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ABSTRACT:

So far, most spatial data infrastructures (SDIs) provide services for the generation of fixed-scale maps only. In a project funded by the
German Ministry of Education and Science, the potential of grid computing for the deployment of geographic data processing services
beyond this standard case is investigated. One of the services to be developed in this context is the generalization of 3D building
models. This problem is important for almost all applications that are concerned with city models (e.g. environmental analysis or
disaster management) because data sets are often quite large in this context and their size has to be reduced without losing relevant
information. In order to deal with the complexity of the task, it is divided into three steps: feature extraction, building of a generalization
tree and processing of a specific generalization request. Grammars are used in the description of all these steps to ensure the high degree
of flexibility that is needed for a generic generalization framework; the maximum distinguishable feature size is the control parameter
that serves as a link between the different components and drives the generalization process. In the paper, an architecture is presented
for a system that is based on these approaches. Because the system is going to be deployed as a service within a computing grid,
parallelization is an important issue to make optimal use of the computing power offered by the grid.

1 INTRODUCTION

Because of the distributed nature of the underlying data, many ap-
plications in geographic data processing are very suitable for par-
allelization. Therefore, a grid computing-based approach promises
significant gains in performance in the deployment of such appli-
cations as services in a spatial data infrastructure (SDI). Beyond
their standard task of providing fixed-scale maps, SDIs can offer
more complex processing services with the help of grid technol-
ogy. To investigate the potential of grid computing in SDIs, the
German Ministry of Education and Science funds the ”GDI-Grid”
project.

As a part of this project, a service for the generalization of 3D
building models is implemented. This problem has drawn the
attention of researchers in recent years because it is important
in fields like visualization of city models, environmental analyses
and disaster management where there are large data sets that have
to be reduced in size before they can be processed. Two scenarios
from the last two of these fields are covered in the project: the
first one is concerned with noise, the second one with flooding
simulation.

Figure 1: Workflow of the generalization service

In this paper, an architecture for this service is presented. The
first section gives an introduction to the problem and an analysis
of the difficulties that occurred in preceding approaches. In order
to cope with these difficulties, the problem is split up into stages
with intermediate representations as illustrated in figure 1:

• Feature extraction: A semantically enriched representa-

tion – an instance of the modeling grammar – is extracted
from the input data set(s). This process is delegated to a
separate task.

• In the second step, a generalization strategy is used to
transform the model into a generative derivation tree. This
tree is represented by a sequence of generalization (or rather
refinement) rules from the generalization grammar.

• Finally, the desired output representation is generated by ex-
ecuting a generalization request. This request can specify,
for example, individual resolutions for special features but it
may also introduce local changes in the generalization strat-
egy.

Figure 2: Illustration of the generalization workflow

Figure 2 illustrates the first steps: In the generalization strategy,
the mansard roof is modeled as a gabled roof at more coarse res-
olutions. The relation between roof and body of the house makes
sure that the split of the roof surfaces is propagated to the gable
walls.



There are five possibilities in this approach that can be used to
develop application-specific generalization schemes: The two in-
termediate representations and the three transformations shown
in figure 1 can be customized to fit the user’s demands. The in-
termediate representations and the transformations can be stored
in parts or as a whole to be used in other contexts (reusability).

2 3D BUILDING MODELING AND GENERALIZATION

Generalization is about reducing the amount of data to be pro-
cessed without losing relevant information. The problem, how-
ever, is that the relevance of a feature can vary significantly for
different applications. Additionally, different features like walls
and roofs require different strategies for the generalization of their
shape.

So far, most proposals to to deal with the problem of 3D gener-
alization like (Glander and Döllner, 2007) and (Rau et al., 2006)
work well on special kinds of building models and limited ranges
of resolution only. There are some more general approaches as
(Thiemann, 2003) but so far, most of them implicitly introduce
limitations to the features that can be modeled and some are quite
demanding in computation time. Additionally, the introduction
of application-specific generalization strategies is not supported
in most of them.

Using grammars for the definition of the processes in all stages
offers a maximum of flexibility: Only the most basic concepts –
the rule interpreter, geometry, and parallelization modules – are
realized in the core modules while the rest is described in gram-
mars. Each of the grammars for the different stages has a layered
structure: The service offers a set of standard rules and features
and the user can add or replace rules and features to make adjust-
ments for the application at hand. In more complex scenarios,
there may be several different layers for domains, applications
and special tasks. A basic set of rules can be found in (Sester and
Klein, 1999).

