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Summary: These days 3d models are used in a huge variety of applications and the demands in 
quality and quantity are steadily growing. At the same time, the extraction of man-made objects from 
measurement data is quite traditional. Often, the processes are still point based, with the exception of 
a few systems which allow to automatically fit simple primitives to measurement data. The need to be 
able to automatically transform object representations, for example, in order to generalize their ge-
ometry, enforces a structurally rich object description. Likewise, the trend towards more and more 
detailed representations requires to exploit structurally repetitive and symmetric patterns present in 
man-made objects, in order to make extraction cost-effective. In this paper, we address the extraction 
of building facades in terms of a structural description. Our reconstruction is based on a formal 
grammar to derive a structural facade description in the form of a derivation tree and uses a stochastic 
process based on reversible jump Markov Chain Monte Carlo (rjMCMC) to guide the application of 
derivation steps during the construction of the tree. 
 
Zusammenfassung: Grammatik-basierte Fassadenrekonstruktion mittels rjMCMC. 3d-Modelle 
werden heutzutage in vielen Anwendungen gebraucht und die Anforderungen an sie steigen ständig 
an. Gleichzeitig werden aber großteils noch die klassischen Extraktionsverfahren verwendet, die 
meist punktbasiert arbeiten. Für viele Anwendungen wird ein Modell in unterschiedlich detailreicher 
Darstellungen benötigt. Die hierzu hilfreiche automatische Transformation des Modells in verschie-
dene Darstellungen kann durch eine strukturelle Beschreibung des Objekts ermöglicht werden. Zu-
sätzlich kann die Beschreibung von sich strukturell wiederholenden oder symmetrischen Mustern eine 
effektive Modellierung begünstigen. In diesem Artikel wird eine Methode zur automatischen Rekons-
truktion von Fassaden aus Bild- und Entfernungsdaten vorgestellt. Das strukturelle Modell ist durch 
eine Fassaden-Grammatik gegeben und der Modellierungsprozess wird durch ein rjMCMC-Verfahren 
gesteuert. 
 
1    Introduction 
The extraction of man-made objects from sensor data has a long history in research (BALT-
SAVIAS 2004). Especially for the modelling of 3D buildings, numerous approaches have been re-
ported, based on monoscopic, stereoscopic, multi-image, and laser scan techniques. While most of the 
effort has gone into sensor-specific extraction procedures, very little work has been done on the struc-
tural description of objects. Modelling structure though is very important for downstream usability of 
the data, especially for the automatic derivation of coarser levels of detail from detailed models. 
Representing structure is not only important for the later usability of the derived data, but also as a 
means to support the extraction process itself. A fixed set of structural patterns allows to span a cer-
tain subspace of all possible object patterns, thus forms the model required to interpret the scene. 
Grammars have been extensively used to model structures. For modelling plants, Lindenmayer sys-
tems were developed by PRUSINKIEWICZ & LINDENMAYER (1990). They have also been used for 
modelling streets and buildings (PARISH & MÜLLER 2001, MARVIE et al. 2005). But Lindenmayer 
systems are not necessarily appropriate for modelling buildings. Buildings differ in structure from 
plants and streets, in that they don't grow in free space and modelling is more a partition of space than 
a growth-like process. 
For this reason, other types of grammars have been proposed for architectural objects. 
STINY & GIPS (1972) introduced shape grammars which operate on shapes directly. The rules replace 
patterns at a point marked by a special symbol. MITCHELL (1990) describes how grammars are used in 
architecture. The derivation is usually done manually which is why the grammars are not readily 
applicable for automatic modelling tools. 



