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Summary: In recent years national mapping agencies have increasingly integrated automatic map 
generalization methods in their production lines. This raises the question of how to assess and assure 
the quality of mapping products such as digital landscape models. Generalization must not only en-
sure specified standards for an output scale, but also needs to keep semantics as similar as possible 
under these given requirements. In order to allow for objective comparisons of different generaliza-
tion results we introduce a semantic distance measure. We present results that optimize this measure 
subject to constraints reflecting database specifications and show how this measure can be used to 
compare the results of different methods, including exact and heuristic approaches. 
 
Zusammenfassung: Gewährleistung logischer Konsistenz und semantischer Genauigkeit in der 
Generalisierung. In zunehmendem Maß werden automatische Generalisierungsverfahren für die 
Produktion amtlicher digitaler Landschaftsmodelle eingesetzt. Dadurch entsteht ein wachsender 
Bedarf nach Verfahren zur Qualitätskontrolle und Qualitätssicherung. Generalisierung muss nicht nur 
für den Zielmaßstab definierte Standards realisieren, sondern dabei auch die Semantik repräsentierter 
Objekte nach Möglichkeit erhalten. Wir definieren ein semantisches Distanzmaß, um einen objekti-
ven Vergleich unterschiedlicher Generalisierungsergebnisse zu ermöglichen, präsentieren Ergebnisse, 
die unter Nebenbedingungen aus existierenden Spezifikationen hinsichtlich dieses Maßes optimal 
sind, und zeigen Vergleichsmöglichkeiten von Ergebnissen exakter und heuristischer Verfahren auf. 
 
1 Introduction 
According to MORRISON (1995) there are seven elements of spatial data quality: Lineage, positional 
accuracy, attribute accuracy, completeness, logical consistency, semantic accuracy and temporal 
information. Most of them are affected by map generalization, for example, when applying displace-
ment or simplification algorithms to lines, their positional accuracy is reduced; selection of objects 
affects completeness. The assessment and assurance of these quality criteria are important problems, 
especially, when heuristic generalization methods are applied. In this article we discuss how to assure 
semantic accuracy and logical consistency, that is, compliance with database specifications. Follow-
ing this aim, we have developed a method for area aggregation by mixed-integer programming (HAU-
NERT & WOLFF 2006). This method has technically been presented in sufficient depth: we have 
proven the NP-hardness of the problem, tested multiple optimization criteria (HAUNERT 2007a), and 
developed specialized heuristics to obtain a better performance (HAUNERT 2007b). This method yields 
very good results, especially compared with commonly used iterative approaches, that locally merge 
too small objects with their best compatible neighbors (Haunert2007b). However, we have not suffi-
ciently elaborated the usefulness of this method for quality assurance and quality assessment. This 
article focuses on these issues. 
The issue of semantic accuracy is especially relevant, when map objects change their classes. In map 
generalization this happens in two cases: class abstraction and object aggregation. The latter case 
leads to class changes, when multiple objects of different classes are replaced by a single composite 
object. Class abstraction means, for example, to replace all churches and all post offices by objects of 
type public building. This only needs to be done one time by an expert on a conceptual level and thus 
it can easily be implemented. In contrast, object aggregation is a labor-intensive problem that needs to 
be automated. When masses of data are processed, also the quality assessment becomes difficult. 
CHENG & LI (2006) suggest to measure the semantic accuracy according to the area that changes its 
class in generalization. YAOLIN et al. (2002) introduce a symmetric semantic similarity matrix to 
compare object types of areas before and after reclassification. RODRÍGUEZ & EGENHOFER (2004) 

 



propose an asymmetric similarity measure. Similarity values are derived from the given data model, 
taking class hierarchies into account and comparing attribute definitions. AHLQUIST (2005) uses a 
similarity measure based on fuzzy membership functions to assess land cover changes over time. 
The quality of map generalization is normally defined by comparison of input and output data sets 
(BARD 2004; FRANK & ESTER 2006). These methods mainly depend on measures that characterize the 
shapes of objects and their spatial relationships. Generally, observed changes are penalized in the 
assessment. However, generalization naturally cannot always preserve the original situation: there are 
driving forces to change the data set, for example, minimal allowed sizes for the target scale. Thus, 
we compare the results of heuristic generalization methods with results that are optimal under given 
constraints. These results can be obtained with our mixed-integer program. Though this is only possi-
ble for small samples, these offer new possibilities to detect shortcomings of heuristics. 
In the sequence of the article, we first explain our conceptions of logical consistency (Section 2) and 
semantic accuracy (Section 3) and then present our approach to assure and assess these elements of 
quality (Section 4). 
 
