
OPTIMAL SIMPLIFICATION OF BUILDING GROUND PLANS

Jan-Henrik Haunerta and Alexander Wolffb

aInstitute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany. – jan.haunert@ikg.uni-hannover.de
bFaculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, The Netherlands. – http://www.win.tue.nl/˜awolff

Commission II/3

KEY WORDS: Cartography, Scale, Generalization, Optimization, Buildings, Simplification, NP-hard, Integer programming

ABSTRACT:

This paper presents an optimization approach to simplify building ground plans given by two-dimensional polygons. We define a
simplified building as a subsequence of the original building edges; its vertices are defined by intersections of consecutive (and possibly
extended) edges in the selected sequence. Our aim is to minimize the number of edges subject to a user-defined error tolerance. We
prove that this problem is NP-hard when requiring that the output consists of non-intersecting simple polygons. Thus we cannot hope
for an efficient, exact algorithm. Instead, we propose a heuristic and an integer programming formulation that can be used to solve the
problem with existing optimization software. We discuss results of our algorithms and how to incorporate more sophisticated objective
functions into our model.

1 INTRODUCTION

The simplification of building outlines is a well-known problem
in cartography: in order to produce readable maps at a smaller
scale and to provide data sets at an appropriate level of abstrac-
tion, some details from a given large-scale representation of the
building need to be omitted. In fact the problem is similar to the
classical line simplification problem, but, as buildings are highly
regular man-made structures, special characteristics need to be
considered. Because of this, solutions for both problems have
been developed, on the whole, independently. In this paper, we
present a new optimization approach to the building simplifica-
tion problem, which is inspired by a commonly-used approach
to line simplification. Our motivation to approach the problem
by optimization is, of course, to obtain generalization results of
higher quality compared to other methods. However, there is a
second reason for our approach. With our method it is possible
to apply different optimization objectives and constraints. We as-
sume that comparing the results will help to better understand the
criteria that make up a well-generalized building. This will be
useful for quality assessment – a problem that is considered of
high relevance in the generalization literature (Bard, 2004).

A classical approach to building simplification is based on defin-
ing rules that are successively applied to the polygonal outline
of the building (Staufenbiel, 1973). Kada and Luo (2006) define
parts of simplified buildings as intersections of half-planes, which
are defined by lines that approximate parts of the original build-
ing outline. Mayer (1998) applies mathematical morphology to
simplify a building. Sester (2005) suggests a two-step procedure:
firstly, details are removed by application of rules; secondly, the
simplified building ground plan is optimally adjusted, for exam-
ple, edges are moved to increase the size of a building part. The
second step is based on least squares adjustment. However, the
first step, i.e., the decision about which details to select, has not
been approached by optimization yet.

The common line simplification approach is to select a subse-
quence of vertices from the given polygonal line. Often a simpli-
fied line is considered feasible if it satisfies the bandwidth crite-
rion, that is, if the original line is within an ε-buffer of the sim-
plified line. Subject to this constraint, Deveau (1985) suggested
to minimize the number of vertices. This basic optimization ap-

proach to line simplification has been implemented in commer-
cial GIS software, e.g., FME R©of Safe Software. To find a simpli-
fication with a minimum number of vertices, shortest-path algo-
rithms can be applied to an appropriately defined graph of short-
cuts. Campbell and Cromley (1991) define a general model that
allows to incorporate different optimization criteria. Also con-
straints can be defined. The problem becomes more involved, but
solutions have been found for preservation of angles (Chen et al.,
2005), distances (Gudmundsson et al., 2007), areas (Bose et al.,
2006), and topological relations (de Berg et al., 1998).

This paper presents a new basic approach to building simplifi-
cation that is similar to the general line simplification approach.
The main difference is that we define the simplified outline of a
building by selecting a subsequence of the original edges and not
a subsequence of the vertices. New vertices are introduced at in-
tersections of consecutive edges in the selected sequence. With
this approach we keep the edge slopes fixed and so give consider-
ation to shape regularities. For example, if the original building is
rectilinear, the simplified building will automatically be rectilin-
ear, too. The optimization objective that we apply is very basic,
i.e., we minimize the number of segments in the output subject to
a given distance tolerance. Additionally, we will discuss in detail
how intersections of polygon edges can be avoided.

