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Abstract 

The aggregation of areas is an important subproblem of the map generalization task. 

Especially, it is relevant for the generalization of topographic maps which contain areas of 

different land cover, such as settlement, water, or different kinds of vegetation. An existing 

approach is to apply algorithms that iteratively merge adjacent areas, taking only local 

measures into consideration. In contrast, global optimization methods are proposed in this 

paper to derive maps of higher quality. Given a planar subdivision in which each area is 

assigned to a land cover class, we consider the problem of aggregating areas such that 

defined thresholds are satisfied. The aggregation is directed at two objectives: Classes of 

areas shall change as little as possible and compact shapes are preferred. In this paper, the 

problem is formalized and two different approaches are compared, namely mixed-integer 

programming and simulated annealing. 

 



1 Introduction 

Generally, the aim of map generalization is to create a map that satisfies requirements of a 

reduced target scale, while preserving characteristic features of an original map. While 

formalized requirements like minimal dimensions are often defined in the specifications of 

data sets, the formal description of the statement's second part is a rather difficult task. 

However, if the changes applied to the source data set can be expressed by quantitative 

measures, the generalization task can be formalized as a constrained optimization problem.  

In a previous paper we presented a method based on this approach for the aggregation of 

areas in a planar subdivision (Haunert & Wolff, 2006). In topographic data bases such a 

representation is commonly used for areas of different land cover classes. The aggregation 

problem is due to area thresholds that are defined differently for the source and the target 

data set. Simply omitting features from the source data set that are too small for the target 

scale would violate the prohibition of gaps in a planar subdivision. Therefore, features 

need to be merged with neighbors, which results in changes of their classes. In our earlier 

paper, we proved that solving the aggregation problem with minimum change of land 

cover classes is NP-hard, meaning that it is unlikely to find an efficient algorithm. We 

therefore introduced mixed-integer programs for the problem and applied heuristics to 

eliminate variables. In this paper we compare this method with another heuristic approach, 

namely simulated annealing. After discussing related work (Section 1.1), we explain both 

methods in general (Section 2), define the area aggregation problem (Section 3), and 

present our solutions for the problem (Sections 4 and 5). We present and compare the 

obtained results in Section 6 and conclude the paper (Section 7). 

 

1.1 Related work 

Different researchers have proposed iterative methods for the area aggregation problem. 

The following algorithm is described by van Oosterom (1995):  

In each iteration the feature with lowest importance is selected. The selected feature is 

merged with a neighbor, which is chosen according to a collapse function, and the next 

iteration is processed. The iteration can be terminated, if all areas satisfy the minimal 

dimension that is required for the target scale. 

Many proposed algorithms are specializations of this general method. Jaakkola (1997) uses 

the method within a more comprehensive generalization framework for raster based land 



cover maps. Podrenek (2002) discusses preferences for merges, which reflects the collapse 

function. Generally, semantic similarity of classes, boundary lengths, and area sizes are 

considered as criteria that need to be incorporated into the collapse function.  

The main problem with these iterative approaches is that consequences for future actions 

are not taken into account, when greedily selecting a neighbor. Therefore, a global 

approach will be presented in this paper. 

Though there has not been any global optimization approach to area aggregation in map 

generalization, there exists a multiplicity of related problems that have been investigated 

by researchers. Especially, in the field of operations research, optimization methods for 

districting and aggregation problems have been developed. A typical application is the 

definition of sales districts presented by Hess & Samuels (1971). Their solution to find 

optimal districts is based on mathematical programming. Other researchers have applied 

meta-heuristics such as simulated annealing (Bergey et al., 2003). We briefly explain the 

general principles of these two optimization techniques in the next section. 

2 Applied techniques of combinatorial optimization 

In this section, we briefly explain mathematical programming (Section 3.1) and simulated 

annealing (Section 3.2). For a detailed introduction and further references we refer to 

Papadimitriou & Steiglitz (1998) and Reeves (1993). 

 

2.1 Mathematical programming 

Let us first define a linear program (LP): Given an  Matrix , an m -vector b , and 

an -vector , minimize  subject to , , with . Generally, an LP 

can be solved in polynomial time. Most commonly the simplex algorithm is applied. 

