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Abstract. For beneficial data integration, semantic correspondences of
geodata of different origin which are mostly unknown, must be deter-
mined. This is a prerequisite to a growing interoperability of data and
services in Spatial Data Infrastructures (SDI). The approach presented
here starts with the assumption that geometric similarity and spatial
correspondence are leading to semantic correspondences. In this way we
infer semantic relations between heterogeneous geodata from the geomet-
ric characteristics of instances using feature matching and Data Mining
methods.

1 Introduction and Overview

The increasing availability of geospatial data sets, especially via the Internet,
allows a growing interoperability of geodata of different origin as well as informa-
tion sharing and reuse. But the optimal use of these data is not given in the nec-
essary way, because the semantic relationships between arbitrary data sources,
like equivalence-, disjunction- or inclusion-relations are mostly unknown. Thus at
present it is possible only with great effort and the experience of experts to iden-
tify all relevant geospatial data that answer e.g. the following question 'Find all
geospatial data in vector format that describe water objects in the northern part
of Germany!’. Neglecting the various syntactic heterogeneities (i.e. data types
and formats) the requirement for a successful integration of geodata of different
origin, that answer this question, is to identify the semantic relations between
the data’s ontologies and to determine e.g. all the semantic object classes in the
different data sets corresponding to 'water objects’, ideally automatically.

Only with the knowledge about the content e.g. that object class 'Gewasser’
of a German data set is completely equivalent to object class "Water Bodies’ of
an English data set and not to object class "Vegetation Areas’ from the latter, a
fast and reliable answer to such questions is possible and therefore suitable for
a data integration application on the Web.

However, the semantic relations between various object classes are not always
as clear as in the example above. In many cases a linguistic similarity between two
object classes is not given, because the label of object classes is only an abstract
identifier using characters and/or numbers of which one can derive no affiliation.
Also, even if corresponding terms are used, there still may be differences in the
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actual use of the terms in different user communities and their ontologies. For
this reasons we want to disregard the labels and the definitions of the object
classes. Instead we want to identify semantic relations only by the exploitation
of the geometric characteristics of the instances themselves.

The research hypothesis is that object descriptions belong to the same phe-
nomenon, when they describe either spatial similar objects (i.e. objects in the
same geographical position), or if they have similar geometric properties. Start-
ing from this hypothesis we are introducing two scenarios in this paper. In the
first case we match identical objects represented in different data sets given in
the same geographical extent by a geometric overlay. Subsequently we derive the
semantic relations between individual object classes of different ontologies.

Not every geographic area is represented in multiple data sets, and thus
the derivation of the semantic relationships across identical objects cannot be
made. Therefore the second scenario has to be considered. In this case, semantic
correspondence is inferred by geometrically similar objects. These object fulfill
pre-defined shape rules of certain object categories derived directly by means of
Data Mining methods from the data.

The paper is organized as follows. In the next section the background of the
research is sketched and references to existing work are given. Then, the methods
for the two integration cases are presented. At first the semantic integration of
data in the same geographical extent and then in different extent. A summary
and an outlook conclude the paper.

2 Related Work

There is a large number of research work dealing with the semantic data in-
tegration and especially with the detection of semantic similarities in different
ontologies. Kokla [3] presents guidelines for geographic schema or ontology inte-
gration. One option to identify semantic correspondences is to do it manually by
careful inspection of given object catalogues or ontologies. But such a manual
process is no longer feasible, if we aim at an integration of arbitrary data sets
that can be loaded in the internet.