The structure of the paper is as follows. We start with a for-
mal definition of the problem (Sect. 2) and prove its NP-hardness
(Sect. 3). Section 4 develops a basic method, which can be used
to efficiently solve a relaxed problem. Due to the NP-hardness
of the original problem we turn to integer programming (Sect. 5)
and a heuristic approach (Sect. 6). Finally, we present results of
our methods (Sect. 7).

2 PROBLEM DEFINITION

We consider a building as a counterclockwise oriented sequence
P = (e1, e2, . . . , en) of edges of a simple polygon. Our aim is
to select edges that catch the main characteristics of the building
depending on a user-defined error tolerance. In order to “glue
together” consecutive edges ek and el (with k < l) in the out-
put, we define the L-shape of the edge pair (ek, el) as the union
of two rays, both starting at the intersection point of the straight

373

e1

e6

e2

e5
e3

e7

e8

e4

(a) original building

e′1
e′6

e′7

e′8

(b) result of applying shortcut (e1, e6)

Figure 1: Building simplification based on shortcuts.

ei

ej ek

el e′i

e′j e′k

e′l

Figure 2: Applying shortcuts
(ei, ej) and (ek, el) results in
a non-simple polygon, though
each of them is feasible alone.

ei

ej

ek el

e′i

e′j

e′k

e′l

Figure 3: Applying shortcuts
(ei, ej) and (ek, el) results
in a simple polygon, though
(ei, ej) is not feasible alone.

lines supporting ek and el. The first ray runs in direction oppo-
site to ek, the second ray in direction of el. Since a pair of con-
secutive edges (ek, el) in the output means to omit input edges
ek+1, ek+2, . . . , el−1, we refer to (ek, el) as a shortcut. The gen-
eral idea is shown in Fig. 1 where the pair (e1, e6) shortcuts four
edges. The resulting generalized building keeps the characteristic
shape of the original building.

Similar to the bandwidth criterion in line simplification we insist
that the distance between the L-shape of a shortcut and the omit-
ted edges is small, that is, bounded by a user-defined threshold
ε > 0. To express this precisely, we define the ε-buffer of a set A
of points in the plane as the union of all closed radius-ε disks cen-
tered at points in A. For example, Fig. 5(a) depicts the ε-buffer
(shaded) of the L-shape defined by the shortcut (ek, el). We can
now give a formal definition of our problem.

Problem (BUILDINGSIMPLIFICATION). Given a simple poly-
gon P = (e1, e2, . . . , en) as a counterclockwise oriented se-
quence of directed edges and a distance threshold ε > 0, find
a polygon P ′ = (e′i1 , e′i2 , . . . , e′im

) with 1 ≤ i1 < i2 < . . . <
im ≤ n such that P ′ has the fewest edges among all polygons
that fulfill the following requirements:

(R1) P ′ is simple,
(R2) for j = 1, . . . , m it holds that eij and e′ij

(a) intersect and
(b) have the same (directed) supporting line,

(R3) for each pair of consecutive edges (e′k, e′l) in P ′,
(a) the sequence (ek+1, ek+2, . . . , el−1) is within an ε-

buffer of the L-shape defined by (ek, el) and
(b) the L-shape defined by (ek, el) enters and leaves the

ε-buffer of the sequence (ek+1, ek+2, . . . , el−1) ex-
actly once.

We call any simplification P ′ of P that fulfills requirements (R1)–
(R3) (ε-) feasible. We now motivate the above requirements.

Figure 2 shows an example of two potentially feasible shortcuts.
Both imply extensions of edges, and so, applying them together
results in intersections, i.e., a violation of requirement (R1). Ap-
plying shortcut (ei, ej) in Fig. 3 would result in an intersection
with edge ek. However, if shortcut (ek, el) is applied simultane-
ously, the result is simple.

