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ABSTRACT: 
 
One of the hardest problems for future self-driving cars is to predict hazardous situations which may lead to accidents. Especially, 
the behaviour of pedestrians and cyclists is hard to predict, since they have the ability to appear suddenly in the field of view and to 
change their state abruptly. Human drivers solve this problem typically by having a deeper understanding of the scene. Knowing that 
there are certain areas, e.g. bus stops where pedestrians frequently cross, they lower their speed and raise their attentiveness to be 
prepared for unexpected events. The technical equivalent of this is to provide a hazard map, which serves as a prior for self-driving 
cars, enabling them to adjust driving speed and processing thresholds. 
In this paper, we present a method to derive such a hazard map using LiDAR mobile mapping. Pedestrians and cyclists are obtained 
from a sequence of point clouds by segmentation and classification. Their locations are then accumulated in a grid map, which serves 
as a ‘heat map’ for possibly hazardous situations. To demonstrate our approach, we generated a map using LiDAR mobile mapping, 
obtained by twelve measurement campaigns in Hanover (Germany). Our results show different outcomes for the city center, 
residential areas, busy roads and road junctions. While repeated mapping using mobile mapping systems will not be a scaleable 
approach for future deployment, our experiment shows the results which may be obtained in the future by cooperative mapping using 
the built-in sensors of future cars. 
 
 

1. INTRODUCTION 

1.1 General Instructions 

According to the global status report on road safety by the 
World Health Organization (World Health Organization, 2013), 
road traffic injuries are the eighth leading cause of death. 1.24 
million people die annually as a result of a road injury. 27% of 
the road deaths are pedestrians and cyclists. In low- and middle-
income countries this number even goes up to a third of all 
fatalities. Nowadays, there is the vision that automated, self-
driving cars will help to reach the goal of zero traffic accidents. 
The observation of human behaviour in traffic contributes to the 
solution of this problem. Humans will perform much better if 
they act in a familiar environment, especially if they know it 
from their daily commute and have observed possibly hazardous 
situations at certain locations in the past. Hence, it is not only 
the static ‘background’ information, which helps them to master 
the current situation but also the knowledge of areas which are 
more risky than others due to regular local events, such as 
accidents or dangerous situations. Even though this knowledge 
is just a prior, it helps to reduce the risk of such situations. With 
regard to vehicles it means that they have to analyze their 
environment continuously. Sensors like laser scanners or 
cameras can map dynamic objects, namely pedestrians and 
cyclists, that occur in traffic scenes. The on-board computer 
interprets the data and stores the crucial information in a joint 
map of all vehicles in a certain region. In this paper, we call this 
map a hazard map. However, the benefit of this map is not only 
restricted to driver assistance systems. It can also be used in 
public transportation planning, like the determination of bus 
stops, where the knowledge of high pedestrian occurrence is 
very helpful. 
 
We created an initial hazard map by using LiDAR data 
measured by a Mobile Mapping System. We chose a LiDAR 
system because of its high accuracy combined with a high 
spatial resolution. To collect a sufficient amount of data, we 

took 12 measurements drives of the same 13km trajectory in 
Hanover (Germany). The principle procedure is shown in 
Figure 1. In a first step we segmented free-standing objects of 
every measurement. We looked at the extent of these objects 
and removed those, whose width and height is not appropriate. 
In the next step, we used certain features describing the shape of 
the remaining objects for a pedestrian and cyclist classification. 
The objects were classified as pedestrians/cyclists by a Random 
Forest classifier and saved in a map. Overall we detected more 
than 10,000 pedestrians and cyclists. As a result, we generated a 

Figure 1: Steps of the hazard map generation: First, free-
standing objects were segmented and classified as being 

pedestrians/cyclists or not. Next, classified dynamic objects of 
12 measurement drives were aggregated and then saved in a 

map (Google Inc., 2015). 



 

 

map where every cell indicates the probability of occurring 
pedestrians and cyclists. 
Section 2 gives a review of related work. In section 3 the 
generation of the hazard map is described. The results of the 
pedestrian and cyclist detection are presented in section 4. 
Finally, in section 5 conclusions are drawn. 
 