2 Logical Consistency 
KAINZ (1995) defines logical consistency as follows: 

“A spatial data set is said to be logically consistent when it complies with the structural character-
istics of the selected data model and when it is compatible with the attribute constraints defined for 
the set.” 

The data model in our work is a planar subdivision, that is, an exhaustive coverage of the plane by 
areas that must not overlap. This representation is often used for land cover data in topographic data-
bases. The generalization of such data sets is a well known problem (GALANDA 2003). Often addi-
tional requirements are defined, for example, the shapes of features need to be contiguous. Formally it 
means that for each two points in a contiguous area, there is a connecting path that is totally contained 
in the area. These structural requirements are independent of scale and we need to ensure their preser-
vation during generalization. In contrast, requirements on attributes and geometries are often different 
for the input and output scale, thus we need to change the map. Tab. 1 compares the definitions of 
forest areas in three different countries. In each example, a minimal size is defined as criterion for 
selection, which naturally increases for smaller scales. The term “Guaranteed size”, which is used in 
the Canadian specifications, unmistakably states that the defined thresholds must not be violated in 
any case. This is described accordingly in the other specifications. These strong claims are needed to 
educe the influence of subjectivity in map generalization and to provide standardized map products. r 

Germany 
ATKIS 

(ADV 2003)

Canada 
National Topographic Database 
(NATURAL RESOURCES CANADA 

1996)

Australia 
National Topographic Database 
(GEOSCIENCE AUSTRALIA 2006)

Wald, Forst Wooded Area Forest or Shrub
„Fläche, die mit Forstpflan-
zen (Waldbäume und Wald-
sträucher) bestockt ist.“

„An area of at least 35% covered 
by trees or shrubs having a 
minimum height of 2 m.“

„An area of land with woody 
vegetation greater than 10% 
foliage cover (includes trees and 
shrubs).“

scale selection criterion scale selection criterion scale selection criterion
1:25k area ≥ 0,1 ha 1:25k area ≥ 0.25ha
1:50k area ≥ 1 ha

1:50k area ≥ 1ha AND 
width ≥ 50m 1:100k area ≥ 4ha

1:250k area ≥ 40 ha
1:1000k area ≥ 500 ha

1:250k
 

area ≥ 25ha AND 
width ≥ 250m

1:250k area ≥ 25ha

Tab. 1: Selection criteria for forest areas in three different national databases. The Canadian 
specifications use the term “Guaranteed size”. In the Australian specifications this is called 
“Minimum size for inclusion”. 

 



Since areas below threshold in the target scale are not allowed, they need to be aggregated with others 
in order to keep the coverage exhaustive. As all other aims of generalization need to be subordinated, 
class changes need to be accepted, for example, if there is no neighbor of the same class. Formally, 
we define the area thresholds for different classes by θ : Γ → R+, with Γ being the set of all classes. 
The term constraint fits well for the requirements given by database specifications. However, this 
must not be mixed up with constraints that allow for a gradual degree of satisfaction. Most research-
ers in the field of map generalization point out that constraints are often conflicting and compromises 
need to be found (WEIBEL & DUTTON 1998; HARRIE 1999). As constraints that ensure logical consis-
tency do not allow any compromise, we distinguish hard constraints and soft constraints. 
If the input data set is logically consistent, we normally can define simple generalization algorithms 
that produce logically consistent results. For instance, we can apply merge or collapse procedures to 
resolve size and proximity conflicts (Bader & Weibel 1997; HAUNERT & SESTER 2007). However, at 
this early stage of our discussion we should not commit too much to particular algorithms. Database 
specifications define the feasibility of solutions, but there remains much freedom in deciding for 
different options. Thus, we need to formalize additional aims of generalization. So far we have inter-
preted the selection criteria as a prohibition to keep small areas in the target scale. Additionally, we 
can understand the given thresholds as instruction to keep areas that have sufficient size, meaning that 
their classes must not be changed. Our method can simply be modified to respect this interpretation 
(Haunert & Wolff 2006). In this sense we also take the quality element completeness into account. 
 
