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Abstract. In this paper we present an approach to providing landmark-
based routes using a shortest-path algorithm. We start from the as-
sumption, that at one junction there can be several landmarks to choose
among, in order to find an optimal description of a route. The landmark
selection used for describing the route is optimized taking the quality
measures for the landmarks into account. Therefore, it is necessary to
define quality measures. In the paper different types of quality measures
are introduced and their integration in the route graph, as well as in a
routing algorithm is presented. The usability of the approach is demon-
strated using test data.

1 Introduction

The improvement of navigation systems and automatically generated routing
description is an area of considerable research interest.

Most automated navigation systems rely on finding the shortest path in an
underlying database network. But numerous cognitive studies have shown that
human navigators use more than this single concept to select a path — criteria
like least time, fewest turns and others play a vital role in human route planning.

Another finding of spatial cognition research is the importance of landmarks
in the wayfinding process. Route descriptions are a sequence using two basic
elements: instructions (actions at critical points along the route) and describing
elements (characteristics and position of landmarks). Therefore, incorporating
landmarks into automatically generated route instructions is essential to improv-
ing the usability of navigation systems.

It is well-known that humans try to minimize the complexity of route de-
scriptions in order to reduce their cognitive load. For example, the capacity of
short-term memory restricts it to a limited number of information pieces given
in a route description. So, reducing the number of instructions is one possibility
to decrease the description complexity. Furthermore, the linguistic complexity
(e.g. number of words used) of each instruction or the cognitive complexity of
the task described in the instruction has to be optimized.

In this paper we introduce an approach to optimizing the route selection
considering the cognitive complexity of the route. For that purpose we incorpo-
rate point-like landmarks in the routing process. A graph using the geometric



network and the landmark information is built up. At each junction in the road
network, a variable number of landmarks can occur (0. . . n). The landmarks are
introduced with quality measures to generate abstract route-specific route direc-
tions that take the dependency between each landmark and chosen path segment
as well as interdependence between different landmarks into account.

The paper is structured as follows: First, a review of the relevant literature
dealing with landmarks in directions and aspects of route optimization is given
in Sect. 2. In Sect. 3 the idea of incorporating landmarks with quality measures
in a shortest-path calculation is introduced. In Sect. 4 the data model and some
results using a test data set are presented. The paper closes with discussion of
results and outlook to future work in Sect. 5.

2 Related Work

2.1 Landmarks in Directions

Directions are routing instructions, mostly given in verbal form. They are gen-
erated to help someone finding his way who is unfamiliar with the environment.
This process consists of three different cognitive stages [1]: first, the mental
representation of this area is activated. Secondly, the optimal path considering
different criteria like shortest path, fewest turns etc. is selected. Thirdly, the
abstract conceptualization is transformed to verbal (or graphical) output. For
conveying the wayfinding information via speech it is necessary to break the
route down in single, sequential segments. These consist of describing elements
(position and characteristics of landmarks) and moving actions (especially at
critical points along the route) [2, 3].

There are two different approaches to provide local landmarks for route di-
rections. In the first approach, a formal model of landmark saliency grounding on
the characterization of Sorrows and Hirtle [4] is specified: the measures ’visual’,
’semantic’ and ’structural’ attraction for building objects are established and
assessed via hypothesis testing [5]. As an additional factor the advance visibility
of objects while approaching a decision point is taken into account [6]. In a last
step, the structural component is enhanced considering the spatial chunking of
elements into ’higher order route description elements’ (HORDE) [7, 8].

The second approach deals with the extraction of building landmarks from
existing spatial databases. Therefore, the task is split into two subtasks: in a first
step for each potential decision point salient objects are identified as potential

landmarks. These are determined using data mining methods to detect the salient
objects in the local neighborhood of a junction [9, 10]. Subsequently, the selection
of potential landmarks has to be reduced according to the characteristics of a
specific chosen route to the route-specific landmarks. For that step aspects of
landmark visibility and perception, landmark quality, as well as cognitive and
linguistic optimization of the communication process play an important role [11].



