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Global Vehicle Localization by Sequence Analysis
Using LiDAR Features Derived by an Autoencoder

Alexander Schlichting and Udo Feuerhake

Abstract—Global vehicle localization is normally done by
GNSS sensors. In case of GNSS outages, such as in urban canyons
or tunnels, highly automated cars cannot localize without an
initial known position. In this paper we propose a method for
absolute localization in a city based on only one 2D laser scanner.
Localization is done by matching vertical scan lines captured by
a 2D laser scanner mounted on the vehicle with scan lines derived
from a reference point cloud of the environment. We use a neural
network to derive significant features describing the shape of the
scan lines. Every scan line of a reference data set is labeled with
a specific cluster-id using a k-means algorithm and stored in a
reference graph. The same k-means algorithm is used to label
the single scan lines of a test drive. The localization is done via
a sequence mining approach, where a sequence with a specific
length is matched to the position with the highest correlation
in the reference sequence. The results show that the algorithm
performs with an accuracy of about 1.4 m and a completeness
of up to 99%.

Index Terms—Vehicle location and navigation systems; Mobile
positioning systems, Machine Learning, Autonomous Vehicles

VEHICLE localization is an important issue for driver
assistance systems and especially fully automated

vehicles. To guarantee a highly accurate and reliable
localization most approaches use several sensors in one
system. A filter approach is used to combine the measured
data of sensors, like inertial systems, GNSS sensors, cameras,
radar and laser scanners. Normally the absolute position of
the system is given by the GNSS sensor.
Due to the fact that vehicle manufacturers expedite the
automation of vehicles step by step, localization is a hot
research topic with many publications and promising results
in the last few years. Trigger events for this trend have been
the DARPA Grand Challenge in 2004 and the DARPA urban
challenge 2007. Since GNSS signals are not always available,
e.g. in urban canyons and tunnels, localization techniques that
can work independent of GNSS have received a great deal of
attention.
Levinson and Thrun [1] have used a 3D laser scanner
mounted on the roof of the car to record an intensity image
and compare it to a digital map by image correlation. The
vehicle of the ’Stadtpilot’ (city pilot) project uses a similar
approach [2]. Ziegler et al. [3] combine a lane marker
detection approach with a 2D point feature detection. In [4]
and [5] 3D landmarks, namely pole-like objects, are used
for localization. All the listed approaches have in common,
that an initial absolute position has to be known as a prior,
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normally given by a GNSS sensor.
Khoshelham et al. [6] [7] are combining visual odometry and
inertial data to bridge gaps in the GNSS data. Their method
is suitable for short periods of time. However due to drift
effects this method is not long-time stable.
The Dutch navigation and mapping company TomTom
introduced a localization system called RoadDNA, that
provides a reliable and accurate localization based on
LiDAR (Light detection and ranging) data [8]. The approach
is described in Li et al. (2016) [9]. A reference map is
generated by projecting a 3D point cloud onto planes that
are perpindicular to the road surface. In the online step they
match a map piece of in this case 50 m length to the reference
map. By adding low-cost GPS and IMU measurements like
described in [10] they achieve a localization accuracy of 0.35
m in lateral and 0.40 m in longitudinal direction.
However, in case of GNSS outages and without any prior
information, the above methods fail. GNSS outages may
appear because of jamming [11] [12] or spoofing [13] signals
or even because the system operator deactivates the system.
Due to effects like multi-path and poor satellite visibility,
especially in urban areas with high buildings, using only
GNSS measurements can lead to large errors and gaps in
the data. A complementary system is needed to guarantee a
reliable absolute localization, even in case of GNSS outages.
The determination of absolute vehicle position can be
interpreted as a place recognition problem or a lost robot
problem in robotics. Bosse and Roberts [14] correlate
feature histograms to match laser scans to a reference in
unstructured outdoor environments. Tipaldi et al. [15] use
so called geometrical FLIRT phrases to perform a 2D range
data matching. The matching is done by a bag-of-words
approach. Himstedt et al. [16] use Geometrical Landmark
Relations (GLARE). GLARE transforms 2D laser scans into
pose invariant histogram representations and performs an
approximate nearest neighbor search to match the data to
a reference. They could achieve a recognition rate of 93%
along a 6.5 km outdoor trajectory.