2. RELATED WORK 

Pedestrian and cyclist detection plays an important role in driver 
assistance systems. In most cases image-based solutions are 
used, increasingly in combination with a stereo camera system. 
Oren et al. (Oren et al., 1997) use a wavelet template for 
pedestrian detection in mono camera images. Gavrilla (Gavrilla, 
2000) uses a hierarchical template matching approach to detect 
pedestrians from moving vehicles with a reduced computation 
time. A stereo-based approach is used in Zhao and Thorpe 
(Zhao and Thorpe, 2000). Here, pedestrians are detected by 
neural networks in real-time. A more precise pedestrian 
detection method with regard to the position of the objects can 
be done by using LiDAR measurements. In Arras et al. (Arras et 
al., 2007) and Premebida et al. (Prembida et al., 2009) an 
automotive laser scanner with only one horizontal scan line is 
used to detect pedestrians. In both approaches the scanner 
measures the people's legs. Features are calculated and used to 
train a classifier and afterwards to classify the measured objects. 
In contrast, Spinello et al. (Spinello et al., 2010) use a 3D point 
cloud to detect pedestrians. The method divides the analyzed 
objects into several height cells, classifies each cell and then 
again joins the single cells. Although the pedestrian detection 
works for small distances, the accuracy decreases for longer 
ranges. The entire set of object points is analyzed in Navarro-
Serment et al. (Navarro-Serment et al., 2010) and Kidono et al. 
(Kidono et al., 2011). Both calculate features describing the 
shape of the object. Next to statistical analyzes of every 
containing point, the main concept of Navarro-Serment et al. is 
to represent the 3D object as two 2D histograms, a main and a 
secondary plane. The amount of points in every histogram cell 
is used as a feature in a support vector machine (SVM) 
classifier. Kidono et al. additionally determine so called slice 
features to reduce the number of false positives. The slice 
features divide the point clusters into blocks with a specific 
height along the principal eigenvector. The object expansion 
along the two orthogonal eigenvectors is saved as a feature. In 
our pedestrian and cyclists classification approach, we mainly 
use features based on the classification concept of Navarro-
Serment et al. (Navarro-Serment et al., 2010) and Kidono et al. 
(Kidono et al., 2011).   
The generation of a map representing the probability of 
occurring pedestrians and cyclists has not been covered in 
literature so far. In Karimi (Karimi, 2012) the movement of 
pedestrians was simulated by an agent-based model. The goal in 
Orellana and Wachowicz (Orellana and Wachowicz, 2011) and 
Lerman et al. (Lerman, 2014) was to detect the movement 
behavior of pedestrians, especially places where people stop. In 
Orellana and Wachowicz GPS-modules were used to record the 
trajectory of pedestrians and to derive the movement vectors. In 
Lerman et al. pedestrians where counted by hand in different 
street segments and at different times. As a result a map of 
pedestrian movement was generated. In our approach we want 
to detect pedestrians and cyclists fully automatically and save 
them subsequently in a map. 
 

3. GENERATION OF THE HAZARD MAP 

The hazard map was generated by using Mobile Mapping data 
of 12 measurement campaigns in Hanover, Germany. For every 

point cloud pedestrians and cyclists are detected by an object 
segmentation and classification approach. The labelled 
pedestrians and cyclists are then registered in a map, realized as 
a 2D grid, where every cell indicates the probability of 
occurring dynamic objects. 
 
3.1 Data acquisition 

The data was collected by a Riegl VMX-250 Mobile Mapping 
system, containing two Riegl VQ-250 laser scanners, a camera 
system and a localization unit. The system is shown in Figure 2. 
The localization is provided by a highly accurate GNNS/INS 
system combined with an external Distance Measurement 
Instrument (DMI). The pre-processing step is made by the 
corresponding Riegl software and additional software for 
GNSS/INS processing, using reference data from the Satellite 
Positioning Service SAPOS. The resulting trajectory is within 
an accuracy of about 10 to 30 centimeters in height and 20 
centimeters in position in urban areas. 
Each scanner measures 100 scan lines per second with an 
overall scanning rate of 300,000 points per second (RIEGL, 
2012). The measurement range is limited to 200 meters, the 
ranging accuracy is ten millimeters. Figure 3 shows a point 

Figure 2: Mobile Mapping System Riegl VMX-250 mounted on 
a van. 

Figure 3: Point cloud gathered by the Mobile Mapping System 



 

 

cloud measured by the Mobile Mapping System, which is 
colored by the intensity of the reflected laser beam. 
 