The term feature refers to a semantic entity associated with a ge-
ometric shape in this paper. The most important semantic prop-
erties of a feature are its type and associated metadata objects.
In the modeling and generalization grammars, the symbols are
features. More details on this subject can be found in section 3.2.

In the generalization grammar, every rule is assigned a general-
ization radius %. After the application of the rule, the geometry
of the rule’s left hand feature is supposed to be completely con-
tained in a buffer of % around the corresponding object in the real
world and vice versa (Hausdorff distance): % is the radius of un-
certainty around the feature that remains after the application of
the rule.

A representation with a maximum feature size of R can then be
derived by applying all rules with % ≥ R. This concept is sim-
ilar to the one introduced in (Brenner and Sester, 2005) for 2D
generalization.

One of the most important reasons why the generalization of 3D
building models is such a complex problem is that in order to get
proper results, a semantically rich representation of the data is
needed. Most models that are available at the moment are, how-
ever, not given in such a representation. Therefore, the problem
of generalization implicitly contains the task of feature recogni-
tion which is generally considered to be a very hard problem. For
this reason, that problem is covered in a separate service with an
independent set of rules. Approaches to solve this problem with

grammars can be found in (Ripperda and Brenner, 2006) (for fa-
cade reconstruction) and in (Dörschlag et al., 2007). Data sets
in the CityGML format introduced in (Kolbe et al., 2005) offer
semantic information but they have to be preprocessed as well to
get a generative model for generalization.

3 A SEMANTICALLY ENHANCED SHAPE GRAMMAR

3.1 Geometry

The basis of the system is the underlying geometry model. In the
implementation, this model is a polygon mesh that supports basic
topological operations. In order to enhance its efficiency, topo-
logical properties except the identity of vertices are not tested
automatically: The computation of topological relations like in-
tersections has to be triggered explicitly. An additional advantage
of this design is that it supports the definition of transactions: a
valid state can be transformed into another valid state through a
set of invalid ones.

Additionally, the definition of ”invalid” states depends greatly
on the application. Non-manifold meshes are, for example, not
acceptable in applications that are concerned with solid shapes
only (like in volume calculations) while they are perfectly valid
in other scenarios like visualization or the calculation of occlu-
sions in the planning of mobile antenna locations. A result of this
observation is that the data structure must be tolerant with respect
to geometric and topological properties.

A geometry model that supports all CSG modeling operations
has to be able to compute all Boolean operators on the polygon
mesh. Because the implementation of these operations is a te-
dious task (especially for non-manifold meshes), the first versions
of the system will probably support only a limited range of oper-
ations – the calculation of intersections, for example, is left to the
application.

3.2 Features

The modeling strategy is similar to the CGA shape architecture
introduced in (Müller et al., 2006). The symbols of the grammar
are features (shapes in CGA). Beyond the information attached
to shapes in CGA (geometry and a label), the features contain
additional semantic information: Each feature is associated to a
metadata object that stores application-specific properties and its
generalization interval % in the generalization grammar.

Additionally, features have types. These types are used in differ-
ent ways: First, the type of metadata objects associated with a
feature can be chosen according to its type (addresses are, for ex-
ample, assigned to houses). Another useful effect of these types
is that a class system with the well-known useful concepts of in-
heritance, composition etc. can be introduced.

This class system includes encapsulation: A feature’s properties
(especially its geometry) can only be manipulated through the
methods offered by the feature. This way, every feature has con-
trol over all possible changes that may happen to it.

Figure 3 shows a simple rule and a part of the feature class hi-
erarchy. It states that a BuildingPart feature consists of a body
and a roof. The types Body and Roof are abstract; concrete types
may be the Gabled roof or the general polygonal body. Note that
a gabled roof on a general polygonal body causes an inconsis-
tency because the gabled roof’s initialization (constructor) needs
the methods from the rectangular body that give access to the
parallel side faces.



Figure 3: A rule template with inheritance and conflicts

As in (Müller et al., 2006), arbitrarily oriented bounding boxes
are stored for the features. These bounding boxes define a local
coordinate system: Two vectors in the base plane and the normal
vector describe its rotation (and perhaps scaling factors); an offset
vector defines the origin.