Rodriguez and Egenhofer [7] summarized, that the general approach of data
integration has been to map the local terms of distinct ontologies onto a sin-
gle shared ontology. Then, the semantic similarity is typically determined as a
function of the path distance between terms in the hierarchical structure un-
derlying the single ontology. Kokla and Kavouras [4] developed a method for
revealing salient semantic information (semantic properties and relations) from
existent geographic ontologies with methods from the Natural Language Pro-
cessing (NLP) in order to perform concept comparison and reconciliation. It is
based on the realization that definitions contain an abundance of semantic infor-
mation. By comparing terms, semantic elements and their value similarities and
heterogeneities between geographic concepts are identified. Rodriguez and Egen-
hofer [7] calculate semantic similarity using other features, such as attributes,
parts and functions. This approach is suitable for comparing categories, when
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both categories do have such complete and detailed descriptions. However, most
existing geographic metadata sources do not provide this sort of information
and consequently this approach is not appropriate in every case. The drawback
of these approaches, that compare the terms, attribute values or descriptions of
the object classes is, that in general, it can not be assumed, that the names or
descriptions in different ontologies are the same.

In contrast there is another method to automate the integration process, the
so called instance-based or extensional method, which uses the instances of the
different ontologies in order to determine transformation rules between them (see
[1] and [12]). Also Tversky [11] uses for the feature matching approach common
and different characteristics between objects or entities to compute semantic
similarity. Similar to Volz [12] we want to use the data themselves to derive
the semantic relations from the geometric relationships, especially for polygon
objects.

Therefore for our investigation we exploit the use of classification methods
that is also known in the field of machine learning as supervised learning tech-
nique (learning from examples). The classification is a two step procedure. In the
first step, a model is built to describe the set of data classes or concepts based
on the examples of a training data set. In the second stage, this model is used
to predict the resulting class of new data items [8]. Different methods to derive
classification rules and represent them are known, but one of the most famous
is the induction of decision trees, especially applying the ID3 [5] algorithm or
its further developments (e.g. C4.5, C5.0) [6]. These algorithms divide the ex-
amples in a top-down recursive manner into branches with nodes and leafs at
the end using an entropy-based measure - also known as information gain - as
a heuristic to separate the samples into individual classes [2]. Entropy is a fun-
damental concept in information theory which means ’a measure of how much
"choice’ is involved in the selection of an event’ [10], i.e. higher entropy involves
more choices and information, and is not good for classification. Therefore, the
algorithms of decision trees are trying to discover the lowest entropy, less choices
and information, recursively for the best classifications.

Sester [9] and Weindorf [13] already used geometric descriptions of spatial
data for the derivation of classifications.

3 Owur Approach: From Geometry to Semantics

In order to derive semantic correspondences between two geo-ontologies we use
the spatial and/or geometric characteristics of single instances of the data sets.
For the analysis two geodata sets in vector format describing topographic objects
with similar resolution (approx. 1:25K) were used: on the one hand ATKIS data
(the German Authoritative Topographic Cartographic Information System) and
on the other hand data from TeleAtlas in GDF format (Geographic Data Files).
The two data sets are modelled differently: whereas ATKIS uses a three level
hierarchy, GDF only distinguishes two hierachical levels. In both cases a further
distinction of the lowest class level using special attributes is applied. Another
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difference between both data sets is the very different granularity with respect
either to the object classes and the number of individual instances. Whereas the
topographic objects, like water or vegetation objects in ATKIS are modelled in
much greater detail than the comparable, more aggregated objects of the GDF
data, in turn the road and transportation objects of GDF data are modelled
in more detail, because the data was specially developed for vehicle navigation
purposes.

In the following sections the two test scenarios are presented in detail and
are illustrated in Figure 1. In the first case the two data sets are available in the
same geographical extent. The unknown semantic relationships are derived by
means of a geometric overlay procedure, in which the spatial correspondences in
combination with the geometric similarity are analysed. For the second scenario,
we first derive classification rules for all object classes of one data set from the
intrinsic characteristics of the objects. Subsequently similar objects in unknown
data sets can be identified applying these rules.

1. Test case: spatially coinciding data
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Fig. 1. T'wo test scenarios. On the top the first test case using spatially coinciding data
sets and at the bottom the second test case using spatially non-overlapping data sets.

