training, Active Learning and Cluster-then-Label
	TRR with Self-Training: Using Labeled and Unlabeled Data
	TRR with Active Learning
	TRR with the Cluster-then-Label Algorithm
	Comparison of All Tested Methods

	Learning Transferability: Training on City A and Predicting on City B
	Incremental (Online) Learning
	Summary

	Conclusions and Outlook
	Research Questions Addressed in this Thesis
	Outlook

	List of Acronyms
	Index
	Appendix
	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae
	Acknowledgements