Figure 4 shows violations of requirement (R2). In Fig. 4(a), the
edge e′j corresponding to ej reappears at a new location. In this

ei

ek

ej

e′i

e′k

e′j

(a) requirement (R2a) violated
since ej ∩ e′j = ∅

ei

ek

ej

e′i

e′k

e′j

(b) requirement (R2b) violated since
ej and e′j have different directions

Figure 4: Non-feasibility of shortcuts in special cases.

ek

εel

(a) requirement (R3a) is satisfied

ek

el

(b) requirement (R3b) is satisfied

Figure 5: Feasibility of shortcut (ek, el). ε-Buffers are shaded.
The bold gray arrows indicate the L-shape defined by (ek, el).

case, the simplified outline can hardly be understood as a sub-
sequence of the original edges. We therefore forbid such cases.
Nevertheless, we allow to trim or extend an edge at both ends.
Figure 4(b) shows a subsequence (ei, ej , ek), which is not feasi-
ble since ej needs to be turned to generate a closed outline. This
example, just as Fig. 2, shows that, in order to test the feasibility
of a subsequence, it does not suffice to independently test the fea-
sibility of all applied shortcuts: each of the shortcuts (ei, ej) and
(ej , ek) is feasible alone.

The shortcut (ek, el) in Fig. 5 is feasible according to require-
ment (R3), to which we refer as bandwidth criterion. Though our
criterion consists of two parts, it is similar to the bandwidth cri-
terion in line simplification. The first part (R3a) means that the
original line must lie in the ε-buffer of the simplified line. The
second part (R3b) means that the simplified line must lie in the ε-
buffer of the original line. When reducing a line to a subsequence
of vertices, the first part implies the second one. However, Fig. 6
shows that this is not true with our definition of shortcuts: without
requirement (R3b) we can create new building vertices far from
the original shape, while requirement (R3a) is satisfied.

Polygons with holes—for example, buildings with inner yards—
are represented by multiple sequences of edges. Given such an
input, we reduce each sequence to a subsequence subject to re-
quirements (R1)–(R3). The resulting polygon must be simple;
we aim at minimizing the total number of edges.

ei

ej

ei

ej

Figure 6: Shortcut (ei, ej) satisfies requirement (R3a) (shaded
buffer), but does not satisfy requirement (R3b) (dashed buffer).

3 COMPLEXITY

We now investigate the computational complexity of BUILDING-
SIMPLIFICATION. We prove that the problem is NP-hard un-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

374

u1 u2 u3 u4 u5 u6

Figure 7: Layout of the variable-clause graph Gvc.

der two conditions, namely that (a) the output consists of simple
polygons (requirement (R1)) and (b) the input can consist of mul-
tiple disjoint polygons or a single polygon with multiple holes.
The NP-hardness justifies that we consider non-efficient exact or
efficient non-exact solutions in the remainder of this paper.

Starting point of our proof is the decision version of BUILDING-
SIMPLIFICATION: given a simple polygon P , a threshold ε > 0,
and an integer K > 0, does P have an ε-feasible simplification
with at most K edges? Depending on the answer we say that
(P, ε, K) is a yes- or a no-instance. As usual, we prove hard-
ness by specifying a so-called polynomial reduction from some
other (decision) problem X that is known to be NP-hard. For
each instance I of problem X we construct (in polynomial time)
an instance I′ of our problem such that I′ is a yes-instance if and
only if I is a yes-instance. In other words, solving our problem
is at least as hard as solving X. As X is NP-hard, our problem is
NP-hard, too.

As problem X we use PLANAR3SAT, a variant of the well-known
problem 3SAT. An instance of 3SAT is given by a set U of
Boolean variables and a set C of clauses over U . A clause over U
is a set of literals, each being a variable u ∈ U or its negation ū,
that is, ū is true if and only if u is false. In 3SAT each clause
contains three literals. The task is to decide whether it is possible
to assign Boolean values (true or false) to the variables in U such
that each clause in C contains at least one true literal.

To define PLANAR3SAT, we define the (bipartite) variable-clause
graph Gvc to contain a node for each variable in U and for each
clause in C. The graph contains an edge {u, c} for a variable u ∈
U and a clause c ∈ C if and only if u ∈ c or ū ∈ c. The prob-
lem PLANAR3SAT is the special version of 3SAT where Gvc

is planar. PLANAR3SAT is known to be NP-hard (Lichtenstein,
1982). Note that Gvc can be laid out (in polynomial time) such
that variables correspond to disjoint vertically aligned boxes and
clauses correspond to non-crossing three-legged “combs” that are
attached to the boxes from above or below (Knuth and Raghu-
nathan, 1992), see the example in Fig. 7.