 

ALEGRE & DALLAERT (2004) use a stochastic context free attribute grammar to reconstruct facades 
from image data by applying horizontal and vertical cuts. WONKA et al. (2003) developed a method 
for automatic modelling which allows reconstructing different kinds of buildings using one rule set. 
The approach is composed of a split grammar, a large set of rules which divide the building into parts, 
and a control grammar which guides the propagation and distribution of attributes. During construc-
tion, a stochastic process selects among all applicable rules. VAN GOOL et al. (2007) discuss different 
facade reconstruction algorithms and show the use of repetitions in the structure for the reconstruction 
with shape grammars. 
Our aim is to extract facade elements from image and range data automatically. The facade model is 
defined by a grammar which comprise the structure of facades. Each grammar rule subdivides a part 
of the facade in smaller parts according to the layout of the facade. The derivation process is guided 
by a reversible jump Markov Chain Monte Carlo (rjMCMC) process. 
DICK et al. (2004) introduce a method which generates building models from measured data, i.e. 
several images. This approach is also based on the rjMCMC method. In a stochastic process, 3D 
models with semantic information are built. MAYER & REZNIK (2006) also use a MCMC method for 
the facade reconstruction from images. 
The rjMCMC algorithm is used for other applications e.g. detection of road marks (TOURNAIRE et 
al. 2007) as well. In general rjMCMC is a top-down-approach, but TU (2005) integrated generative 
and discriminative methods and used a data driven MCMC (DDMCMC) for image parsing. 
We also present a way to use information about the facade structure from the data. We derive distri-
butions of facade attributes like the position of windows. These distributions are used for the rule 
proposal additionally to the general prior knowledge, which was used in our previous work on facade 
reconstruction (RIPPERDA & BRENNER 2006). The extra information from the data causes to evade the 
large number of wrong proposals which occur using only general prior knowledge on facades. 
For the facade reconstruction we need a structural model that describes the facade. In the presented 
approach the model is given by a facade grammar. A derivation tree of a word of the grammar repre-
sents the model of a given facade. 
A stochastic process, the rjMCMC process, guides the reconstruction process. Section 2 introduces 
the facade grammar and section 3 gives an idea of the rjMCMC process and shows how to adapt it to 
the grammar. 
 
2    The Facade Grammar 
A formal grammar G consists of an alphabet of terminal T and nonterminal N symbols, a start symbol 
S and a set of production rules P. We use a context-free grammar, this means that P contains rules of 
the form N→(T∪N)+. All words that can be derived from S with rules from P build the language L(G) 
of the grammar G. 
For facade reconstruction we define a grammar GF which language L(GF) contains possible facades 
(for details see RIPPERDA & BRENNER 2006). In the derivation process the model of the facade should 
be developed further in each step. Therefore each rule splits the part of the facade corresponding to 
the left side symbol in a variable number of facade parts corresponding to the right side symbols. So 
the derivation process is a partitioning process of the facade. The start symbol S is an empty facade. 
This is subdivided in further derivation steps. 
A split can be caused by different reasons. The first is a difference in the facade structure. If a facade 
contains different structural parts it is split into part facades according to the structure and the parts 
are modelled individually. This change in structure often occurs in ground floor and upper floors. 
The other reason for a split is similarity or repetition. If a facade is symmetric or contains repetitions 
the repeated pattern needs to be stored only once. Additional information like number of repetitions 
completes the model. 



 

 
Fig. 1:Example facade (a) with a partition according to the facade grammar (b) and the 
corresponding derivation tree (c). 

Fig. 1 illustrates an example of a facade reconstruction. Part a) shows the image of the facade and 
part b) a partitioning according to the facade grammar. The corresponding derivation tree c) and 
additional attributes build the reconstruction of the facade. The example contains splits of both kinds, 
based on similarities and based on differences. Similarities are arising in the symmetric part and in the 
arrays of windows. So for example the rules SYMMETRICFACADESIDE→ARRAY and FACADEELE-
MENT→ARRAY are based on the repetitions of the facade elements. The rule FA-
CADE→SYMMETRICFACADESIDE SYMMETRICFACADEMIDDLE contains a bit of both. The SYMMET-
RICFACADESIDE is the similarity part but the additional SYMMETRICFACADEMIDDLE is due to differ-
ences in the middle of the facade. Another rule based on differences is SYMMETRICFACADEMID-
DLE→FACADEELEMENT FACADEELEMENT. 
The structure of the grammar is shown is Fig. 2. There are three levels in the grammar. The first one 
contains the symbols which have no information about the structure of the facade. For example the 
start symbol FACADE. The only information at this stage is the outline of the building. In the second 
level structural information is added. The symbols can express symmetries, repetitions and so on. The 
terminal symbols, which are the real facade elements like WINDOW or DOOR, belong to the third 
level. 