The bounds can be used to treat the feature hierarchy as a kind of
R-tree: If a feature is modeled as a child of another feature, then
its bounds are first calculated in its own system of orientation.
The resulting bounding box is then added to the bounding box
of its parent feature (in the parent’s orientation). If the parent’s
bounds had to be extended in this process, the parent’s parent has
to be notified – up to the root feature if necessary. The advantage
of this system is that – if the modeling rules are adequate – a
natural and usually quite efficient search structure is given on the
data.

Another interesting point is that this concept offers a possible way
of guiding a feature extraction algorithm: One might try to ex-
periment with quality measurements taken from the R-tree data
structure – like minimal overlap or minimal additional space cov-
ered – when the decision has to be made how features should be
grouped (for example if a chimney on a roof top should be treated
as a child feature of one of the roof surfaces or as an independent
feature on the roof).

In the first version of the service, the feature and rule types are go-
ing to be implemented as classes in the source code. Derivations
can be added by subclassing from the feature and rule types de-
fined in the default set. In later versions, a system with dynamic
typification of rules and features may be added.

3.3 Rules

The rules define transitions from one configuration of the deriva-
tion to another. Such a configurationis represented by the tree of
features and subfeatures derived up to the point at which a rule is
executed.

All rules may have only one feature on their left-hand side. This
restriction is introduced to control in which parts of the model the
rule can have effects: A rule can only modify (and generate) child
features of its left-hand feature (including the feature itself). A
rule that affects more than one feature is usually associated with
the first common ancestor of all features involved.

If a feature is linked to another one by a relation, a change to this
feature can make changes to the related features necessary. The
generalization strategy has to make sure that these side-effects do
not lead to changes outside the rule’s radius of influence in the
generalization grammar.

Rules can be interpreted as executable leaves in the feature tree
inserted as children of their left-hand features. When a rule is
applied, it is removed from the tree and its right-hand side is ex-
ecuted. In the evaluation of the right-hand side, new features and
rules can be added to the configuration.

The features store references to the rules that depend on them;
in the generalization grammar, the generalization radius of the
rules is stored together with the rule. This way, all active rules –
the rules that can be executed in the current configuration – are
available. In the generalization grammar, these references to the
active rules are also collected in a priority queue ordered by the
generalization radius.

If the generalization request states nothing else, the rules are sim-
ply executed in the order given by this priority queue until the
required level of detail is reached. The request can be customized
in a generalization request by skipping rules or by executing rules
before their regular turn has come.

Because rules in the generalization grammar can store references
to the rules in the modeling grammar from which they were cre-
ated, the generalization request can even introduce changes to the
generalization strategy by replacing rules according to the origi-
nal rules from the model.

Rules can also add new rules to the current configuration. This
is especially useful in the generalization process: It offers the
possibility of procedural generalization.

Figure 4: Procedural model of a circle

Figure 4 shows an example: the modeling of a circle for a polygon-
based client through regular inner (or outer) polygons. Whenever
the maximum tolerable error drops below the distance between
circle and polygon, the shape of the current feature is replaced
by a new polygon with more sides and a new rule is added that
prepares the next step if the resolution drops even further. At a
resolution of r1, the generalization system detects that a circle
has to be modeled. As only polygons are returned, the feature
is generated with a rectangle as its associated geometry. Addi-
tionally, a rule is created that at a resolution of r2, the rectangle
has to be replaced by a hexagon and so on. In the drawing, rules
are marked by the gear symbol while features are represented as
circles.

3.4 The Modeling and Generalization Grammars

There is an infinite number of ways in which a given feature may
be generalized; the choice of the most appropriate approach de-
pends on the application. The generalization strategy defines the
transformation of a semantically annotated model into a general-
ization tree.

The modeling language is defined in such a way that as much se-
mantic information as possible is present in the model and that
there are sufficient degrees of freedom to define custom general-
ization strategies.

Consider, for example, a mansard roof. In the modeling gram-
mar, such a roof may be introduced directly as an addition to the



Figure 5: Modeling tree for a mansard-roof house

building’s torso as illustrated in figure 5. A generalization strat-
egy could, for example, transform this first derivation (indicated
by the red box in the modeling tree) into a generalization tree like
the one shown in figure 6.