3.2 Pedestrian and cyclist detection 

The pedestrian and cyclist detection consists of two steps. At 
first, we segment any free-standing objects from the point 
cloud, like pedestrians, cars, trees and buildings. Secondly, the 
segmented objects are classified. As we are only interested in 
pedestrians and cyclists, we can restrict the classification to two 
classes: pedestrians or cyclists and other objects. After the 
classification step the map's cells get updated for every detected 
pedestrian or cyclist. 
The segmentation of free-standing objects is straightforward. If 
they are detached from the ground, the remaining points just 
have to be clustered. For both steps, the ground segmentation 
and the clustering step, we chose a seeded region growing 
approach, presented in Adams and Bischof (Adams and 
Bischof, 1994). First of all, the local normal vectors for every 
point using the 25 nearest neighbors are computed. In the next 
step, the seed points are picked from which the region starts to 
grow. As we want to segment the ground, we sort the points by 
their height and chose the k lowest points with a normal vector 
which points up within a tolerance of 0.2. Here k is given by 0.5 
percent of the total number of points. For the growing step, a 
new point is added to the ground if it is within a radius of 20 
centimeters and its local normal vector in z-direction points up 
within a certain tolerance. After every seed point has been 
processed, every point that belongs to a ground region is 
removed from the cloud. Next, a region growing is performed 
for the remaining points with only the Euclidean distance 
(20cm) as a growing threshold. The result is shown in Figure 4. 
As can be seen, pedestrians, poles, buildings, trees and cars 
were successfully separated from each other. Since we assume 
pedestrians and cyclists to have a specific maximum height, we 

additionally filter the objects by a height threshold of 2.5 
meters. 
 
Feature Dimension 
Object width 1 
Object height 1 
3D covariance matrix 6 
Normalized 2D histogram for the main plane 
with 14 x 7 bins 98 

Normalized 2D histogram for the secondary 
plane with 9 x 5 bins 45 

Slice features 20 
Table 1: Features for the pedestrian and cyclist classification. 

The following step is the classification of the remaining objects 
which is done by the Random Forests implementation of the 
OpenCV library (Bradski, 2000). Random Forests are a set of 
decision trees and were introduced by Breiman in 2001 
(Breimann, 2001). Prior to the classification step, training data 
has to be generated. The training data consists of objects with a 
known class label, whereby the objects are described by a 
feature vector. We used 2200 labeled objects to train the 
classifier: 500 pedestrians and cyclists and 1700 other objects. 
The feature vector has a size of 171 features, which are listed in 
table Table 1 and described in the following. 
The first two features are the segment height and width. The 
next features are given by the 3x3 covariance matrix, which can 
be computed by performing a principal component analysis 
(PCA). First, the mean value in x/y/z-direction is subtracted 
from every segment point. The resulting points are then used to 
calculate the covariance matrix Σ by 
 
 

Σ =
1

n − 1 + �(xk −  m)(xk −  m)T
∞𝑛

𝑘=1

 (1) 

Figure 4: Segmented objects without ground Figure 5: Classified objects with dynamic objects colored red. 



 

 

 
As Σ is a symmetric matrix, we only need to store six values in 
the feature vector. The remaining feature values are used to 
describe the shape of the objects by normalized 2D histograms. 
We divide the objects into a main and a secondary plane, as 
described in (Navarro-Serment et al., 2010). The main plane 
represents the front view of an object, the secondary plane the 
side view. Both planes are transferred into a normalized 2D 
histogram containing the number of points for every cell. 
Furthermore, we used so called slice features, introduced by 
(Kidono et al., 2011), to reduce false positive detections. The 
potential pedestrians and cyclists are divided into ten blocks of 
the same height along the z-direction. The block height depends 
on the overall object height. The features are then given by the 
point cluster width along the two horizontal eigenvectors of 
every block. 
Finally, the trained Random Forest is used to classify every 
remaining object. Figure 5 shows the classified objects. 
Pedestrians and cyclists are colored red, other objects are 
colored blue. 
 
3.3 Map generation 

To generate the dynamic map, we created a grid of one meter 
cell length, where every object classified as pedestrian or cyclist 
is entered. We use a kernel density estimation approach, where 
every object increases the cell values in the surrounding, based 
on a normal distribution kernel. The standard deviation of the 
kernel is set to five meters. In addition, the cell values are 
weighted by their minimal distance to the road. 
 