Theorem. BUILDINGSIMPLIFICATION is NP-hard, that is,
given a polygon P (with holes), a threshold ε > 0, and an in-
teger K > 0, it is NP-hard to decide whether P has an ε-feasible
simplification with at most K edges.

Proof. As noted above, our proof is by reduction from PLA-
NAR3SAT. Our task is to construct an instance (P, ε, K) of the
decision version of BUILDINGSIMPLIFICATION for a given in-
stance (U, C) of PLANAR3SAT such that P has a simplification
with at most K edges if and only if (U, C) has a fulfilling truth
assignment. We set ε = 2 and specify K later. Note that simpli-
fying a set of disjoint polygons is the same as simplifying a large
polygon with many holes. Here we view P as a set of polygons.

We specify P by assembling a set of gadgets; a variable gad-
get for each variable u ∈ U and a clause gadget for each clause
c ∈ C. The variable gadget is shown in Fig. 8; its exact dimen-
sions are defined in Fig. 9. The variable gadget is a ring of pen-
tagons, each being the union of a rectangle and a flat, isosceles
triangle. Only the two simplifications in Fig. 8 are optimal for

ε = 2. Other simplifications of equal cost would violate the sim-
plicity requirement. We refer to the two optimal solutions as true
state and false state of the variable gadget, which correspond to
values true and false of the corresponding variable in U . Fig-
ure 10 defines the clause gadget, which consists of a 14-gon that
has five different optimal (10-gonal) simplifications for ε = 2.

Next we connect variable and clause gadgets. We define connec-
tors that can transmit some kind of pressure from a variable to a
clause gadget. The connectors are such that there is an optimal
simplification of the clause gadget if and only if there no pres-
sure from at least one of the three incident variable gadgets, see
Figure 11. A connector consists of the same pentagons as the
variable gadget. Figure 11(a) shows a connector that connects a
variable u to a clause c. The connector transmits pressure if u
is false. In that case there is only one feasible simplification of
the pentagons in the connector. This setting is used if u appears
non-negated in the clause. The connector in Fig. 11(b) transmits
pressure if u is true. This setting is used if ū is contained in c.

If a variable is contained in several clauses we simply increase
the number of pentagons in the ring that forms the variable gad-
get. This yields more slots for connectors. Figure 12 shows how
the connectors from three variable gadgets meet at a clause gad-
get. In the example, each connector transmits pressure from the
variable. Observe that in this situation it is not possible to sim-
plify the polygon of the clause gadget; none of the simplifications
in Fig. 10 is feasible. On the other hand, if there is no pressure
from variable u (resp. variable v, variable w) the simplification
in Fig. 10(b) (resp. Fig. 10(c), Fig. 10(d)) is feasible.

Now let’s check the correctness of our construction. Let p be the
number of pentagons and q the number of clauses. Then we could
use a (hypothetical) algorithm for BUILDINGSIMPLIFICATION to
answer the question: does there exist an ε-feasible solution with
at most K = 4p + 10q edges? If so, it means that all pentagons
and clause gadget 14-gons can be simplified optimally. In this
case all variable gadgets are in true or false state and, for each
clause, there is at least one variable that does not trigger pres-
sure, i.e., the corresponding literal is true. Thus the states of the
variable gadgets yield a fulfilling truth assignment for the PLA-
NAR3SAT instance (U, C). On the other hand, if (U,C) has
a fulfilling truth assignment, we can set the variable gadgets to
the corresponding states and are sure that in each clause gadget
at least one of the three connectors does not transmit pressure,
which means that all polygons can be simplified; exactly K edges
are needed in total. To summarize, the given instance of PLA-
NAR3SAT is a yes-instance if and only if the instance of BUIL-
DINGSIMPLIFICATION that we construct is a yes-instance, too.