 
Fig. 2: Structure of the facade grammar. 

 



 

 
Fig. 3: Subdivision of a facade in an upper and a lower part. 

 
The model is described by a parameter vector θ which contains the derivation tree and the attributes 
of the symbols. E.g. the parameter vector of the configuration in Fig. 3 is represented by the hierar-
chic structure θ = FACADE(0,0,w,h,(PARTFACADE(0,0,w,hs),PARTFACADE(0, hs,w,h-hs))), where w and 
h are the width and height of the facade and hs is the height of the split. 
 
3    Facade Reconstruction using RjMCMC 
We obtain the model of the facade using a stochastic process. We are searching for the model given 
by parameter vector θ with the highest probability p(θ|DSDI) under given scan (DS) and image data 
(DI) where the parameter vector θ encodes the current state of the derivation tree, including attributes. 
So we search for an unknown probability distribution p(θ|DSDI). To sample from such a distribution 
MCMC methods are often used. A Markov Chain that simulates a random walk in the space of θ is 
constructed. The transition kernel assigns a probability to each change from one state to another. 
After a proposed change an acceptance probability decides whether the change is accepted or not. The 
acceptance probability is defined in a way that the system converges to the target distribution 
p(θ|DSDI). In our case the dimension of θ changes during the process. This is not possible in the basic 
MCMC method. Therefore we use rjMCMC which contains jumps (dimensions changes) of θ. The 
probability of a dimension change is added to the transition kernel. 
For the rjMCMC process with target distribution p(θ|DSDI) we have to define a transition kernel 
J(θt|θt-1) and the acceptance probability α. 
The transition kernel J(θt|θt-1) assigns a probability to each rule and is made up from the commonness 
of the result in a dataset of facade images and some functions of the processed facade, which are 
described below. With the transition kernel in each iteration a rule is proposed. This is accepted with 
the acceptance probability  
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This depends on the unknown distribution p(θt|DSDI). Using Bayes' law, this is proportional to 
p(DSDI|θt)⋅p(θt), a product of likelihood and prior of the facade. In the following sections the jumping 
distribution and the acceptance probability are described in detail. 
 
3.1    Jumping Distribution 
The jumping distribution assigns a probability to each possible change in the facade structure. Ac-
cording to this probability a change is proposed. The method contains changes of different kinds. The 
first one is the application of a grammar rule. This splits the facade in different parts based on differ-



 

ences or repetitions in the facade. For this kind of change additional parameters must be proposed as 
well. These are for example the cut position or the number of parts in the facade. The distribution of 
these parameters is important for the acceptance of the change. To ensure reversibility, each rule can 
be applied from left to right and vice versa. This is a difference to the way split grammars are used, 
but is a requirement for the rjMCMC approach. 
The second kind of change is a rearrangement in the structure. The symbols stay the same but the 
parameters are modified. The position of a parting line can change or the size or number of windows 
alters. 
To build the transition kernel two kinds of distributions have to be defined. The first one is the prob-
ability to choose a rule and the second one defines the parameter like the position of a split line or the 
number of windows. Presently the probability for rules is assigned manually depending on an as-
sumed likelihood of the result. For example, a change FACADE→IDENTICALFACADEARRAY is more 
likely than FACADE→FACADEARRAY because facades build regular structures of similar elements. 
Some hints for the assumptions are taken from a database of facade images from Hannover. 
We need information about the distribution of colour or depth on the facade to control the split opera-
tion and to determine the distribution of the windows. Both depend on regularities and differences. 
For window grids we use autocorrelation and for splits a function based on a norm. 

                
Fig. 4: Smoothed image maintains only large changes in facade structure (left). Clustered 
facade calculated by colour value and depth (right). 