3.1 Spatially Coinciding Data Sets: Analysis of Spatial and
Geometrical Characteristics of the Objects

For the derivation of semantic relationships between different data sets that are
given in the same spatial extent, in a first step identical objects have to be found.
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For this purpose our method performs a geometrical overlay of the data. In the
analysis we assume that the data sets are organized in layers each representing
an object class. The instances within a layer are modelled in a tessellation, but
instances of different layers within a data set may overlap each other. A typical
example are administrative objects that often encompass larger areas and gen-
erally overlay all the other objects, we call them ’container objects’. Due to the
data organization in layers a simple spatial intersection of the data sets without
considering further characteristics returns more than one matching candidate
to an object, which could cause difficulties for the further analysis. But not
only the layer structure, also the geometric discrepancies at the object bound-
aries themselves, cause an increasing number of possible matching candidates,
because adjacent objects may partially overlap. In order to reduce the number
of matching candidates an exclusion of neighbouring or minimally overlapping
objects is done with the consideration of the geometric criterion area during
the analysis process. The overlay ratios R; between the object area O; and the
intersection area I are calculated in both directions with R; = 1‘1070_0% with
i = 1,2. In Figure 2 the analysed 1:1-equivalence (Ry > 80 % A Ry > 80 %)
and l:n-inclusion (R; > 80 % V Ry > 80 %) instance relations are illustrated
with a simplified schematic diagram.

Instance relations First Condition: Area Semantic relations
1:1 relation R,280% ~ R,=280% 0, 0,
o, —
O, # .
- T fx
0, 0, # Sel DAES >
Frequency matrix SIS ammm -
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Fig. 2. Process of derivation of semantic relations between two geo-ontologies from
instance relations basing on defined conditions concerning the geometry.

The result for each relation is set up in a frequency matrix, that contains the
number of possible matching candidates, that fulfill the pre-defined conditions.
In our example the search for 1:1 relations did not yield many candidates, be-
cause as described above GDF contains more aggregated objects. In contrast, in
the frequency matrix of the 1:n instance relations also all relations to 'container
objects’ are included, as the 80% ratio between the object areas has to be met
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at least in one direction. But these results are not desired and for this reason
further geometric conditions have to be used. For example by comparing of the
mean widths or the elongations of two objects, one can exclude the relation to
an ’container object’. Depending on the type and the strictness of the conditions
chosen, reliable object relationships with information about the quality between
differently modelled objects are detected. Analysing the final matching candi-
dates within the individual frequency matrices yields to semantic relationships
between the object classes in the ontologies. A strong indicator for semantic cor-
respondences between object classes is probably if all kinds of instance relations
do exist. Therefore the reliability of the existence of semantic correspondences
can be derived from the relative frequency of the individual instance relations
regarding the total number of instances of the object classes. For example, if in
a simple case all instances of two object classes from different data sets meet
the 1:1 instance relation condition, then a 1:1 relation between these two object
classes can be assumed.

3.2 Spatially Non-coinciding Data Sets: Using Intrinsic Geometrical
Characteristics

For the second scenario we relax the restriction of the geographical extent. Conse-
quently the geometrical overlay procedure does not succeed in the first test case.
For this reason we have to identify geometrically similar objects by exploiting
the intrinsic characteristics of the objects themselves. Subsequently by means
of these geometrical properties we can derive the semantic correspondences be-
tween object classes in different ontologies. Therefore we have to define generally
valid description rules consisting of geometrical parameters from a training data
set representing all the object classes present in one data set.

As a preprocessing step the following critical question has to be answered:
Which shape descriptive parameters are necessary in order to describe the ge-
ometry of an object precisely and nevertheless objectively, and thus possess the
potential to make a clear identification of particular types of objects possible? A
fundamental problem is to model the subjective perception of objects as a func-
tion of these characteristics. To show the difficulties in describing the objects
a few examples are displayed in Figure 3. Humans use the following properties
to describe such object groups: buildings are of a small size and have generally
parallel borders and right angles, whereas a road network consists of a netlike
structure with mostly rectangular junctions. In turn, in most cases lakes and
ponds do have a round, organic outline, whereas rivers show a lengthier but
nonetheless organic shape with partially parallel borders and a mostly constant
width. These natural language descriptions also contain a lot of vague and fuzzy
descriptions, which make it difficult to transfer them to a computer. Still, it is
not clear, if they are sufficient enough to seperate different object types clearly
from each other.