Figure 6: Part of a modeling tree transformed for generalization

The dormers are added in a further step, for example at a radius of
3m. As figure 6 shows, the mansard roof is modeled as a gabled
roof at that resolution, so the dormers’ base surfaces will have to
be adjusted to fit on the roof’s side surface. When the roof surface
is split, the dormers will assume their original shape.

In order to allow such generalization strategies, it must be pos-
sible to change the basic parameters of a feature and sometimes
even its type in the generalization process: The lower roof sur-
face of a more pronounced mansard roof may, for example, be
modeled as a wall at lower resolutions. In this case, the dormers
on this surface would first appear as windows.

The basic tasks of a generalization strategy are the setting of the
resolution parameters and the calculation of the bounding boxes
for the features.

4 RELATIONS AND SPECIAL FEATURES

4.1 Relations and Constraints

Relations are used to model situations where properties of differ-
ent objects depend on each other. The features whose relations
are modeled will be called the clients of that relation. The most
common relations are metadata-based relations, patterns, and ge-
ometric relations like intersections or alignments.

Some relations can be associated with special features. The inter-
section of two (or more) features, for example, can be modeled
by a special feature that is associated with the intersection of the
geometry of its client features.

Constraints are conditions that have to be satisfied in a valid
instance of a model. Many of them can be modeled by rela-
tions. The The most basic topological constraint states that fea-
tures have to fit without holes (continuously). This means that
parts of the features have to be identical like the sides of the walls
in figure 7. This identification of feature parts is indicated by the
”=” sign in the constraint link.

Figure 7: Constraints in a polygonal arrangement of walls

Such a constraint also occurs in figure 6: The roof has to fit on the
body of the house without holes between them. When the gabled
roof is split to form the mansard roof at a resolution of 0.8 meters
in the example, the relation requests a deformation of the gable
wall surfaces that makes sure that the roof still fits.

Another group of constraints is concerned with alignments: Parts
of a feature may be defined to be aligned with directions de-
fined in other features. These constraints occur especially in the
context of intersections (see chapter 4.3). The basic alignments
are parallel and perpendicular alignment; for the parallel align-
ment, a specific, minimal or maximal distance may be required.

Many constraints can be realized implicitly (for example in the
constructors of features) but in the generalization process, fea-
tures may change their shape or even their type. In such cases,
the relational features can serve as safeguards and moderators.

4.2 Patterns and Collections

One of the most common relations between features is their ar-
rangement in a pattern, for example along a line or in a matrix.
In such a case, the features can be accumulated in collection fea-
tures.

The building in figure 8 shows a case of nested collections: The
linear array of five dormers is present three times on the building’s
roof.

Figure 8: Repetition of dormers

Using collections is the precondition for the generalization tech-
niques of typification – in which n objects of the same type are
represented by m < n objects of the same type – and aggregation
where n objects of the same type are merged into one.



The example shows another important point about collection fea-
tures: If the linear sets of five dormers in the yellow boxes are
modeled as five different dormers each, then they will appear
much later in a generalization process because the set of dorm-
ers has a width of several meters while the maximum extend of
an individual dormer is probably not much more than one meter
in any direction.

The extraction of collection features from unordered data is a
complex problem but necessary to get satisfying generalizations,
especially in visualization. In (Heinzle and Anders, 2007), for
example, an approach is presented to find patterns in road net-
works.

4.3 Intersections

The computation of intersections of polygon meshes is a com-
plex geometric problem. Therefore, they are only computed on
demand. In the modeling process, there are two general cases
where intersections are important: For consistency checks and to
localize features that ”live” on an intersection of other features
(like a turret at the corner of two adjacent walls).

For consistency checks, intersections can be modeled as simple
geometric constraints that the geometry of a given feature should
not be intersected by another feature.

Another case in which intersections are important is the situation
that a feature ”resides” on the intersection of other features. In
this case, the intersection has to be known in order to place the
new feature correctly.

Figure 9: Feature defined on an intersection

Figure 9 illustrates this situation: The bay is aligned to the cor-
ner formed by the intersection of the walls in the two building
sections.