2.2 Aspects of Route Optimization

In automated navigation systems shortest-path calculations applying the Dijk-
stra algorithm [12] (or the A* algorithm) are used. Therefore, the road database
is stored as a graph network with nodes and edges and so the shortest-path
problem is translated to a graph-theoretical problem. The distances between
the nodes are used as ’travel costs’ and are applied as weights to the edges of
the network. It is possible to substitute the distance with travel time or other
weights and create further route solutions (e.g. fastest route, simplest paths [13],
clearest route [14]). The use of additional node weights is possible without modi-
fications of the routing algorithm. Handling costs of turns requires the storage of
edge-edge relations in the graph. For that purpose, the concept of a line graph is
introduced [15]. This graph represents all pairs of consecutive edges and allows
individual weighting.

Studies in the field of spatial cognition indicate that different criteria are used
for path selection in human wayfinding: in addition to shortest distance and least
time, also fewest turns, most scenic or straightest route criteria (minimizing
angular deviation) and others are taken into account [16–18]. For this reason
different route optimization approaches are introduced recently. They differ in
optimizing a given criteria for the route selection or for its description.

Simplest Paths. Very often not the shortest but the simplest route is needed to
give wayfinding instructions to someone who is unfamiliar with the environment.
Cognitive studies indicate that people choose the straightest possible routes as
opposed to more meandering routes [18]. That behavior leads to complexity
reduction of the environment and ease the requirements of human short-term
memory capacity: following the findings of Miller [19] people find it easy to
remember (short-term) up to seven items (give or take two). So, reducing the
number of turn elements in a route minimizes the needed memory capacity and
therefore the complexity of the route.

Duckham and Kulik [13] propose an algorithm that can be used to select
routes that minimize the complexity of instructions. This idea to ’ease the de-
scription’ was first introduced from Mark [20] and assumes that the number
and type of turns burden the route with a specific weight. While Mark [20] uses
a weighting function to join metric distances with the instruction complexity,
which are represented by a number counting the instruction elements needed,
Duckham and Kulik [13] completely rely on the measure of instruction complex-
ity. Nonetheless, the simplest paths are on average only 16% longer than the
shortest paths.

Clearest Route. The Landmark Spider approach is similar to the simplest
paths as far as it uses only specific weights and no geometric distance information
in the shortest-path calculation [14]. But these weights represent the relevance
of landmarks at each node with respect to the traveler’s movement. Therefore,



the combination of the salience of a landmark, its distance to the node, and the
orientation of the landmark with respect to the traveler’s heading build up the
cost function. So, this approach uses a subset of all available landmarks, which
are most prominent and easy to find, and determines the clearest route in terms
of spatial reference.

Until now there has been no testing with real data to assess the performance
of this approach. It is expected to be identical to the shortest path solution in
the best-case scenario, but a low landmark density will lead to problems [14].

Context-specific Route Directions. This approach provides a formal model
that focus on the optimization of the route directions taking the surrounding
context into account [21, 22]. For a given route the minimal number of distinct
parts in the abstract route directions on the highest granularity levels possible
are calculated. Thereby one-one relations between decision point/action pairs
and route instruction represent a low granularity. A high granularity stands for
a many-one relation expressed by one route instruction covering more than one
decision point of the route. Using this criterion supports the idea that the number
of description elements in a route is connected to the complexity of the entire
route directions.

These different granularity levels for the abstract route elements are produced
by applying spatial chunking to them. This method groups several actions at
decision points into one segment called ’higher order route directions elements’
according to the three types ’numerical’, ’landmark’, and ’structural’ chunking
[8]. This approach aims at producing the cognitive simplest routes, because the
conceptualization process of the route is eased. It complements the simplest
paths approach providing an optimal description for their routes.