Although this theoretically may require exponential time, it solves LPs with hundreds of 

thousands of variables in practice. 

nm × A

n c xcT ⋅ bxA ≥⋅ 0≥x nRx ∈

By replacing the continuous variables  in this definition by integer variables 

, we define an integer linear program (ILP) or simply integer program (IP). Many 

combinatorial optimization problems can be formulated as IP. Though the definitions of IP 

and LP are very similar, the computational complexity of solving an IP is much higher. In 

fact the problem is NP-hard. However, several algorithms have been developed for the 

solution of IPs, which have been found out to be useful for applications. A mixed-integer 

nRx ∈
nZx ∈



program (MIP) is a combination of an LP and an IP, i.e., it may contain continuous as well 

as integer variables. Basically, a MIP can be solved with the same techniques as an IP. 

A method that is implemented in several commercial software packages is called branch-

and-cut. The software we used for our experiments is the ILOG CPLEX Callable Library 

9.100. This allows to integrate branch-and-cut techniques with Java applications. Our tests 

were performed on a Linux server with 4 GB RAM and a 2.2 GHz AMD-CPU. 

 

2.2 Simulated annealing 

The techniques described in Section 2.1 restrict to objectives and constraints that can be 

expressed by linear combinations of variables. Even in case that such a formulation of a 

problem is found, the branch-and-cut technique can turn out to be inefficient and therefore 

inappropriate for application. However, it is often not necessary to insist on finding the 

globally optimal result. Therefore, heuristic techniques have been developed. Generally, 

these attempt to find relatively good solutions in reasonable time. Two different types of 

heuristics need to be distinguished: Heuristics that are designed for a specific problem and 

those that offer solutions for a very general class of problems (meta-heuristics). We will 

introduce heuristics of the first type in Section 4 to eliminate some variables in our mixed-

integer programs. A prominent meta-heuristic is simulated annealing, which goes back to 

Kirkpatrick (1983) and has been applied to map generalization by Ware et al. (2003). We 

explain its basic principles in this section and present the application to the area 

aggregation problem in Section 5. 

To explain simulated annealing, let us first consider a hill-climbing method: Starting from 

a feasible solution, hill climbing iteratively moves to a solution which is cheaper according 

to a cost function c, e.g. it selects the best solution in a defined neighborhood of the current 

solution. The problem with the hill-climbing approach is that it usually gets stuck in local 

optima. The simulated annealing approach is to occasionally accept moves to worse 

solutions, in order to escape these local optima. For this, a temperature T is introduced, 

which controls the probability of accepting worse solutions. Initially, T is high, meaning 

that it is likely that worse solutions are accepted. During the simulation T is decreased 

according to a defined annealing schedule. Commonly, a multiplier α ∈ [0,1] is introduced 

for this. The following algorithm defines the common simulated annealing approach: 

1. Find an initial feasible solution s and define the temperature by T ← T0. 



2. Randomly select a solution  in the neighborhood of s. s′

3. If , set , else, set  with probability ( ) ( )scsc ≤′ ss ←′ ss ←′ ( ) ( )
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4. Reduce the temperature, i.e., set TT ⋅← α . 

5. Proceed with 2 until the temperature falls below a threshold TE. 

We specify this approach for the area aggregation problem in Section 5. 

 

3 Problem definition 

The definition of the aggregation problem is based on the adjacency graph  of the 

planar subdivision. This contains a node  for each area and an edge { } , if the 

areas corresponding to u  and  share a common boundary. Each node  has an initial 

color 

( EVG , )
Vv ∈ Evu ∈,

v v

( )vγ  and a weight , corresponding to the area’s class and size, respectively. A 

feasible solution of the area aggregation problem is defined by a partition 

 of V  and a new color 

( )vw

{ }nVVVP ,,, 21 K= ( )vγ ′  for each node , such that each region 

 is contiguous, contains only nodes of the same new color (referred to as 

v

PV ∈′ γ ′ ), 

contains at least one node with unchanged color, and satisfies a color dependent weight 

threshold ( )γθ ′ . Subject to these constraints, the problem is to find the solution which 

minimizes a sum of  costs  for color change and costs , which are charged to penalize 

non-compact shapes. The total costs for color change are defined by 

1c 2c

( ) ( ) ( )( )∑
∈

′⋅⋅=
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vvdvwsc γγ ,11 , 

with ( ) ( )( vvd )γγ ′,  expressing the costs that are charged to change an area of unit size from 

the old color into the new one. The idea behind this approach is to charge relatively low 

costs for semantically similar classes, such as deciduous forest and coniferous forest, and 

high costs for dissimilar classes, such as water and settlement. We also allow for 

asymmetric distances, as it might be favored to keep important classes unchanged. In this 

case one would define a relatively high distance from this class to others. The parameter 

 needs to be set to define the weight of this objective. [ 1,01 ∈s ]