In this paper we introduce a method that achieves a
recognition rate of up to 99% along an even longer trajectory
without using GNSS measurements. The absolute position is
determined by matching scan lines captured by an automotive
laser scanner on board the vehicle with those generated from
an existing point cloud of the environment.
A more detailed description of our approach and applied
methods is given in the remainder of this paper, which is
organized as follows. Section I gives an overview of the
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Fig. 1: Flowchart of our approach: first an autoencoder is
trained using range scans of our reference data as training
data. After the training step, the encoder is separated from the
autoencoder and used to generate features from the laser scans.
A reference graph of clustered labels is generated. Finally, the
labeled sequence of range scans is matched to the graph to
localize the vehicle.

presented method. In section II the used autoencoder is
presented, section III describes our localization approach in
detail. The experiments and obtained results are presented
and discussed in section IV. Finally, in section V conclusions
are drawn.

I. OVERVIEW OF THE METHOD

The proposed localization approach is based on matching
vertical scan lines captured by a 2D laser scanner mounted on
the vehicle with scan lines generated from a reference point
cloud of the environment, here called map. The map contains
absolute location information which we use to localize the
vehicle. Fig. 1 shows a flowchart of our approach. An artificial
neural network in the form of an autoencoder is trained to
obtain significant features from these single scan lines. This
step is done for the reference data as well as for the current
sequence of scans. The resulting features are assigned to the
scan lines and used as descriptive feature vectors for a point-
wise matching. Due to the fact that these consecutive scan lines
are time series data, which can also be represented as sequence
data, we are able to apply existing mining methods from
the sequence analysis research field. Using the whole feature
vector of every scan line in the sequence analysis would be
very time consuming. Also we are aware of the many possible
disruptive factors, which influence the shape and therefore
also the matching of the scan lines, e.g. lateral deviations
between the actual and reference trajectory or dynamic objects
on the side. Thus, instead of comparing the feature vectors
directly, we first apply a k-means clustering [17], trained by
the reference data set, to handle the disruptive factors by
determining similar feature vectors and label every single scan
line. Afterwards, we are able to match sequences of cluster IDs
in order to find exact and similar sequences. To localize our
vehicle finally, we choose the position in the map with the
highest consensus.

II. AUTOENCODER TO GENERATE FEATURES IN LIDAR
DATA

Humans can localize by recognizing the visual appearance
of a place in a city. We want to transform this ability to a
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Fig. 2: Structure of the autoencoder used for feature learning
from LiDAR scan lines.

computer and localize the vehicle on a road in longitudinal
direction. Therefore we use LiDAR data of a 2D laser scanner
measuring the vertical shape of a street and its surroundings.
A typical vertical scan line contains a number of range
measurements as shown in Fig. 3a. If we drive on a road
for several times, the trajectory may change in latitudinal
direction. As a result, the single range measurements also
change but the general shape of the scans does not. However
the scan lines will not have an exact match because of the
inevitable changes in the environment (e.g. caused by dynamic
objects like cars) between the times the reference and the
test scans are captured. This is why we use a feature vector
derived by a convolutional autoencoder to describe the scan
and afterwards to localize the vehicle, without taking the range
measurements directly into account. Autoencoders were first
introduced by Rumelhart et al. [18] in 1985. An autoencoder
consists of an encoder and a decoder. The encoder generates
a sparse representation of the data, whereby the decoder tries
to reconstruct the input so that in the end the input equals the
output.
We use TensorFlow [19] to implement the autoencoder. The
structure of our network is outlined in Fig. 2. Here the network
consists of 13 hidden layers, the encoder with seven hidden
layers and the decoder with six hidden layers. Hidden layers
1-4 are 1D convolutions with a stride and padding size of
1, followed by three fully connected layers with a specific
number of neurons, for example 680 for the first, 533 for
the second and 224 for the third layer. In the evaluation step
(section IV) we analyze the effect of the number of fully
connected layers and neurons to investigate its influence on
the performance of the localization method.
The decoder starts with two fully connected layers whose size
equals the size of the first two fully connected layers in the
encoder followed by four deconvolutions and finally the output
vector. The output is then compared to the input vector to
perform the gradient descent optimization using the RMSprop
learning rate method [20]. As an activation function we use a
rectified linear unit (ReLU).
Fig. 3b shows a reconstructed laser scan of the Mobile
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(b) Reconstructed scan.