3 ’Landmark Route’

Here, we want to introduce an approach that optimizes the route selection ac-
cording to landmarks. The approach simplifies the conception of landmarks in
only dealing with point-like landmarks like buildings. From the network and the
landmark information a graph is constructed which supports a different routing
option besides the shortest-path solution: the chosen route takes landmark qual-
ity and distance information into account and also considers landmark chunking
rules.

3.1 Modelling Quality Measures for Landmarks in a Graph

To optimize the landmark selection, quality measures for the given landmark
set are needed. Therefore, it is necessary to distinguish between different quality
measures for landmarks representing the quality of the landmark object itself,
the interdependencies between incoming route segment and landmark, and the
quality of the landmark with respect to a turn. In the end, the final landmark
quality is a summarization of all single quality aspects.



If each landmark is considered as a point-like feature, then it is possible to
assign them to a junction in a path network and a ’landmark graph’ can be built
up. The landmarks represent the nodes of the graph. Their location corresponds
to the geographic position of the junctions of the road network, which they are
assigned to. Because more than one landmark at one junction is allowed, the
connection between each neighbored landmark pair, which has a corresponding
connection in the road network, is represented by an edge. So, each node and edge
from the road network is multiple modeled in the landmark graph depending on
the number of potential landmarks given for each node (see Fig. 1).
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Fig. 1. Different landmark quality measures

Quality measures for landmarks can be assigned to different elements of the
graph according to their impact on node-, edge-, edge-edge- or chunked edge-
weights (see Fig. 2):

⊲ If a quality criterion is only affecting the landmark object itself, the resulting
’landmark object quality weight’ is assigned to the corresponding node in the
graph (see Fig. 2, top left: weights for n1, n2 and n3 ).

⊲ If the landmark quality criterion is depending on the incoming route segment,
it is assigned as ’landmark quality segment weight’ to the directed edge. This
stands for the dependency between the landmark quality and the direction
the landmark is approached. (See Fig. 2, top right: the weight assigned to
edge e12 (representing the connection from node n1 to n2 ) models the
landmark quality of n2 with respect to the edge e12 ).

⊲ If the quality measure depends on the turn configuration, an edge-edge re-
lation has to be modeled in the graph (for example using a line graph [15]).
Onto these kind of edges the ’landmark turn quality weight’ can be applied
(see Fig. 2, down left: the weight applied to ’double edge’ de123 models the



cost of the turn from edge e12 onto e23 visiting landmark n2 ). This rep-
resents the fact, that the configuration of incoming and outgoing edge is
relevant for the weight – this is relevant to model turning restrictions or
preferences. However, for using this kind of specific edges in most navigation
systems the routing is not performed on the node-edge-graph, but on the
dual construct: the edges are modeled as nodes, turns then represent edges;
all edge (and node) weights have to be merged into one combined weight
and assigned to this new dual edge.

⊲ If the quality measure depends on a concatenation of chunked elements, the
’landmark chunk quality weight’ is applied to the chunk element (see Fig. 2,
down right: Spatial chunking operations result in a HORDE modeled as edge
chunk13 and representing the connection from n1 to n3 via n2. Therefore, a
completely new edge in the graph is created. Its geometric representation is
the sequence of the chunked segments, its graph representation is the direct
connection between n1 and n3. The weight of the edge depends on the sum
of weights of all chunked edges belonging to the chunk multiplied with a
factor taken the improvement achieved by the chunking into account.
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3.2 Establishing Weights for Landmark Quality

In Elias [10, 11] a procedure to select potential landmarks is described. In that
approach buildings were used as potential landmarks. The selection process is
based on a visibility analysis and a Minimum Description Length Principle by
selecting objects as potential landmarks that can be described in a compact
way. The result is a list of equal suited potential landmarks for a junction. After
the selection, the question arises, which aspects have to be modeled as ’quality
measures’ for these objects to determine the best fitting object as a route-specific
landmark in a particular navigation context. In this paper, the modeling of
quality aspects is tailored to the characteristics of potential landmarks.