Note that the connector is quite flexible. For example, we can
make bends as shown in Fig. 9. Moreover, we can scale the pen-
tagons parallel to their longest edge. Thus, it is possible to com-
pensate for different edge lengths in the above-mentioned plane
drawing of the variable-clause graph Gvc. Now it is not hard to
see that our reduction can be performed in polynomial time.

(a) state true (b) state false

Figure 8: The variable gadget. Shaded polygons define the input
polygons. Black outlines show optimal simplifications.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

375

124 812

1
8

1
1

8
2

3 7

Figure 9: A detail of the variable gadget and a connector (see
Fig. 11) with dimensions.

1
5

1
1

12
15

(a)

(f)

(e)

(d)(b) (c)

ε

Figure 10: The clause gadget (a) has 14 vertices, each of its five
optimal simplifications ((b)–(f)) has ten vertices.

pressure to
clause c

variable gadget, state false

(a) setting for u ∈ c.

pressure to
clause c

variable gadget, state true

(b) setting for ū ∈ c.

Figure 11: A connector that is attached to variable u. The region
in the dotted rectangle is shown in Fig. 9 in detail.

pressure from
variable w

pressure
from

variable v

pressure
from

variable u

16

167

Figure 12: Three connectors attached to clause {u, v, w}. The
dotted lines define the alignment of the connectors.

ε

(a) input polygon and
shortcut graph Gscut

(b) solution and corres-
ponding cycle in Gscut

(c) another solution and
corresponding cycle

Figure 13: A building with two feasible simplifications.

4 NEGLECTING THE SIMPLICITY REQUIREMENT

We now present an approach to solve the building simplification
problem without insisting that the output polygons be simple.
This relaxed problem can be solved efficiently. For this we search
for a shortest cycle in a certain directed graph. We will use this
approach in Sections 5 and 6 to also attack the original problem.

Given a building P and a distance threshold ε > 0, let E(P) be
the set of edges of P and let S be the set of shortcuts of P that
satisfy the bandwidth criterion (requirement (R3)) and the inter-
section requirement (R2a). A shortcut (ek, el) satisfies (R2a) if
and only if the L-shape of (ek, el) intersects ek and el. For exam-
ple, the shortcut (ei, ej) in Fig. 4(a) does not satisfy (R2a). Now
we can define the (directed) shortcut graph Gscut = (E(P), S)
with respect to P and ε. For an example, see Fig. 13(a). Note
that S contains a shortcut for each pair of consecutive edges in P .

Testing whether a shortcut satisfies the bandwidth criterion can
be done in O(n) time, thus the shortcut graph Gscut can be con-
structed in O(n · |S|) time, where |S| ∈ O(n2) in the worst
case. Figures 13(b) and 13(c) show simplified buildings; the se-
lected elements of the shortcut graph, that is, edges and shortcuts,
are highlighted. Observe that each feasible simplification corre-
sponds to a cycle in Gscut. Now an obvious idea is to search
for a shortest cycle in Gscut. Finding a shortest cycle in a digraph
G = (V, E) takes O(|V |·|E|) time (Itai and Rodeh, 1978). Note,
however, that not all cycles of Gscut imply feasible solutions: a
cycle can imply self-intersections and turning edges.

As the simplicity requirement (R1) renders the problem NP-hard,
it is unlikely that there is an efficient algorithm that copes with
dependencies between “distant” shortcuts (see Fig. 2). In con-
trast, the direction requirement (R2b) (see Fig. 4(b)) is concerned
with pairs of consecutive shortcuts (ei, ej) and (ej , ek). There-
fore we can take requirement (R2b) into account by extending
our graph-based approach. To this end we introduce the graph
Gsucc = (S, A) whose arc set A contains an arc for each pair of
consecutive shortcuts (ei, ej) and (ej , ek) in S if the sequence
(ei, ej , ek) does not imply a change of the direction of ej . Note
that each arc (s, t) ∈ A corresponds to one potential edge of the
simplified building. A shortest cycle in Gsucc yields a shortest
cycle in Gscut that satisfies requirement (R2b). Applying the al-
gorithm of Itai and Rodeh (1978) to Gsucc takes O(|S|·|A|) time,
where |A| ∈ O(|S|2) in the worst case. In practice, however, it is
likely that the number of shortcuts and pairs of consecutive short-
cuts is relatively small if the parameter ε is set reasonably. Then
one may expect that |S| (or even |A|) is linear in n.