Fig. 3: An example 2D scan line and its reconstruction by the
autoencoder.

Mapping data for a network with a configuration described
above. The corresponding input scan is shown in Fig. 3a.
It can be seen, that even though the network reduces the
dimension from 1160 to 224 values according to the size of
the last layer of the encoder, the structure of the scan can
still be reconstructed pretty well. In the next step we use the
activations of the encoder (here: nfeat = 224) as a feature
vector that describes a single scan line.
By transforming the scan lines to a sparse feature representa-
tion we can also reduce the required space to store and transfer
the data. This may for example be useful if the reference map
on a central server should be updated regularly. In addition,
the feature representation could also have positive influence on
the computation time. We analyze the run time for a diverse
number of features in section IV.

III. LOCALIZATION BY SEQUENCE ANALYSIS

In this step the absolute position of a vehicle is determined
by matching its current sequence of scan lines, more specifi-
cally its last part of a certain length, to the reference data set.
The position of the last item of the segment with the highest
consensus corresponds to the actual position of the vehicle.
In order to do the previously mentioned matching, we create
the test sequence by using the scan lines of the last nts time
steps. Since this work is based on time series data, to which
trajectories can also be counted as they are time series of
object locations, we are able to apply existing methods from
the research field ’sequence analysis’ to our data. Therefore,
the segment is transformed into a sequence of items, which
are described by the feature vectors provided by the autoen-
coder (section II). Afterwards, it is matched to the reference
sequences, which have been obtained by transforming the
reference data the same way. Instead of comparing the whole
feature vector of every sequence item to the reference map,
we apply a k-means algorithm to cluster the items based on
their feature vectors into k clusters. Using all features for
matching is computationally expensive and could not be done
in real time, especially for a large reference map. In contrast,
comparing two label sequences and counting the number of
matches is much faster.
The clustering parameter k further controls the degree of
similarity, which indicates if two items are assigned to the
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Fig. 4: Every feature vector of the reference map (top) and
the current sequence (bottom) is labeled into k clusters,
here colored blue, red, green and purple. A sliding window
approach combined with an item-wised distance calculation is
then used to find the best match between the sequence and the
reference map.

same cluster. A high k means that matched sequences are very
similar to each other, although the total number of matching
results is low.
However, due to inaccuracies in the data and different mea-
surement conditions between reference and test data (compare
section IV-A), the probability of finding exact matches, even
after having applied a clustering to shrink the alphabet, is still
quite low. Accordingly, we calculate a distance between both
sequences to determine their consensus instead of checking
for item-wise equality. This allows slight deviations between
the sequences and means, the lower distance the higher the
consensus is. As distance measure we use the Hamming
Distance, which counts the number of non-equal item pairs
in sequences of equal length. Fig. 4 shows the procedure for
matching the reference and test sequences.
In the following experiments (section IV) we discuss the
influence of nfeat, nts and k on the accuracy and robustness
of the localization results.

IV. EXPERIMENTS AND DISCUSSION

A. Data

We tested our algorithm on LiDAR data derived from a
highly accurate and dense Mobile Mapping system.
The data consists of several city parts in Hanover, Germany,
with living areas, the city center and also large roads with less
structure on the side. We use this data as a reference for our
experiments. The overall length of the trajectories is 26 km.
The data was recorded in winter 2015 and spring 2017. For
the test data set, however since we did not have the possibility
to attach an automotive line scanner to a vehicle, we created
the vertical scan lines artificially from a highly dense and
accurate real Mobile Mapping data set. For this reason, the
scan lines were generated by sampling from a 3D point cloud,
gathered by a Riegl VMX-250 Mobile Mapping System [21].
The system contains two laser scanners and a localization unit.
The localization is provided by a highly accurate GNSS/INS
system combined with an external Distance Measurement
Unit. Reference data from the Satellite Positioning Service
SAPOS is used to improve the localization, resulting in an
accuracy of about 10 to 30 centimeters in height and 20 cm in
position in urban areas. The measurement range of the laser
scanners is limited to 200 meters, the ranging accuracy is ten
millimeters.
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Fig. 5: Completeness, run time and root mean square error for
a varied number of features nfeat and a sequence length nts

from 2 to 500. The number of clusters k was set to 200.