To determine the characteristics of ’good landmarks’ for car navigation sys-
tems Burnett et al. [23] conducted a direction-given study. The reasons for using
a specific landmark are analyzed and result in a list of factors:

1. Permanence: The likelihood of the landmark being present. We assume that
here all buildings have the same value. (Probably this aspect gains more
attention when it is necessary to determine the weight between different
landmark object types, e.g. like buildings and parks.)

2. Visibility: The importance of this aspect for the quality of a landmark is
approved generally. But besides the existing ’visibility’ of objects, also the
question of ’visual perception’ arises. Cognitive tests reveal the human char-
acteristic to focus his spatial attention according to his expectation [24].
That means, if we expect to make a turn right at the next junction, our
visual focus rest on the right side of the street. Landmarks situated on the
’wrong’ side will not be noticed.

3. Usefulness of Location: Describes whether the landmark is located close
to navigational decision points or not. In the extraction process of landmarks
this factor is modeled so far that only objects, which are located ’near’ a
potential decision point (junction), are investigated. But if this junction is
not a decision point in the chosen route (means the path is following straight
on), the impact of this factor is getting minor.

4. Uniqueness: Represents the likelihood of the landmark not being mistaken
for other objects. One factor is the highly individual appearance, which, in
our case, is already checked in the procedure to select the potential land-
marks. The second aspect covers preventing confusion between the landmark
and similar looking objects. The landmark must be identified easily and with
no mistakes in the environment. Therefore, it is necessary to check whether
there are objects in the ’neighborhood’ of the route, which are misleading.
This local area of attention consists not only of the immediate surrounding
of the decision point. Also the incoming route segment has to be inspected,
because a misleading object ahead of the correct landmark can lead to a
wrong navigation decision [11].

5. Brevity: Stands for the conciseness of description associated with a land-
mark. It is related to the number of terms/words used to refer to the object.



To model these quality aspects in a routing graph it is necessary to link
each quality aspect to a type of weight (see Fig. 2). In Table 1 the classification
of quality weights is given. Here, we assume that the potential landmarks are
determined following the approach of Elias [11], so some of the quality aspects
are considered already in that pre-processing step. They are separately marked
in the table. Applying the quality weights onto the landmark selection approach
of [5] is also possible, but some of the aspects introduced here are already taken
into account in the approach itself (e.g. visibility). Therefore, a modification of
the weight modeling in respect to the used landmark selection procedure would
be needed. Chunk weights are not addressed in this table, because they represent
a composition of different quality factors, which are specified at the end of this
chapter.

Table 1. Classification of landmark quality weights

Quality Factors Potential Object Weight Segment Weight Turn Weight
Landmarks

1. Permanence •

2. Visibility (•) •

2. Perception •

3. Usefulness of Location •

3. Decision Point •

4. Individual Appearance •

4. Uniqueness •

5. Brevity •

Constituting the different types of weights needs the merging of several as-
pects in one weight measure. Because no other elements of the graph are af-
fected, considering the brevity of the landmark description builds up the object

weight. To establish the segment weight it is necessary to merge the aspect
of visibility and uniqueness into one weight. Both are dependent on the route
segment traveled to reach the landmark: the object has to be visible and no
confusable objects similar to the landmark itself must be on the route segment
leading toward the landmark. For the routing it is necessary that also the dis-
tance of a segment is taken into account. Therefore, this segment weight has to
be combined with the distance weight and then constitutes a new weight measure
for the edge.

To determine the turn weight the influence of perception and location has
to be combined. Both need an edge-edge relation to be modeled, as the measures
depend on the turn instruction and the relative position of the landmark at the
junction. Because the turn costs vary dependent on the approaching direction
and turn instruction, the combination of incoming and outgoing edge is needed
to store this quality weight.