A simple way to speed up the procedure is as follows. The al-
gorithm of Itai and Rodeh (1978) uses a subroutine DICIRCUIT.
Given a graph G = (V, E) and a node v ∈ V it finds the shortest
cycle through v in O(|V | + |E|) time; DICIRCUIT is applied to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

376

each node in V to find the overall shortest cycle. For our problem,
however, it is not necessary to apply DICIRCUIT to all nodes
(that is, shortcuts) in Gsucc. Let ej ∈ E(P) be an arbitrary edge
of the polygon. In any case, the simplified polygon must contain
a shortcut (ei, ek) with i ≤ j < k, that is, a shortcut starting
at ej or omitting ej . Thus, we need to apply DICIRCUIT only to
a hopefully small set of shortcuts.

5 AN IP FOR BUILDING SIMPLIFICATION

The efficient algorithm from Sect. 4 can be used for a first at-
tempt to solve the problem. If the result is feasible we have the
globally optimal solution. In some cases, however, we can end
up with a non-simple polygon. For such cases we suggest to ap-
ply mathematical programming techniques. The formulation that
we present in this section is an integer linear program or simply
integer program (IP). Basically, an IP is a linear program (LP)
whose variables are constrained to integer values. While LPs can
be solved in polynomial time, solving an IP is generally NP-hard.
We need the integer variables to cope with the combinatorial na-
ture of the NP-hard building simplification problem. For basics
of mathematical programming and common solution techniques
we refer to Papadimitriou and Steiglitz (1998). We have applied
mathematical programming before to solve the aggregation prob-
lem in map generalization (Haunert and Wolff, 2006).

To express a solution of BUILDINGSIMPLIFICATION we use the
definition of Gscut = (E(P), S) according to Sect. 4. We intro-
duce binary variables

xs ∈ {0, 1} for each s ∈ S

with xs = 1 if and only if shortcut s ∈ S is selected for the
simplified building. Note that the number of selected shortcuts
equals the number of edges in the simplified building, which we
want to minimize. Thus we can express our objective as follows.

Minimize
X

s∈S

xs . (1)

Next, we enforce that the union of the shortcuts s with xs = 1
define a cycle in the graph Gscut. We do this by ensuring that for
each edge ej ∈ E(P) there is exactly one shortcut omitting ej or
starting at ej .

X

s∈
˘

(ei,ek)∈S

˛̨
i≤j<k

¯
xs = 1 for all ej ∈ E(P) (2)

Next we enforce the simplicity requirement (R1). If we select a
shortcut (ei, ej), then part of its L-shape will belong to the sim-
plified polygon. We can say this with certainty about the part
between ei and ej (not including ei and ej). If these parts inter-
sect for a pair of shortcuts s, t ∈ S, we call the pair conflicting
(see Fig. 2). We forbid that such pairs are selected.

xs + xt ≤ 1 for all conflicting shortcuts s, t ∈ S (3)

Similarly, a shortcut s ∈ S can imply an intersection with an
original polygon edge e ∈ E(P) (see Fig. 3). This case cannot be
handled with constraint (3): generally, there is no shortcut t ∈ S
that would allow to conclude that a certain part of e belongs to the
simplified outline. In order to exclude this type of intersection,
let Ss,e ⊆ S be the set of shortcuts that omit e or sufficiently
shorten e. Now we introduce the following constraint.

X

t∈Ss,e

xt ≥ xs
for all pairs (s, e) ∈ S × E(P)
where s is in conflict with e.

(4)

This allows to select shortcut s only together with a shortcut from
the set Ss,e. For example, (ei, ej) in Fig. 3 can be selected with
(ek, el), which shortens ek and so avoids an intersection.

Finally, the direction requirement (R2b) can be subsumed by con-
straint (3), that is, we also call two consecutive shortcuts (ei, ej)
and (ej , ek) conflicting, if the sequence (ei, ej , ek) implies that
ej changes its direction.

Our IP has |S| variables and O(|S|2) constraints (where |S| ∈
O(n2) in the worst case).