Based on this data and on the corresponding trajectories we
created vertical 2D line scans. Fig. 3a shows an example
for the laser scan, transformed to a 2D representation. The
configuration of the scans is comparable to typical automotive
scanners: a maximum range of 40 meters, an angular resolu-
tion of 0.25 degrees with an opening angle of 290 degrees.
The resulting laser scan (one scan line) therefore consists
of 1160 range measurements. Please note that we did not
add additional noise to the LiDAR data. We set the scanning
frequency to 50 Hz and the driving velocity to 15 m/s, yielding
a distance of 30 cm between the scan lines in driving direction.
In our experiments we chose a trajectory of 11 km length
that extends from Hanover Nordstadt to the city center, see
Fig. 7. In contrast to our reference data the test data was
recorded in summer (2015), with substantial more vegetation
and several more changes in the LiDAR data. We performed
the localization for about 35,000 positions along the test
trajectory, without any use of GNSS signals.

TABLE I: Effect of the parameters of the neural network with
a sequence length nts of 200 scans and a cluster size k of 200
clusters on the localization accuracy and completeness.

fcl nfeat kernel size filters c [%] RMSE [m]

1 94 2 9 95.7 1.37
1 519 1 37 94.9 1.45
2 413 5 54 95.6 1.39
2 727 4 20 94.7 1.39
2 783 6 4 93.6 1.40
3 224 1 42 97.4 1.37
3 384 5 59 96.3 1.38
3 511 3 30 97.2 1.39

B. Results

We evaluated the localization performance using two
measures: accuracy defined as the root mean square error
(RMSE) of the resulting positions to the reference coordi-
nates and completeness c defined as the percentage number of
correct positions. We consider a position to be correct if the
Euclidean distance to the (known) reference position is less
than five meters.
First we studied the effect of the parameters of the autoen-
coder, namely the number of hidden fully connected layers
(fcl), the number of neurons in the last layer (which is equal
to our feature vector) (nfeat) and the kernel size and number of
filters in the convolution steps using latin hypercube sampling
[22]. Table I shows the the percentage number of successful
location determinations (completeness c) on our test trajectory
and the corresponding accuracy for several configurations. The
sequence length nts was set to 200 scans, the cluster size k to
200 clusters. It can be seen that the best results are achieved
for a configuration with three fully connected layers, 224
neurons, a kernel size of 1 and 42 filters. It is remarkable that
a convolution with a kernel size of 1 yields to the best results,
as this does not result in a classical convolution. However
one by one convolutions (in 2D) are used in some network
architectures and were introduced by Lin et al. 2014 [23]. For
this specific configuration the completeness rate c is 97.4%
and the RMSE is 1.37 m. Hence we used these parameters
as a basis for further experiments, where we analyze the effect
of nfeat, k and nts.

Fig. 5 shows the results for a varied number of features
and a varied sequence length . In general c increases with a
higher nfeat. At a sequence length of 200, the completeness
for nfeat = 100 is 98.9%. At a vehicle velocity of 15 m/s
(54 km/h) nts = 200 corresponds to a travelled distance of
60 m. Starting at nts = 200 the localization results using a scan
representation of nfeat = 10 features achieves better results
than using the original range scans, which can be better seen
in Fig. 6 which shows a magnified part of Fig. 5a. Using
only ten features instead of the whole range scan also reduces
the required amount of storage space. A whole scan with in
this case 1160 float values requires 4.64 kilobytes whereby
a representation of ten features, which leads to comparable
results, only requires 40 bytes.
A change in the sequence length nts has a direct influence
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Fig. 6: Completeness for a varied number of features nfeat

and a sequence length nts from 100 to 500. The number of
clusters k was set to 200.

on the run time of the sequence analysis (see Fig 5a). The
less labels we have to compare, the faster the algorithm is.
In addition, a lower sequence length means that the vehicle
needs less measurements and therefore less time to determine
its position. At nts = 200 the computation time for a single
global position determination is 62 ms on a 2.6 GHz CPU
using only one core. The run time for computing 224 features
using the neural network is less than one millisecond.