3 Semantic Accuracy 
SALGÉ (1995) gives the following definition of semantic accuracy: 

“The purpose of Semantic Accuracy is to describe the semantic distance between geographical ob-
jects and the perceived reality.” 

Given a real value s (between 0 and 1) that measures the semantic similarity of two classes, for exam-
ple, as it can be obtained with the methods proposed by YAOLIN et al. (2002), we can define the se-
mantic distance simply as 1-s. Alternatively, a distance matrix can be defined by experts. Hierarchies 
defined in the data model and textual descriptions (as given in Tab. 1) need to be exploited for this 
task. Tab. 2 shows a distance matrix that was generated with this approach. Dividing each value with 
the maximum distance, we generally can normalize the distance measure, such that we obtain values 
between 0 and 1. High values correspond to semantically dissimilar classes like, for example, settle-
ment and grassland. Both, farmland and grassland are classes of cultivated vegetation, thus they are 
semantically close. We would rather accept a change of a grassland area into farmland than into set-
tlement. Thus, we define the semantic accuracy as the average distance between the area’s classes 
before and after generalization. Let V be the set of all areas in the input map, w : V → R+ denote the 
sizes of areas, γ : V→Γ their original classes, γ' : V → Γ their new classes, and d : Γ2 → R0

+ denote the 
semantic distance between classes, we globally measure the semantic distance by 
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In the same way, we can measure the semantic distance for a single area in the input data set, for a 
single area in the output data set, or for all areas of a certain class. 
 

original class \ new class Settlement Farmland Grassland Forest 
Settlement 0 1 1 1
Farmland 1 0 0.2 0.3  
Grassland 1 0.2 0 0.3

Forest 1 0.3 0.3 0

Tab. 2: Semantic distance matrix. Colors and shades are used in Fig. 1 and Fig. 2. 

 



Though the matrix that is shown in Tab. 2 is symmetric, the defined measure is not restricted to sym-
metric distance functions. For example, we can define d(γ1, γ2) = 0.1 and, d(γ2, γ1) = 1 meaning that a 
class change from γ1 to γ2 is more accepted than vice versa. This model is useful, as important classes 
like, for example, water often should not be lost. In order to take semantic changes into account, we 
should not only focus on their classes but also consider their shapes. An area might belong to the class 
forest, but does it also have the shape of a forest? This question is indeed difficult to answer. We 
therefore penalize shapes that have a generally untypical characteristic, that is in our case of vegeta-
tion and settlement areas, shapes that are not geometrically compact. Different measures of compact-
ness have been discussed in an earlier work (HAUNERT 2007a). We ignore this additional criterion in 
the sequence of this article. 
We use the result of the optimization approach as a benchmark for semantic and logical quality, as it 
is able to satisfy our general goal of preserving semantic accuracy in terms of semantic distance. 
 
4 Optimization approach 
The aggregation problem is often approached by iterative merging of pairs of areas, which is done 
until all areas satisfy the area thresholds for the target scale. It is attempted to assure quality by defin-
ing appropriate criteria for the selection of areas that are merged in each iteration (CHENG & LI 2006). 
Our approach is fundamentally different: we are not interested in a sequence of pairwise merge opera-
tions, but only focus on the result, thus approach the problem by optimization. For a review of the 
iterative algorithms and a comparison with our method we refer to HAUNERT (2007b). 