After identifying the appropriate geometrical parameters, we compute the
following parameters for all objects of both data sets: Object area, perimeter,
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constant width

polygons or lines

Fig. 3. Possible descriptions of a subjective perception of selected object groups.

compactness, rectangularity, mean width, the approximate elongation, the min-
imum bounding rectangle and also combinations of these parameters. This list
of parameters is a start and not complete. As illustrated in Figure 1 in the first
step we use these collected parameter values in combination with the individual
object attributes (unique identifier and object class) in a classification process
(e.g. decision tree) in order to set up description rules for every object class of
the source data set. Subsequently objects in unknown data sets can be identified
with these derived rules.

For the first tests we use this procedure for water objects from the already
mentioned data sets: ATKIS and GDF. Therefore ATKIS is the source data set
and consists of two objects classes (5101 and 5102) representing rivers with a
total of 12 objects and one lake object class (5112) with 268 objects. We used
the J48 algorithm as classification procedure, which is based on the C4.5 and
ID3 algorithm. The source data set was partitioned into a training (70%) and
a test (30%) set. As a result we got the following decision tree as illustrated in
Figure 4.

<=20.23 >20.23
5112 (268.0/2.0) Rectangularity
<=0.20 >0.20

Rectangularity 5112 (2.0)

<=0.09 > 0.09
(510230 ] [ 5101 (7.0/1.0) |

Fig. 4. Decision tree for water objects of the source data set: ATKIS.
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The outcome of this are the two following simple description rules:

lake = {obj|Elongation < 20.23 V Elongation > 20.23 A Rectangularity > 0.20}
river = {obj|Elongation > 20.23 A Rectangularity < 0.20}. 96% of the test ob-
jects were classified correctly and only 4% incorrectly. In Figure 5 the results
of applying these rules to 647 water objects of the GDF data set are shown. In
this case 92% were classified correctly and 8% were not correct. In this process
mainly river objects were mis-identified as lake objects. Apart from the small
percentage of the incorrectly classified objects, at a first glance the results seem
to be very good.

L '."-:.

Fig. 5. The result of the application of the derived rules from ATKIS to the GDF data
set. The red colored objects are classified as rivers and the blue ones as lakes.

To test the potential of the classification rules, we applied them to another
object class of the GDF data set, namely vegetation. 76% of the objects are iden-
tified as lakes and 1% as river objects. This result, of course, is not satisfying and
reveals that the rules and consequently the chosen attributes are not sufficient.
The general idea is however, to use all classification rules derived for the objects
of the first data set. They are applied to the objects of the second data set. In
cases where an object of the second data set yields only one classification, the
result is unique and the reliability of a correct classification is high. In cases in
which there are several classifications, additional investigations are needed. We
plan to extend the rules with additional criteria, like neighbourhood relations.
For example buildings are generally situated near roads or water objects are
generally surrounded by vegetation. Finally the last step is to establish links
between the related objects classes of the ontologies.
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4 Summary and Outlook

The paper describes ongoing work on semantic data integration. The need of
integrating data sets of different origin and different granularity is evident, es-
pecially for data reuse. But the various data sources are quite different, starting
from different data formats to insufficient documentation. For this reason we
use the instances of the data themselves in order to infer the semantic corre-
spondences between object classes in the ontologies, being the prerequisite for
data integration. For determination of semantic relationships between different
geo-ontologies we analyse two different scenarios. In the first approach we use
two data sets in the same geographical extent with similar resolution. But how
useful is this method, if the resolutions are different? This further case remains
still open. In the second scenario we use data sets, that do not overlap. With
classification procedures from Data Mining we set up description rules consist-
ing of geometrical properties of the instances themselves in order to use these
rules for the identification of objects in unknown data sets. Up to now the pre-
sented methods are in an experimental state and future work will be necessary
with respect to the quality assessment of the derived semantic relationships.
Particularly the methods have to be tested on different data sets from several
sources.
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