The kind of spatial chunking applied to the data is the so called ’landmark
chunking’ [8]. It chunks all straight following route segments until a turn instruc-



tion is required and located by a landmark (’turn right at the church’). A chunk
is stored as a new segment in the graph and its weight is handled as a segment
weight accordingly. To define the chunk weight it needs a careful considera-
tion of all the influencing factors and their validity for the chunk element. The
following options are possible:

⊲ the geometric distance is the sum of all single segments chunked together
⊲ the only valid object weight is the measure of the last landmark in the chunk

chain (represented by the last node)
⊲ only the visibility of the end landmark is necessary; the value can be taken

from the last segment in the chunk
⊲ the uniqueness measure has to be determined again, this time taking the

complete path of the chunk into account
⊲ a reduction factor has to be applied on the segment measure representing

the simplification achieved by chunking elements (for example depending on
the number of elements chunked)

4 Incorporating Quality Weights into Test Graph

To check the usability of using the weights within a shortest-path search algo-
rithm, a few tests with test data are conducted using the Dijkstra Algorithm.

4.1 Graph Modeling Using Time Penalty as Weights

As visualized in Fig. 1 at each junction new nodes have to be introduced that
represent the landmarks, and edges between all nodes have to be established.
In our scenario, we will describe a setup where different node weights will be
modeled, as well as weights for edges and chunking. No tests with the modeling
of turn weights are conducted, as they require the dual modeling, which has
not been done so far. Therefore, the tests in this paper are restricted to object,
segment and chunk weights.

For developing a common framework to assess the graph, seconds are chosen
as reference dimension units for geometric distances and quality weights. For
that purpose the geometric distances (given in meters) are transformed into
seconds assuming an average pedestrian speed of 1,5 m/sec. As far as that, the
shortest-path in the network is equal to the shortest-time solution of the Dijkstra
analysis. The test network used here is shown in Fig. 3.

Integrating landmarks in the process can be regarded as an improvement of
the navigation task. If the task is regarded as a process with a specific duration,
the navigation process of a route described by ’good landmarks’ has to be faster
than without any landmark information. Therefore, all segments in the landmark
graph without any landmark information at their end node have to be punished
with a general time delay. This penalty shall represent the additional time that
is needed by a pedestrian to orientate himself at the end of each route segment
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(e.g. causing stops at each decision point). The same holds for the quality of
the landmarks: good landmarks get no penalty, whereas bad ones or junctions
with no landmark at all are punished with an extra time delay. Thus, additional
landmark information leads to a simplification of the navigation task and the
time delay decreases. It neutralizes if the landmark is ’good’ in all quality aspects,
because the navigation process can be completed without any stops or time delay
for re-orientation purposes.

This approach is represented in the data model for the landmark graph as
follows:

Distances: The metric distances are taken from the underlying path network.
They are converted into seconds modelling an average walking speed of 1,5 m/sec
of a pedestrian. The global time delay is applied as a penalty to all distances
without any landmark information in their end node and here is proposed with
90 sec.

Object Weights: The nodes of the graph represent the potential local land-
marks located near the decision points of the route. Because more than one
landmark at a decision point is allowed, the nodes and their connections are
multiple modeled. The landmark object weight is applied to the nodes of the
landmark graph and causes a maximum penalty of 30 sec (that means, if the
landmark is not very good, at most 30 sec are added as penalty on the landmark
node).

Segment Weights: The edges of the landmark graph are directed edges rep-
resenting the distances between the landmarks as well as the landmark segment
weights. These weights reflect the impact of the landmark depending on its qual-



ity according to the segment influencing aspects. If the landmark is clearly visible
from the route at an early stage, its value is 0 sec. The maximum penalty for
a bad landmark weight is here given with 30 sec for each edge. The distance
measures and the segments weights are added up.

Chunking: We assume that a route description that entails identical land-
marks in a sequence can be memorized better than a route where the landmarks
change from junction to junction. Chunking of instructions can be integrated in
two different ways: either by introducing new edges in the graph that serve as
’shortcuts’, or by inclusion in the routing algorithm (see Sect. 4.3).