The cost  for non-compactness is a combination of two measures, which are based on 

the perimeters of regions and the average distance to a center of the region. The latter 

measure has been applied by Zoltners & Sinha (1983). For this we define 

2c

( uv, )δ  to be the 

Euclidean distance between the centroids of two areas. Similar to ,  defines the 

weight of this objective. 

1s [ 1,02 ∈s ]

 

4 Area aggregation by mathematical programming 

In our earlier paper we tested different MIP formulations for solving the area aggregation 

problem (Haunert & Wolff, 2006). The processing time turned out to be very high. Even 

with the best performing MIP, at most 40 nodes were processed with proof of optimality, 

i.e., with lower bound equal to the objective value of the integer solution. An instance of 

this size was solved in 12.7 hours. 

Due to this performance, we applied a heuristic resulting in a MIP formulation similar to 

the one of Zoltners & Sinha (1983). The approach of this is to define a strong contiguity 

requirement based on a precedence relationship. According to this, each region contains a 

node called centre, and, for each other node in the region, there must exist a neighbor in the 

same region which is closer to the centre. Note that each node is a potential centre, i.e., it is 

generally not required to predefine the set of centers. Obviously, certain regions become 

infeasible with this stricter requirement for contiguity. However, it is likely that only non-

compact regions are excluded, which anyway are not optimal. With this approach, the 

same instance with 40 nodes was solved in 62 seconds. For the processed instances, the 

cost of the solution increased maximally by 5%. We present a version of our MIP based on 

precedence relationship, which neglects the objective for small perimeters. In fact, with 

this simplification, the MIP becomes a binary program containing only binary variables 

. Setting  means to assign node  to the region with centre . { }1,0∈uvx 1=uvx Vv ∈ Vu ∈
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The last constraint means that for each node v being assigned to centre u, there exists at 

least one node in the set of predecessors , which is also assigned to u. This ensures 

the strong contiguity requirement. 

( )vuPred

Two additional heuristics were discussed and tested in our earlier paper (Haunert & Wolff, 

2006). The first is to predefine large, dominant areas as centers and to exclude small areas 

from the set of predefined centers. The second is to assume that two nodes with a large 

distance in between do not become merged in the same region. Both heuristics allow to 

eliminate variables, which speeds up the processing. This allowed to process instances with 

400 nodes in 17 minutes, leading to solutions of approximately 10% more costs compared 

to the MIP without heuristics. We will present results of this setting in Section 6. 

 

5 Area aggregation by simulated annealing 

Our method by simulated annealing is based on the algorithm in Section 2.2. The initial 

feasible solution can be found with the iterative algorithm of van Oosterom (1995) from 

Section 1.1. The most important remaining design issue is to define the neighborhood of a 

feasible solution. Given a feasible solution, we define its neighborhood as the set of 

solutions that can be obtained by application of a single node interchange operation, i.e., 

one node is removed from a region and assigned to another adjacent region as being shown 

in Figure 1. The normal case is shown in Figure 1a. Figure 1b shows a special case in 

which a region is separated into two contiguous regions when removing a contained node.  
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b) 
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Figure 1: The node interchange operation before (top) and after application (bottom) 

 

To allow for more variation, we define that a single node can also form a new region after 

being removed from an aggregate (Figure 1c). Contrarily, such a region with only one node 

can disappear, if the node is assigned to another region (Figure 1d). 