Figure 10: Model of a feature defined on an intersection

Figure 10 shows a derivation tree for a generalization of the sit-
uation in figure 9: The intersection is ignored (this is, of course,
only possible if no structures inside the building are relevant and
the inner surfaces do not disturb the calculations) until its geome-
try (symbolized by the red rhombus in the feature tree) is needed
to place the bay at a generalization radius of 2.5 meters. If one of
the walls is shifted during the generalization process, the bay has
to be moved along with it.

If there are no inconsistencies in the model that arise from inter-
secting features, these intersections do not have to be modeled
explicitly. This reduces the complexity of the modeling process.

In the generalization process, however, intersections and other
side-effects of displacements and simplifications of features are
a constant nuisance because they can lead to inconsistencies that
are difficult to detect: In figure 11, features A and B intersect
because of the deformation of feature A in the generalization.

Figure 11: Intersection during generalization

In order to deal with these problems, intersections of objects have
to be established if the generalization process involves the defor-
mation or displacement of a feature. The bounding boxes help
to reduce the number of features that may intersect with the cur-
rently modified feature.

It is up to the generalization strategy how it deals with these in-
tersections. Some possible solutions are to accept the intersection
without any changes, to merge A and B into one feature, or to
shift A or B or both in such a way that there is no intersection.

4.4 Parallelization

The issue of parallelization is addressed by the introduction of
special split rules. These rules are connected to methods in the
source code that trigger a tiling of the geometry model and dis-
patch the execution of all rules applied to features within a tile to
a separate process for each tile.

In the splitting process, the generalization interval for each rule
is a great help: It defines the (3D) area in which the different tiles
can overlap. If needed, special moderator features can be defined
in the area where the tiles overlap.

These features should be defined in such a way that as few refer-
ences from the intersection features to their clients are needed in
the generalization process. This can be done by copying all rules
that affect the moderator feature to all processes that work with
it.

5 FEATURE DETECTION

Feature detection is a challenging problem in its own right. The
focus of the implementation of the service will therefore be on
the generalization step itself and on the development of models
that are convenient for user-defined generalization.

The feature detection process can cover the whole range of se-
mantic expressiveness: from raw laser scanner data via purely ge-
ometric shape representations up to highly expressive CityGML
models.

The modeling grammar defines the valid representations for the
input of the generalization service. For this reason, the feature
extraction may consist of a transformation from one semantically
annotated representation to another.



6 SYSTEM ARCHITECTURE

Figure 12 shows a diagram of the components of the system:

Figure 12: Components of the System

The central part of the system is the rule interpreter. The com-
plexity and flexibility of the rule interpreter define how much ef-
fort will be needed for the introduction of custom feature types
and rules.

The rule interpreter needs access to the whole underlying data
model. This model consists of a geometry engine and modules
for the handling of metadata and parallelization.

The feature management engine is responsible for the adminis-
tration of the current configuration and controls access to the as-
sociated metadata objects.

The geometry module is needed to execute the parts of the rules
that deal with the manipulation of geometry: The generative mod-
eling component offers utility features like special shapes and
higher-level manipulation operators that are not provided by the
basic polygon model itself.

The sets of transformation rules responsible for feature extrac-
tion, specification of generalization strategies and the execu-
tion of generalization requests define the transitions between
the original representation, the intermediate formats and the final
output.

The modeling grammar describes a semantically enhanced rep-
resentation of the features; the generalization strategy prepares
the model for generalization by producing a derivation tree – an
instance of the generalization grammar. A generalization re-
quest specifies how the final output is generated as the product of
a traversal of this tree.

7 CONCLUSIONS AND FUTURE WORK

In this paper, a strategy has been sketched for the development of
a system for the generalization of 3D building models. To avoid
the difficulties of earlier approaches, the problem is split into the
stages of feature extraction, application of a generalization strat-
egy and execution of a generalization request.

A feature grammar with built-in resolution management and as-
pects of the R-tree data structure is introduced as a basis for the
intermediate semantically enhanced representations of the data.

This paper gives an overview of the aspects that are going to be
included in the generalization service that is developed in the
course of the GDI grid project. So far, there is a model for the
architecture of the service as well as the first prototype of the
geometry module.

In the next step, a framework for the implementation of the gram-
mars is going to be built. Using this framework, a set of default
rules for modeling and generalization are developed.
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