The first option is to introduce new edges in the graph by connecting route
segments that can be described by subsequent identical landmark objects. This
inclusion can be automated in a kind of region growing approach, known from
digital image processing (see e.g. [25]): Starting from a seed node, routes are
followed and gathered, that have identical landmark types. After at least two
nodes with the same type have been found, a new edge is included that now
constitutes a kind of shortcut in the route graph. For this edge, an appropriate
weight has to be determined as described above. After all nodes have been vis-
ited via all possible edges, the algorithm terminates, as all new shortcut edges
are found.

In this paper, the idea of incorporating landmarks and their quality into the
routing process is introduced. The quality weights are modeled and applied us-
ing a time delay for the traveler. There are no studies or research findings so far
examining the actual impact of these aspects with respect to the navigation pro-
cess. So as a start, we have chosen reasonable penalty values for each weighting
type and assume that all types have the same maximum effect.

4.2 Examples for Integrating Object and Segment Weights

In this section an example showing the use of object and segment weights in
the landmark graph is introduced (see Figure 4 and Table 2 accordingly). The
optimal route between junction 65 and 86 is requested. Here, we investigate the
route costs of two different options: the route can lead either from 65 via junction
73 and 78 toward junction 86 (called D1) or from 65 via junction 73 and 81 to
86 (called D2). The shortest-path calculation of both routes using the original
Dijkstra algorithm reveals, that the distance of route D1 is shorter than of D2
(see Table 2).

Now, we introduce multiple landmarks at one node (at junction 81 landmarks
14 and 15, at junction 86 landmark 19 and 20) and apply landmark object weights
to all nodes of the landmark graph. We assume that only 81 15 and 86 20 are
’good’ landmarks in respect to object quality and therefore have no time penalty
at all. All other nodes represent landmarks of ’bad’ quality in respect to object
quality and are punished with a time delay of 30 sec accordingly. Different route
alternatives are calculated (called O1–O4) and presented in Table 2. The results
show that only a combination of both weighted landmarks 81 15 and 86 20
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accelerates the navigation task and leads to the shortest (or here better ’fastest’)-
path. All other combinations would still prefer the O1 (that is equal to the route
D1).

In a next step segment weights are introduced additionally. They are applied
comparable to the node weights: only the ’good’ landmarks in respect to the
segment aspects are weighted with 0 sec, all other landmarks get a penalty of
30 sec for their ’bad’ quality in respect to their segment characteristics. In our
case, only the edge from 73 leading to 81 15 receives a good segment weight.
Different route alternatives (using different landmark combinations called S1–
S5) are processed. The results show, that using the landmark node combination
81 15 and 86 20 leads to the fastest route. This route has to be preferred because
it is the best landmark route available.

4.3 Integrating Chunking in Dijkstra Algorithm

Chunking can be included directly into the routing algorithm, in our case into
the Dijkstra Algorithm. The idea is that route elements between adjacent nodes
of a different type get a penalty as opposed to route elements that link two nodes
of the same type. In the original Dijkstra Algorithm those nodes are expanded,
that have currently been identified as being accessible on the shortest path from
the start node. When the accessible successor nodes are added, not only the
edge weights between them are used, but also a penalty value, if the adjacent
nodes are of a different type. For the penalty, an appropriate value has to be
chosen. In our case we used 60 sec, assuming that this additional time is needed
to memorize different types.
In the following example (Fig. 5), the shortest route between junctions 73 and 140



Table 2. Result of Dijkstra Algorithm: Route between junctions 65 and 86 using object
and segment weights

nodes shortest-path using object weights using object and segment w.
start: 65 D1 D2 O1 O2 O3 O4 S1 S2 S3 S4 S5

dist 79,63 79,63 79,63 79,63 79,63 79,63 79,63 79,63 79,63 79,63 79,63
73 node 30 30 30 30 30 30 30 30 30

edge 30 30 30 30 30

dist 75,45 75,45 75,45
81 14 node 30 30

edge 30

dist (75,45) 75,45 75,45 75,45 75,45
81 15 node 0 0 0 0

edge 0 0

dist 95,60 95,60 95,60 95,60
78 node 30 30 30

edge 30 30

dist 70,47 122,62 70,47 122,62 122,62 70,47 122,62 122,62
86 19 node 30 30 30 30 30 30

