Geosensor Networks - chances and
challenges

Monika Sester, Institute of Cartography and Geoinformatics

Leibniz Universitat Hannover, Germany

1 Overview

Sensors are well known in Geodetic Science; also, integrating sensor to sensor networks is not new.
This has been done to observe geodetic networks for exact point densification ever since. Traditional
geodetic networks consist of a fixed set of dedicated sensors with a given configuration and
measurement regime. The processing of the data is usually done in a centralized fashion. Geosensor
networks for the observation and monitoring of environmental phenomena are a recent trend in
GlScience. What is new is the fact that different sensors act independently, have the capability to
communicate and thus the network is able to operate beyond the individual sensors’ capabilities. In
this way, the network as such is more than the sum of the individual sensors. Besides their own
position, geosensors capture information about the environment, such as temperature or humidity.
In the context of engineering geodesy, sensor networks are used for monitoring purposes, e.g. to
observe and monitor georisks like hang slides. For the future, a miniaturization of the sensors is
envisaged, which eventually leads to so-called smart dust, i.e. sensors virtually integrated in the
environment. This indicates that the number of sensors is typically very high.

For scalability of the sensor network potentially consisting of a huge amount of sensors, which are
distributed in the environmen, different characteristics are essential: wireless communication, ad hoc
determination of network topology, i.e. the neighborhood relationships between sensors, as well as
local analysis. Thus, there is no central service in the sense of a global data and processing server,
which receives and analyzes all the data. Instead, data is processed or at least pre-processed locally
on the sensor, typically including information of neighboring sensors. Often, local information only
matters locally and thus there is no need for creating a lot of data traffic in the network. In this way,
a tight coupling of processing and sensing will be achieved. In summary, geosensor networks are
characterized both by distributed data capture and distributed data processing.

Decentralized algorithms for geosensor networks have been investigated by several researchers and
for different applications. Laube, Duckham & Wolle (2008) describe an algorithm to detect a moving
point pattern, namely a so-called flock pattern. A flock is described as a group of objects that moves
in a certain distance over a certain time. In a similar spirit, Laube & Duckham (2009) present a
method for the detection of clusters in a decentralized way. Depending on the communication range,
clusters of a certain size (radius) can be detected.

There are many applications for Geosensor networks, see, e.g. Stefanidis & Nittel (2005):

- Environmental monitoring

- Disaster management, early warning systems (Bill et al., 2008), e.g. earthquakes, hill slides, ...
- Surveillance, risk management (buildings, technical devices, ...)

- Military



- Traffic management and monitoring (car2car-communication)
- Topographic Mapping

- Glacier movements

- Human body

Geosensor networks in the sense described above are still in their infancy; today’s networks mainly
consist of a small number of sensors, often linked by wire; the processing often is done on a central
server. However, one can observe an increasing availability of positioning sensors, equipped with
additional sensing capabilities, e.g. smartphones. These sensors are already used for massive data
collection for the determination of the traffic situation by companies like TomTom or Google.
Another example is the exploitation of photos in the web to create 3D-models of landmark objects
(Agarwal et al, 2011). This indicates the huge potential, as even low quality sensors, or sensors
originally dedicated for other tasks, can yield quality and instant information when integrated in an
ad-hoc fashion. With the increasing availability of sensors also their integration and cooperation in
terms of sensor networks will evolve.

2 Distributed Processing

In the following, two examples from research at the Institute of Cartography and Geoinformatics at
Leibniz Universitat Hannover, Germany, are given in order to illustrate the potential and application
areas of geosensor networks in an exemplary fashion.

2.1 Using cars as moving rain sensors

One example for the distributed data acquisition is currently being investigated in the context of a
project funded by the German Research Foundation, entitled RainCars. Starting point is the fact that
exact measurements of rainfall is needed for hydrological planning and water resources
management, especially for highly dynamic and nonlinear processes like floods, erosion or wash out
of pollutants. Surprisingly, such data is not readily available: there are recording rain gauges, but
even in Germany, their spacing is rather poor (one station per 1800 km?). Rain radar is available at a
high temporal resolution and at a spatial resolution of typically 1km*1km. However, radar only
measures reflectivity, which has to be transformed to rainfall measurements in a calibration process.
Thus the idea of RainCars is to exploit the massive availability of cars and use them as rainfall
measurement devices: if it rains, the wiper is put on; depending on the degree of rainfall, the
frequency of the wipers is increased.

In this way the cars form a dynamic sensor network. In order to transform the raw measurements
(Wiper (W) frequencies) into rainfall (R) values, a functional relationship (WR-relationship) has to be
determined. This relationship will be depending on the car type, the inclination of the windshield, but
also on other factors like the driver, the location (under tree, in free space), just to name a few. Thus,
the idea is to determine the WR-relationship in an iterative and integrated fashion in a sensor
network, consisting of the cars and stationary recording rain gauges: As soon as a car comes into the
vicinity of a station or another car, it is able to incrementally adapt and correct its current WR-
relationship (see Figure 1). The Figure visualizes qualitatively, how the quality of the WR-relationship
is increasing, when a car exchanges information with a station, or another car.
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Figure 1: principle of cooperative adaptation of W-R-relationships

In a preliminary simulation study it could been shown that the accuracies achievable using an
assumed equipment rate of 4% of all the cars the rainfall estimates determined with the cars moving
car network outperform the values determined using traditional methods (Haberlandt & Sester
2010). Figure 2 shows the standard deviation of the rainfall measured in a catchment area using the
sensor network. It is clearly visible that in the vicinity of the stations the quality of the rainfall
measurements is very high and that this quality is propagated along the most frequently used roads
(Schulze et al., 2010).
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Figure 2: Quality of rainfall measurement.