For splitting the facade into parts a change in colour or depth on a large part of the facade or irregu-
larities in structure are needed. The changes of colour and depth occur in different scales. We search 
for changes which influence a large part of the facade, for example a horizontal colour change is often 
associated with a change in the window structure, or alternatively changes caused by windows. 
Smaller artefacts in the facade may disturb the result. So we have different ways to score splits but in 
each we have to mask the small changes which falsify the result. One way to suppress such unwanted 
changes is to use a smoothed image (see Fig. 4, left). Another possibility is to cluster the facade 
depending on the colour value and in another step depending on the depth value. The colour and 
depth image clustered with k-means with manually chosen k are shown in Fig. 4 (right). From these 
images we can derive distributions for the additional parameters. 
To get the distribution of a split line we move the proposed split line from bottom to top of the facade 
(see Fig. 5) and look at the regions above Ru and below Rl the line. Differences between the regions 
score for the split. To evaluate the split line we compute the norm of the difference of both regions 
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Fig. 5: Two regions above and below the tested split line were moved over the facade. 

The results are shown in Fig. 6. For a better visual understanding the original facade image is overlaid 
to the resulting graph. With the cluster image (blue line) we achieve better results than with the scaled 
image (red line) because on the scale image lines at top edges of windows are scored better than 
colour changes throughout the entire facade. This is because the colour differences between black 
window area and grey or red wall area is greater than the difference between grey and red wall area. 
This happens for many facades with different colours in ground floor and upper floors. Therefore we 
use the norm of cluster images to get the split line distribution. 
To reduce the number of false proposals we integrate a general assumption to the distribution. The 
split occurs between the ground floor and the upper floors and most of the facades in the test area 
have four or five floors. So we introduce the assumption that the position of the split line is normally 
distributed with a mean at one quarter of the height of the facade. This masks the high scores in the 
upper part of the facade out (see Fig. 6 green line). 
 

 
Fig. 6: Facade image overlaid with the probability of splits evaluated by a scaled image and 
cluster image. Additionally the probability derived from the clustered image is combined with 
a general assumption to reduce high scores at false positions. 

 



 

To predict the distribution of windows we use autocorrelation. We correlate the overlapping parts of 
the facade image and a copy of it which we shift horizontally resp. vertically. Fig. 7 shows the result-
ing graphs. In the case of a regular window grid the correlation values show peaks in a regular dis-
tance. The number of peaks is the number of window rows resp. columns including one peak for the 
identical image. If the margins of the image are alike one additional peak for the case when the over-
lap tends towards zero arises. In the example the horizontal correlation shows nine peaks because of 
the eight window columns plus one for identical and border case. This pattern is not so clear for the 
vertical correlation because of the different ground floor. 
 

 
Fig. 7: Autocorrelation coefficient of a facade in horizontal and vertical direction. 

 
3.2    Scoring Functions 
The evaluation if a change is accepted is based on the scan and image data as well as the general 
knowledge of facades. The scoring functions affect the acceptance probability (1) in the term 
p(DSDI|θt)⋅p(θt) respectively p(DSDI|θt-1)⋅p(θt-1).  
The general plausibility of the model of the facade is given by the second term p(θt), the prior. It 
depends on the alignment, the extent and the position of the facade elements. Here we use the same 
scoring functions as given in (DICK et al. 2004) which where described in (RIP-
PERDA &BRENNER 2006) as well. 
The second group evaluates how good the model fits the data by comparing it to range and image 
data. This corresponds to the likelihood term p(DSDI|θt). In any case, the evaluation functions return a 
score which builds an acceptance probability for the change. 
To determine p(DSDI|θt) we have different possibilities which use scan and image data. We develop 
measures for depth and colour and use correlation, entropy and variance as well.  
First we look at a method to score a single window. For colour images we use the fact that windows 
have a different colour from facades. Typically they appear darker than the facade but in some cases 
also brighter because of reflections. If we use depth images we have the information that the windows 
typically lie behind the facade. This leads us to a method working on the clustered images. Therefore 
we consider one region for the window and one for the boundary (see Fig. 9 left) and look at the 
clusters inside these regions. Let Nmax be the number of pixels of the largest cluster inside the pro-
posed window region, N0 the number of unclassified pixels, Awin the area of the window, Abound the 
area of the boundary and Nbound the number of pixels of the boundary which belong to the largest 
cluster inside the window. αC gives a measure for the window. 
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To test this method separately we cut out a single window from a facade. For this small data set we 
compute the score αC for each possible position of the window (see Fig. 8 a)). Width and height are 
usually estimated in the process as well, but we show only the position here because of the 2d visuali-
sation. The position is the lower left corner of the window and the plot of the score shows the lower 
left part of the test area where the possible positions are located. Then we run the MCMC process for 
a single window (see Fig. 8 b)) and compare the results with the distribution given by the score func-
tion. In both plots red colour means high values and blue colour low values. To give an idea of the 
changes between two states Fig. 8 c) shows a part of the random walk. Fig. 8 d) shows the most 
frequent window position marked in the colour cluster image where different colours indicate differ-
ent clusters. 
 