4.1 Problem formulation 
In terms of optimization, each logically consistent map is a feasible solution. The optimal feasible 
solution is the one that minimizes the global semantic distance measure from Section 3. We refer to 
this measure as cost function. The problem is to partition the set V into mutually disjoint subsets 
V1 ( V2 ( ... ( Vk = V, where k is an unknown integer. Each of these subsets defines a composite area 
for the target scale. Thus, for each i = 1 ... k, we define the following hard constraints: 

• there is a single class γi' œ Γ, such that each area v œ Vi receives class γi', that is, γ'(v)= γi'. 
• the composite area has sufficient size, that is, Σv œ Vi w(v) ≥ θ(γi'). 
• the composite area is contiguous. 
• there is an area v œ Vi of unchanged class, i.e., γ'(v) = γ(v). This is referred to as centre. 

The last requirement simply avoids that classes appear in the generalized map, which have not been 
present at all. Generally, we do not assume that the set of centers is given in advance. 

4.2 Approach by mixed-integer programming 
Normally, combinatorial optimization problems in map generalization are approached by meta-
heuristics such as hill-climbing or simulated annealing (WARE & JONES 1998). Several theoretical 
achievements have been made, proving asymptotical convergence of simulated annealing under cer-
tain conditions (HAJEK 1988). However, in practice these do not allow to solve a problem with proof 
of optimality. An exact approach to constrained, combinatorial optimization problems is mixed-
integer programming (PAPADIMITRIOU & STEIGLITZ 1998). Generally, algorithms for the solution of 
mixed-integer programs (MIPs) have an exponential time performance. It is unlikely that we can find 
a polynomial time algorithm, as the aggregation problem is NP-hard. This fact was proven in an 
earlier publication (HAUNERT & WOLFF 2006). We also presented and tested different MIP formula-
tions. Due to the high complexity we were only able to optimally solve small instances (up to 50 
areas) with our exact MIP, but we greatly improved the performance with three heuristics: 

1. A strong definition of contiguity according to ZOLTNERS & ZINHA (1983) is applied, which 
excludes certain non-compact composite areas.  

2. Large areas are fixed as centers, small areas are excluded from the set of potential centers. 
3. Areas with a large distance in between are not merged in the same composite area. 

A further heuristic has been developed that allows to decompose a dataset of arbitrary size into man-
ageable pieces (HAUNERT 2007b). The basic idea of this method is to introduce intermediate scales. 
This is similar to the common iterative approach, but the generalization steps are much bigger. 

 



4.3 Quality assessment 
Without heuristics our optimization approach is too slow for cartographic production. However, as it 
yields the exact optimum for small problem instances, it can be used to test heuristic methods. For 
example, applying heuristics 1-3 we usually obtain results not worse than +10% from optimum. Such 
objective statements about the performance of generalization procedures are very rare in the literature. 
Often results are only visually assessed by test persons, but this approach is questionable, if the spatial 
data set is not only to be used for visualization, but also for statistics or other analyses. On the other 
hand, visualization is still the most important method to assess the quality of spatial data sets. How do 
+10% affect the understanding of the map content? We can only answer this question when visualiz-
ing the results.  
Fig. 1 shows a sample from the German ATKIS data set at scale 1:50.000 (DLM50) with two results 
satisfying specifications for scale 1:250.000 (DLM250): the optimal solution and a solution, which 
was obtained with our heuristic approach. Some classes were changed, in order to end up with con-
tiguous regions of sufficient size. In both cases, this was done in an apparently intelligent way:  In 
order not to loose the settlement area in the lower left of the sample, a small forest area was sacri-
ficed; this results in a connecting bridge to the large settlement. The first solution has an average 
semantic distance of 0.0519 from the input map. For the second solution this cost is 0.0564, which is 
approx. 9% higher. In fact, we observe some differences between both solutions, for example, on the 
rightmost settlement in the input: in the optimal result it changes to forest, but in the second solution 
it changes to farmland. If we check the distance matrix (Tab. 2), which was applied here, we see that 
the same distance of 1 unit is defined for both changes. It turns out that it is relatively difficult to 
visually detect those areas, which were not optimally aggregated by the heuristic method.  
 
   

Fig. 1: A sample from the ATKIS DLM 50 (left), an optimal result satisfying specifications for 
ATKIS DLM 250 (center) and a result of +9% higher costs that was obtained with heuristics 
1-3 (right). Boundaries of regions are bold, colors correspond to classes as shown in Tab. 2. 
 