2.2 Distributed delineation of boundaries of spatial phenomena

Distributed processing can also be used for the scenario that moving sensors have the task to
delineate the boundary of a spatial phenomenon, such as an oil spill or the moving area of hill slide.
To this end, a distributed algorithm has been proposed, which is able to iteratively approximate the
boundary of the phenomenon (Sester, 2009). The algorithm uses the concept of Kohonen Feature
Maps (Kohonen, 1982): sensors communicate in their local environment and try to find the boundary
of the phenomenon by individually checking pairs of adjacent sensors. A boundary is identified, if
both sensors measure different values, i.e. one sensor measures the existence of the phenomenon,
the other sensor does not. In this case, the boundary is somewhere between the two sensors. To
better delineate the boundary, the sensors move towards each other; in order to better sample the
boundary, at the same time, these two sensors also drag the sensors in their local neighborhood into
that direction, thus leading to the fact that more sensors aggregate on both sides of the boundary.
This principle is shown in the following Figure 3: sensors A and B detect the boundary in between
them; they move towards each other, dragging their neighbors with them.



Figure 3: Principle of iterative adaptation of sensors (circles) to phenomenon (polygon)

Figure 4 shows an application where a set of sensors has to detect a concave phenomenon. The
sensors are spread out in a random fashion. On the left is the initial situation of the spatial
phenomenon in light blue, whose boundary has to be approximated; the point sensors are randomly
distributed in the beginning and they are measuring the phenomenon (blue) or not (red). If they are
exactly on the boundary, they are shown in yellow. The figure in the middle shows the movements of
the sensors during the iterative adjustment, and the situation on the right shows the situation after
the adaptation. It clearly indicates that the boundary is nicely approximated by many sensors. Some
sensors are still in the middle of the phenomenon — this is due to the fact that they were not in the
communication range of neighboring sensors and thus were not dragged towards the boundary.

Figure 4: Detection of the boundary of a phenomenon: areal phenomenon and initial sensor

distribution (left), movement of neurons (middle) and approximate boundary points in yellow (right).



2.3 New Maps

In the context of sensor networks and the massive availability of environmental data, a new, dynamic
understanding of digital maps for recording these data is needed. The automatic processing of these
masses of distributed sensor data demands for adequate representation forms. A future aim is a
system, which — depending on the given task — assembles, analyzes and interprets the given data and
thus derives higher level constructs from it (Brenner, 2006). In this way, a self adapting map is
created, which knows its quality and its application ranges.

This also includes the fact that the maps of the future might not only be readable by humans, but
also contain elements that make them readily usable by machines. Thus the map features have to be
close to the interpretation capabilities of the machine. Only then an immediate and exact
identification of the correspondence of map features and features recognized in the environment is
possible for the machine. This principle is being applied in robotics, where often so called occupancy
grids are used to determine areas, where an autonomous system is able to move around. Brenner
(2009) extends this concept by introducing higher level features than just pixels. These features,
vertical poles, are distinct features in a road environment and can easily be extracted with automatic

processes from Lidar data (see Figure 5).

Figure 5: Automatically extracted poles (vertical structures) from a Lidar Point cloud (Brenner, 2009).

These features can be used for exact positioning of a vehicle in the environment. Figure 6 shows a
map with the achievable accuracies using the poles as ground-control features: the distribution and
density of the poles directly influences the quality (Hofmann et al., 2011). Along highways, there are
typically no poles, thus, no position can be determined using this method. However, in city areas,
accuracies in the low dm-range can be achieved. Thus, such a system can ideally complement GPS,
which has problems in dense city areas and performs well in highway areas with free sky view.
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Figure 6: Achievable accuracies using vertical poles as positioning references.

3 Consequences for future mapping and maps

The ever increasing number of sensors leads to a situation where we have a lot of measurements,
even related to the same spatial situation. The data will be heterogeneous, of different quality,
temporal and spatial resolution, different scale, inhomogeneous spatial coverage and of different
type, ranging from low-level information to high-level data, such as raw Lidar points to GIS-data.
There are several benefits of such a situation, e.g. data can be incrementally refined and enriched
using sensors with complementary capabilities. Also, repetitive measurements can lead to an
increase in accuracy of the data and an immediate quality check. Having many sensors available leads
to redundancy and thus to fault tolerance, as the system does not depend on one sensor alone. Also,
scalability can be achieved. The information is directly available, as soon as it is acquired, and can be
used in an instant fashion. Using the concept of a dynamic map, which is able to adapt its contents to
the applications, leads to a high degree of data reuse.

There are new challenges which pose new demands on mapping, which can only be met with new
sensors and sensor integration: already now, but even more so in the near future, we will have new
users, but also new applications which demand for high resolution environmental data, in geometric,
temporal and thematic dimension, and in different abstraction hierarchies.

More and more, we see different users of the maps: whereas previously, map usage was mainly
targeted at humans, nowadays also automatic or assisted systems are relying on accurate and
adequate maps. New applications — both on the low end side in terms of Apps for Smartphones, but
also on the high end side in assisted system, are coming to the market. For a navigation system to
operate satisfactory the geometric accuracy has to be in the dm-range in order to allow for precise
driving directions, also the timeliness has to be very high. An autonomous robot has to have sensors
to capture the current local situation and map it to the knowledge encoded in the map. To this end,



the dynamics of the environment has to be integrated in the map, on order to allow the system to
interpret and explain the sensed features has available.

Geosensor networks have the potential to serve these needs. Besides the developments in sensor
technology, also new methods for data processing have to be developed, as well as new data
structures to adequately manage the data. Besides storing the mere information, also information
about its quality has to be captured and processed. Also, methods and processes to handle and
respect privacy have to be developed.
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