6 A HEURISTIC APPROACH

In order to obtain a polynomial-time performance, we propose a
heuristic method. In other words, we give up the claim for exact
optimality. Our approach is to iteratively solve the problem with-
out considering the simplicity requirement. For this we apply the
method from Sect. 4. Whenever we obtain a solution with inter-
secting polygon edges we remove an arc from the graph Gsucc

and solve the problem again. Algorithm 1 defines our approach.

Algorithm 1 Heuristic solution, iteratively removing arcs
1: find a shortest cycle C in Gsucc

2: while polygon P ′ corresponding to C is not simple do
3: for each pair of intersecting edges e′i and e′j in P ′ do
4: remove one arc from A that corresponds to e′i or e′j .
5: end for
6: find a shortest cycle C in Gsucc

7: end while

Obviously the crucial decision is in line 4. A bad decision about
which arc to remove from the graph can imply a suboptimal re-
sult. If the removal accidentally destroys the last directed cycle
in the graph we even end up with an infeasible problem. To avoid
this situation, we never remove an arc (s, t) from A if shortcuts s
and t contain consecutive edges of the original building, that is,
if s = (ei−1, ei) and t = (ei, ei+1). As selecting the sequence
(ei−1, ei, ei+1) implies ei = e′i, this approach always allows to
fall back to the original building outline. In the future we plan
to define a non-unit cost for arcs that better reflects the objective
of map generalization. Then it will be reasonable to remove the
more expensive arc.

Finally, we sketch an exact variant of Algorithm 1. Instead of ul-
timately rejecting arc (s1, t1) or (s2, t2) when finding a conflict
between them, we could divide the problem into two subprob-
lems: one without arc (s1, t1) and one without arc (s2, t2). If
we continue to branch like this we are sure to find the globally
optimal solution. Though this exact procedure requires exponen-
tial time in the worst case, there is an interesting fact: under the
condition that the number c of conflicting edges is constant (or
even polylogarithmic in n), we have an exact polynomial-time
algorithm for BUILDINGSIMPLIFICATION. Such an algorithm is
commonly referred to as fixed-parameter algorithm.

7 RESULTS

We implemented the methods from Sect. 4 and 5 as well as the
heuristic from Sect. 6 in a Java application. Our program writes
the IP formulation to a file and starts the free optimizer lp solve
(version 5.5.0.7) in a batch job; it reads the optimal solution from
a file to construct the simplified shape. We also tested the com-
mercial solver ILOG CPLEX R© 9.1 with our IP formulation. Fig-
ure 14 shows a building with 68 vertices that we simplified with

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

377

10m

(a) input

ε

(b) ε = 2 m

ε

(c) ε = 4 m

Figure 14: A building with two feasible simplifications.

10m

(a) input

ε

(b) ε = 2 m

ε

(c) ε = 4 m

Figure 15: A set of buildings with two feasible simplifications.

this approach. Using CPLEX on a Linux server with 4 GB RAM
and a 2.2 GHz AMD-CPU, the processing took less than 0.01s.
The free optimizer lp solve required 0.22s for the instance with
ε = 2m and 0.17s with ε = 4m. The average processing time
for the houses in Fig. 15 was 0.16s. Our heuristic performed
similarly. The building in Fig. 14 was simplified in 0.06s with
ε = 2m and 0.27s with ε = 4m. For all “real” buildings that we
processed, the first shortest cycle that we found in the graph was
feasible, so we always obtained the exact optimum. We were,
however, able to construct a hypothetical building such that the
heuristic produced a suboptimal result, see Fig. 16.

Our future research will deal with the definition of an appropriate
optimization criterion. Uniform costs for edges are reasonable if
the aim is data compression. This, however, is not the primary
concern in map generalization. Figure 17 shows that the method
does not distinguish important and unimportant edges: very short
edges belonging to the pillars of the church were selected for the
simplified shape. Since generalization aims to preserve impor-
tant structures it is reasonable to charge a relatively high cost for
selecting short edges. Generally, our heuristic allows to define
any cost function for the arcs in A, that is, we can define additive
costs for edges, shortcuts or pairs of consecutive shortcuts.