 
   

 

Fig. 2: Semantic distances for classes of single areas before and after generalization. Left: 
Optimum. Center: Result obtained with heuristics. Right: Difference of both (center-left). 
Grey shades correspond to values as given in Tab. 2. 

 



   

Fig. 3: A sample from the ATKIS DLM 50 (left), a result of the heuristic developed by Hau-
nert (2007b), and a result of a simple iterative merging procedure (right). Both results satisfy 
the specification for the ATKIS DLM 250. 
 

 

   
 

0 0.4  
 

 
 

0.5 -0.5 0  

Fig. 4: Semantic distances for regions in Fig. 3. Left: Result from Fig. 3 (center). Center: 
Result from Fig. 3 (right). Right: Difference of both for areas of input scale (center-left).  
 
 
In order to identify the reason for the difference in costs, we need to visualize the differences of se-
mantic distances for single areas. Fig. 2 displays distances of class changes as grey shades of areas, 
dark grey corresponds to expensive changes. In Fig. 2 (right) we see the difference of both solutions: 
Only for four small areas the reclassification done by the heuristic approach is suboptimal. 
Normally, we do not have the optimal solution to compute the differences as shown in Fig. 2 (right). 
There would not be any reason to apply heuristics, if we generally could exactly solve the problem. 
However, similar to comparisons with optimal solutions for small samples, we can visually compare 
results of different heuristics. Fig. 3 shows a sample that was processed with our heuristic approach 
based on intermediate scales (HAUNERT 2007b) and with the common iterative merging procedure, 

 



which, for example, is explaind by CHENG & LI (2006). Both objectives were considered: class 
similarity and compactness. In each iteration of the merging procedure, the smallest area was assigned 
to one of its neighbours. Each time, this neighbour was selected to minimize the cost function; of 
course, this does not lead to the global optimum. Considering compactness, both procedures 
performed similarly. Using our optimization method, we only obtained an improvement by 2% of 
costs for non-compact shapes. However, we obtained 20% less costs for class changes. In Fig. 3 we 
observe that several settlement areas are lost with the simple iterative procedure. This is due to the 
fact that the algorithm does not foresee consequences of merge actions for further processing steps. 
Thus it is not able to sacrifice small areas in order to safe bigger ones. 
In Fig. 2 we investigated the quality measure for the original areas; these are minimal mapping units 
in the aggregation problem. We can do the same analysis on a less detailed level, that is, for each area 
of the target scale; this is shown in Fig. 4 (left) and (center). A comparison of both results is only 
possible on the highest level of detail, as the regions in both solutions are different. Fig. 4 (right) 
reveals those areas whose semantics were kept more similar with the optimization approach (red) and 
those that were kept more similar with the iterative approach (green). We clearly observe the domi-
nance of red areas. Also we can see that red and green areas are often in vicinity. This confirms our 
assumption that, in contrast to the simple iterative procedure, the optimization approach can sacrifice 
unimportant areas, in order to safe more important ones. 
 
5 Conclusion 
The definition of semantic similarity or distance measures is considered as the key to quality assess-
ment in map generalization. We have shown that, with given semantic distance values for classes, we 
can optimally solve the area aggregation problem in map generalization for small instances. With 
such theoretically proven optima, we have found the “absolute zero” for the degree of badness. This 
allows to make objective, quantitative statements about the performance of heuristic methods. Addi-
tionally, we can compare the performance of heuristics relative to each other. In both cases we have 
seen that shortcomings of heuristic methods can be detected by visualization. In particular, we have 
seen that our heuristic based on intermediate scales results in 20% less cost for class change than the 
simple iterative method. We observed that its relatively good performance is due to its capabilty of 
sacrificing smaller areas, such that bigger ones can be safed. Future research should focus on better 
semantic distance measure, not only considering the class memberships of objects. Semantics can also 
be carried by shapes and patterns of objects. This becomes relevant for other generalization operators, 
such as typification. In fact, pattern recognition techniques are often applied in map generalization. 
However, metrics are missing that measure the semantic distance between patterns. 
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