 
Fig. 8: Reconstruction of a single window from a colour cluster image. a: Score function for 
all possible positions, b: Frequency of positions sampled with MCMC, c: Extract of the ran-
dom walk, d: Most frequent window position drawn in the colour cluster image. 

 
To score the distribution of windows we use a homogeneity measure. Here we give the priority to the 
similarity within a region instead the difference of two regions. We define one region for all windows 
and one for the surroundings (see. Fig. 9, right). If both regions are homogeneous the score for the 
window distribution is high. As a measure for homogeneity we use entropy or variance. Here we 
discuss entropy in detail. 
Entropy is  
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where n is the number of clusters, A the total area and |Ci| the number of points in the i-th cluster. We 
calculate the entropy for the proposed window area and the surrounding separately and use the sum 
for the score function. Fig. 10 a) shows the score function for different grid positions. We fix the 
number of grid points and the distance between them for a better visualisation.  
Because entropy gives high values for disorder and low values for homogeneous regions we invert the 
function. Before that we normalize it by log2 n which is the highest possible value. So the probability 
is given by αI = 1-I/log2 (see Fig. 10 b)). 



 

   
Fig. 9: Mask for a single window (left) and an array of windows (right). The window area is 
white and the boundary area grey. 

 
Fig. 10: Sum of entropy of window and boundary area for different grid positions (a) and the 
probability function derived from the entropy (b). 

 
4    Results 
We've tested the method on facades of dwelling houses. The input data are the point cloud and an 
orthophoto which is generated with the RiScanPro software. The other required data are computed in 
a first step. 
Fig. 11 shows some results of the reconstruction. In the facade on the left the model consists of a 
regular grid of window pairs. The size of the windows is modelled properly but not all windows are 
modelled at the right position. This is because the windows are not exactly arranged in a regular grid. 
In the second facade the vertical split line (green line) between ground floor and upper floors is mod-
elled at the correct position. For a similar reason as in the first facade not all windows are at the right 
position. But after a vertical split the windows in the regular region are modelled correctly (Fig. 11, 
right). 

     
Fig. 11: Reconstruction of facades. A regular grid of double windows is modelled for the left 
facade. In the middle the horizontal split line is reconstructed correctly (green line) but not all 



 

windows are modelled at the right position. After splitting the regular area of the upper part 
the window grid is modelled at the right position. 

 
5    Conclusion and Outlook 
In this paper, we have presented a method for automatic facade reconstruction from scan and image 
data. It combines the generation of artificial facade structures using grammars, and the reconstruction 
of facades using rjMCMC. Compared to existing grammar-based approaches, we gain the ability to 
reconstruct facades based on measurement data. Compared to existing rjMCMC approaches, by using 
a grammar, we obtain a hierarchical facade description and the ability to evaluate superstructures such 
as regularity and symmetry at an early stage, i.e., before terminal symbols such as WINDOW are in-
stantiated. 
For further work we want to enlarge our knowledge of facades to improve the proposal of facade 
elements. Therefore we analyse a set of facade images to get information about average window size, 
distance or style. Furthermore we plan to extend the facade grammar in order to be able to model a 
wider class of facade elements like balconies or ornaments. 
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