Next to nts we also varied the number of clusters k in the
k-means clustering. Starting at k = 20 the algorithm already
performs well, with c = 96.3%. A maximum is reached at k
= 50. As the influence of k on the computation time is very
low, it is anyway advisable to set k to a high value.

Fig. 7 shows a map of positions, where the localization
method achieves the correct results (green), wrong results (red)
and where no reference data is available (blue). In area 4 and
5 the localization doesn’t work at small town squares. In area
3 the reason of wrong localization results may be caused by
the street design, with three to four lanes on the road and
low structure at the sides. We assume that additionally using
intensity data of the laser scans will reduce these errors. The
problems in area 1, 2 and 6 appear because of construction
sites or other large changes in the data sets, so that scans of the
same position are assigned to different labels. This problem
may be solved by a change detection analysis of the data.
All these relatively small gaps could also easily be bridged
by adding data of an inertial measurement unit in a filter
approach.
To show that our method also works on real data, we tested
it on reference and test data gathered by an automotive laser
scanner of the Oxford RobotCar Dataset [25]. Again using
features gathered by a neural network leaded to better results
than using the original range measurements. In this case, using
a sequence length of nts = 200 yielded a completeness rate
of c = 100% along a 3 km trajectory. Due to the lack of a
highly accurate reference trajectory in the dataset we can not

Correct positionCorrect position
Wrong positionWrong position
No reference dataNo reference data
Reference trajectoryReference trajectory

200200 00 200200 400400 600600 800 m800 m

1
4

5 6
2

3

Fig. 7: Visualization of correct (green) and wrong (red) local-
ization results overlaid on an open street map [24] of the study
area. Positions where no reference data is available are colored
blue. The dashed line represents the reference trajectory. In this
case nfeat was set to 224, k was set to 200, and nts was set
to 200.

provide information about the accuracy of our method.

V. CONCLUSION AND OUTLOOK

In this paper we presented an approach to localize a vehicle
in a city using LiDAR data without any prior information.
First we trained a neural network to reduce the feature space
of a single laser scan. The network then was used to generate
features for every vehicle position along a reference and a
test trajectory. The reference trajectory was used to train a k-
means clustering, whose labels build the reference graph. The
test trajectory was then clustered by the same k-means. The
global localization was done by matching the last nts labels
at a certain test position to the reference graph.
The results show that the method yields up to 99% correct
position estimates and a RMS error of about 1.4 m for data
derived by measurements of a Mobile Mapping system. The
completeness and accuracy decreases with a smaller sequence
length and number of clusters in the k-means. The influence of
the length of the feature vector is insignificant. The algorithm
even performs fine if the laser scan is reduced from 1160 range
measurements to ten feature values. Most of the problems in
the localization step are caused by changes in the data and low
structured street surroundings. We also tested our algorithm
on the Oxford RobotCar Dataset, which yielded even better
results.
As already mentioned, a change detection algorithm would
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help to reduce the number of errors. If an area is measured
frequently, the reference graph should be updated using this
data. It would be helpful to store several occurring scans and
in our case labels for the same place, like presented in [10].
In future works we also plan to use the intensity data of the
reflected laser scans. Thus we can also consider not only the
shape of an object, like a building facade, but also the surface.
Further, lane markers on the road can help in poorly structured
areas to improve the recognition rate.
At the moment the reference data is stored consecutively in
the graph, without taking junctions into account. In future the
algorithm should work independently of the turning direction.
Therefore we have to define a graph structure that also
considers the possible turnings while matching the last nts

values of a sequence. To improve the accuracy and to bridge
gaps, we also intend to combine the global LiDAR localization
with inertial data in a filter approach. It is also planned to
extend our method to an even larger data set, e. g. containing
the main city parts of Hanover.
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