8 CONCLUSION

Our building simplification method produces ground plans that
satisfy a given error tolerance while ensuring simplicity of poly-
gons. As a basic optimization criterion the method minimizes the
number of edges in the result. We have proved that the problem
is NP-hard and therefore focused on integer programming and a
heuristic approach. We conclude that both methods can be ap-
plied to solve problem instances that usually appear in practice.
Our IP and our heuristic method can be used to simplify typical
buildings in less that 0.1s; we consider this efficient enough for
cartographic production. Only for an untypical, artificial shape
our heuristic failed to find the optimal solution. Future research
will show whether it is possible to incorporate a cost function into
our model that better reflects the aims of map generalization, that
is, to preserve important shape characteristics.

References

Bard, S., 2004. Quality assessment of cartographic generaliza-
tion. Transactions in GIS 8(1), pp. 63–81.

Bose, P., Cabello, S., Cheong, O., Gudmundsson, J., van Krefeld,
M. and Speckmann, B., 2006. Area-preserving approximations

ε

(a) input (b) IP solution (c) without sim-
plicity constraint

(d) heuristic
solution

Figure 16: A hypothetical building with three simplifications.

10m

(a) input

ε

(b) result with ε = 2.5 m

Figure 17: A simplified church. Edges that were selected for the
simplified building are drawn as black arrows.

of polygonal paths. Journal of Discrete Algorithms 4, pp. 554–
556.

Campbell, G. M. and Cromley, R. G., 1991. Optimal simplifica-
tion of cartographic lines using shortest-path formulations. The
Journal of the Operational Research Society 42(9), pp. 793–
802.

Chen, D., Daescu, O., Hershberger, J., Kogge, P., Mi, N. and
Snoeyink, J., 2005. Polygonal path simplification with angle
constraints. Computational Geometry: Theory and Applica-
tions 32(3), pp. 173–187.

de Berg, M., van Kreveld, M. and Schirra, S., 1998. Topolog-
ically correct subdivision simplification using the bandwidth
criterion. Cartography and Geographic Information Systems
25(4), pp. 243–257.

Deveau, T., 1985. Reducing the number of points in a plane curve
representation. In: Proceedings of Auto-Carto VII, Washing-
ton D.C., USA, pp. 152–160.

Gudmundsson, J., Narasimhan, G. and Smid, M., 2007. Distance-
preserving approximations of polygonal paths. Computational
Geometry: Theory and Applications 36(3), pp. 183–196.

Haunert, J.-H. and Wolff, A., 2006. Generalization of land cover
maps by mixed integer programming. In: Proceedings of the
14th Annual International ACM Symposium on Advances in
Geographic Information Systems (ACMGIS’06), Arlington,
Virginia, USA, pp. 75–82.

Itai, A. and Rodeh, M., 1978. Finding a minimum circuit in a
graph. SIAM Journal on Computing 7(4), pp. 413–423.

Kada, M. and Luo, F., 2006. Generalisation of building ground
plans using half-spaces. In: Proceedings of the International
Symposium on Geospatial Databases for Sustainable Develop-
ment, Goa, India, ISPRS Technical Commission IV.

Knuth, D. E. and Raghunathan, A., 1992. The problem of com-
patible representatives. SIAM Journal on Discrete Mathemat-
ics 5(3), pp. 422–427.

Lichtenstein, D., 1982. Planar formulae and their uses. SIAM
Journal on Computing 11(2), pp. 329–343.

Mayer, H., 1998. Model-generalization of building outlines
based on scale-spaces and scale-space events. In: Interna-
tional Archives of Photogrammetry and Remote Sensing, Vol.
32 (3/1), pp. 530–536.

Papadimitriou, C. H. and Steiglitz, K., 1998. Combinatorial Op-
timization. Dover Publications, Mineola, NY.

Sester, M., 2005. Optimization approaches for generalization and
data abstraction. International Journal of Geographical Infor-
mation Science 19(8–9), pp. 871–897.

Staufenbiel, W., 1973. Zur Automation der Generalisierung to-
pographischer Karten mit besonderer Berücksichtigung groß-
maßstäbiger Gebäudedarstellungen. PhD thesis, Technische
Universität Hannover, Germany.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

378