4. RESULTS 

We used data from 12 measurement drives on four different 
days for the same 13km trajectory in Hanover (Germany) in a 
time slot from 07:00 to 18:00. Overall, we detected more than 
10,000 pedestrians and cyclists. Figure 6 shows a crop of the 
detected objects. The resulting map can be seen in figureFigure 
7. The whole map of the trajectory can be found in figure Figure 
9 in the appendix. It can be seen that on road junctions and at 
central places the probability of occurring pedestrians is much 
higher than on large roads. In the city center, like in the northern 
streets in Figure 10, many hot spots occur, while on the road in 

the south of Figure 11, called Friedrichswall, the number of 
occurring pedestrians and cyclists is low. 
The true positive rate of the Random Forest classification is 
78.6%, the false negative rate 4.1%.  In table Table 1 the result 
is compared to the respective false positive rate in Navarro-
Serment et al. (Navarro-Serment et al., 2010) and Kidono et al. 
(Kidono et al., 2011). Although the chosen features are mostly 
similar, the classification performance in this approach is 
higher. One reason may be the high precision and point density 
of our Mobile Mapping data. 
 
False negative classifications, meaning that a pedestrian or 

 

 (a) Typical pedestrian. 

 

(b) Typical pedestrian (side 
view). 

 

(c) Cyclist. 

 

(d) Pedestrian pair. 

Figure 8: Example point clusters of occurring pedestrians and 
cyclists. 

Figure 6: Classified dynamic objects of 12 measurement drives Figure 7: Dynamic map colored by cell values from green to 
red (Google Inc., 2015). 



 

 

cyclist was not detected as a dynamic object, mainly occur if the 
shape of the object is uncommon. In many cases the reason is 
that two people are walking close to each other, like shown in 
figure Figure 8(d). Typical pedestrian shapes like in figure 
Figure 8(a) and Figure 8(b) and also cyclists (figure Figure 8(c)) 
can be detected in general. We tried to improve the detection of 
pedestrian pairs by separating the pedestrian/cyclist-class into 
three classes: Pedestrians, cyclists and pedestrian pairs. This 
yielded to a worse classification performance with a joined true 
positive rate of only 62.6% and a slightly better false negative 
rate of 3.0% for the detection of dynamic objects. One solution 
for future works could be to separate a pedestrian pair into two 
single objects. Furthermore additional features, for example 
derived by the point reflection intensities, could be used to 
improve the classification. 
Another problem are double detections of dynamic objects. Our 
Mobile Mapping System consists of two laser scanners, both 
measuring a vertical scan line. If e.g. a moving cyclist is 
registered by one scanner and a few moments later by the 
second scanner, the position of the dynamic object will have 
changed and it will appear two times in the point cloud. This 
problem may be solved by comparing dynamic objects to 
objects in their neighborhood and filter pedestrians and cyclists 
with a high correspondence. Alternatively, only one Scanner 
could be used, whereby this may yield to a worse classification 
performance and to dynamic objects, that are not captured by 
the Mobile Mapping System. 
 

5. CONCLUSION 

In this paper we presented a method to generate a map of 
dynamic objects, namely pedestrians and cyclists, fully 
automatically. We used a Mobile Mapping System to record 
LiDAR data in 12 measurement drives along a 13km trajectory 
in Hanover, Germany. Pedestrians and cyclists were detected in 
two steps: First, free-standing objects were segmented using a 
Region Growing algorithm. In the next step the objects were 
filtered and classified. A Random Forest implementation was 
used to classify the dynamic objects by the use of 171 features 
describing the shape of the individual objects. We achieved a 
true positive detection rate of 78.6% and a false negative rate of 
4.1%. Overall we detected more than 10,000 pedestrians and 
cyclists. In future works, the detection rate can be increased by 
improving the object segmentation and using additional 
features. 
 In the next step the dynamic objects are accumulated in a 2D 
grid with a cell size of 1m. We call this grid hazard map. For 
every detected pedestrian and cyclist the appropriate cell value 
and its surrounding cell values get increased, dependent on the 
distance to the road. The generated map shows that in central 
places the occurrence of pedestrians and cyclists is much higher 
than on large roads. 
Possible applications of hazard maps are driver assistance 
systems. Intelligent lighting systems can use the information 
gained by the map to illuminate hazardous areas where the 
probability of occurring dynamic objects is high. Automated 
vehicles also can adapt their driving behaviour in regions with a 
high probability. Though we call it a hazard map, it can also be 
used in other contexts. Smarter (public) traffic systems can be 
designed based on this map. Further the map could be used for 
location analyses of different kind of services and shops. 
The map generation is so far based on point clouds which are 
currently captured with an expensive and highly accurate 
Mobile Mapping System. For the future, data can be collected 
using a crowd based approach, e.g. using mono/stereo cameras 
which anyhow will be built into most vehicles. 
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Figure 9: Map overview. 

  



 

 

 
Figure 10: Northern part of the hazard map. 

 
 

 
Figure 11: Southern part of the hazard map. 
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