Obviously, by application of a node interchange operation, a solution might become 

infeasible. For example, by removing a node from a region, the threshold of the region 

might be violated. However, it is critical to restrict the set of allowed node interchange 

operations to those that produce feasible solutions. Consider an initial solution containing 

only regions that exactly satisfy their weight thresholds: Removing any node from its 

region will create an infeasible solution. Thus, the initial solution represents an isolated 

point in the solution space. It is clear that under such conditions it is not possible to reach 

the global optimum. In order to ensure the connectivity of all solutions via the defined 

neighbor relationship, we relax the constraint for weight feasibility and charge for each 

region  that is smaller than its threshold an additional cost equal to PV ∈′

( ) ( )⎟⎟
⎠

⎞
⎜
⎜
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Again, the parameter  needs to be set to define the weight of this objective.  [ 1,03 ∈s ]

A problem of this approach is that the algorithm might terminate with regions that do not 

satisfy the threshold constraint. Therefore, we need to define an algorithm that repairs 

these infeasible solutions. Again we apply the iterative algorithm for this, i.e., we select the 

smallest infeasible region and merge it with the best neighbor until the result is feasible. 



Probably, the most difficult problem that appears when applying simulated annealing is the 

definition of several tuning parameters that are not inherent to the problem itself. For our 

application this concerns the initial temperature T0, the final temperature TE, the weight of 

the penalty for too small regions s3, and the number of iterations. With these parameters, 

the annealing parameter α is defined. Normally, the only way to find the best parameters 

for a certain problem is to perform experiments. The results discussed in the next section 

were found with this approach. 

 

6 Results 

We first show a result that was obtained with our method based on mixed-integer 

programming and then discuss the effects of the applied heuristics. Figure 2(left) shows an 

example from a topographic data base at scale 1:50.000. The aim is to aggregate the areas 

such that the specifications of the target scale 1:250.000 are satisfied. The red settlement 

area in the centre of the clipping is too small according to the defined threshold. By 

application of the existing iterative algorithms such features will usually be merged with a 

neighbor. Thus, the settlement, which is often considered to be an important map feature, 

will be lost. However, by application of global optimization techniques, it is possible to 

sacrifice smaller areas, in order to safe the valuable feature. Two results are shown, which 

were obtained by application of different objectives. Figure 2(centre) shows the result 

when minimizing color change. In this case, small forest areas are changed into settlement, 

producing a long bridge to a small settlement area. By this, the settlement becomes 

sufficiently large. However, the complex shapes might be disfavored by cartographers. 

Therefore, we propose to apply a combination of costs for color change and non-compact 

regions. With this setting we obtained the result in Figure 2(right). Again, the settlement 

was saved by sacrificing small forest areas. This time, however, a more compact shape was 

produced. We assume that the formalized objective function sufficiently models the aims 

of area aggregation, but other operations such as line simplification need to be applied to 

obtain a generalized map. 

Table 1 summarizes the results that were obtained using different techniques. We increased 

the number of iterations for simulated annealing linearly in the number of nodes. The 

parameters T0, TE, and s3 were not modified. The theoretically possible case of violated 

area thresholds in the result, which was discussed in Section 5, did never happen. 



Simulated annealing produces solutions of less quality than our MIP with problem-specific 

heuristics. The cost for the solutions increased maximally by 26%. Still, the costs are much 

lower than with the iterative algorithm. For small instances it can be observed that the MIP 

outperforms simulated annealing in matters of time and quality. For large instances, 

 

simulated annealing is faster and the costs become more similar. 

Figure 2: An example from the German data set ATKIS DLM 50 at scale 1:50.000 (left) 

and two solutions which are feasible according to the specifications of the ATKIS DLM 

250 (scale 1:250.000). The solution in the centre minimizes color change; the right solution 

nodes 
I

Algorithm without heuristics with heuristics 

minimizes a combined cost for color change and non-compactness. 

 

terative MIP MIP 
Simulated annealing 

 cost time time cost iterations time cost cost 

50 6,35 20h 2,15* 0,45s 2,34 25000 11,6s 2,75 

2  1  1  00 13,37   00,4s 6,35 100000 17,5s 7,99 

300 22,56   714,7s 14,68 150000 276,0s 16,76 

400 29,04   1366,9s 19,15 200000 483,1s 20,72 

Tab perim esults. All MIPs were s o y *.
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7 Conclusion 

two very different approaches to the same area aggregation problem. 

irstly, the results are 
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