edge 30 30 30

dist (70,47) (122,62) 122,62 70,47 122,62
86 20 node 0 0 0

edge 30 30

total [sec]: 245,70 277,70 335,7 367,7 337,7 307,7 425,7 395,70 457,70 397,70 367,70

is searched. At each of these junctions there are a varying number of landmarks
of different type. E.g. at node 130, there are landmarks 30, 31, and 32 with
landmark types 2, 4 and 1, respectively. The routing between junctions 73 to
140 is possible along all landmark nodes in the graph. Also, there will be four
target points in node 140, as that node consists of four landmarks.

Applying the modified Dijkstra Algorithm to this route yields the results
given in Table 3.

Table 3. Result of Dijkstra Algorithm: route between junctions 73 and 140

route start dist. via node dist. via dist. end penalty total
nr (type) (type) (type) (type) (from-to) distance

1 9(1) 75,45 15(1) 19,31 26(1) 21,19 37(6) 60 (26-37) 175,95
2 9(1) 75,45 15(1) 19,31 26(1) 21,19 38(1) 0 115,95
3 9(1) 44,63 31(4) 26,89 28(4) 70,24 39(4) 0 141,76
4 9(1) 75,45 15(1) 19,31 26(1) 21,19 40(3) 60 (26-40) 175,95

As shown in the table, the routing from junction 73 to junction 140 yields four
different possibilities. Three of them use the junctions 81 and 104 with different
selections of their landmarks. One is taking the north route via junctions 130
and 106. Route 2 is the shortest with 115,95 sec. It starts with landmark 9 and
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uses landmarks 15, 26 and 38, that all have the same type (1). Routes 1 and
4 have different end nodes (37(6) and 40(3)) - thus they have to ’pay’ for this
type-change with 60 sec (see column penalty). Route 3 uses only landmarks of
type 4 and thus no penalty is applied.

The best route among the four possibilities is route number 2, which uses
only landmarks of type 1: LM1. The derived route description can be as follows:
”Start from junction 73, turn left at LM1, go straight at the next LM1, until
you reach the following LM1, which is your target.”

In the example, chunking was used to join any subsequent nodes of same
type. In reality this might not be useful. As stated in [8], chunking is typically
used to aggregate descriptions of the same type along a straight line, until a
turning instruction appears. Taking such aspects into account is also possible,
however, then also the geometric properties of the graph have to be taken into
account: only those adjacent nodes of same type that go straight will get no
punishing value.

The proposed chunking operations are not verified if they are cognitively
plausible. They are introduced to show the feasibility of incorporating the idea
of chunking into the routing process by means of creating new edges and time
penalty values. The actual chunking strategies has to be analyzed and fit into
the proposed model.

5 Conclusion and Outlook

In the paper we presented an automatic approach that is able to generate an
optimal route description using landmarks. From a set of potential landmarks



assigned to single junctions, the optimal ones are selected that can be used to
describe the best route. When transferring the problem to a graph structure,
a crucial factor is the modeling of the weights needed for the determination of
the optimal route. Here, we try to model all distances and weights by means
of seconds, that represent the duration of the different aspects (like moving or
re-orientation). We made some assumptions that also led to satisfying results.
Here further work is needed to prove the correctness of the penalty concept
for all eventualities and specify the time dimension for each weighting factor.
Especially the penalty model for the chunking weight has to be adopt to the
actual chunking strategy in wayfinding descriptions. Also further investigations
and experiments are needed to assess the time delay of a pedestrian. Therefore,
user tests have to be conducted to determine the impact of the different aspects
in reality.

However, the presented method gives the technical framework for the cal-
culation of shortest paths. It takes different factors into account, as it allows
to modeling all the aspects in terms of weights in the graph. Moreover, an ap-
proach was shown including the introduction of possible chunks in the routing
calculation process of the Dijkstra Algorithm.
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