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ABSTRACT
Riding a bicycle in shared traffic alongsidemotor vehicles causes dis-
comfort or even stress for many cyclists. Avoiding busy or crowded
roads is only possible with good local knowledge, as no data is
available on the frequency of encounters with motor vehicles for
most roads. Acquiring a data set that combines smartphone sensor
data with known vehicle encounters can become the foundation
for a smartphone based moving vehicle detector. Therefore, read-
ings from the omnipresent smartphone sensors magnetometer and
barometer can be exploited as indicators of passing vehicles.

In this paper, a novel approach is presented to detect vehicle
encounters in smartphone sensor data. For this purpose, a modular
mobile sensor platform is first constructed and set up to collect
smartphone, camera and ultrasonic sensor data in real traffic sce-
narios. The platform is designed to be used with various sensor
configurations to serve a broader set of use cases in the future.
In the presented use case, the platform is constructed to create a
reference data set of vehicle encounters consisting of location in-
formation, direction, distance, speed and further metadata. To this
end, a methodology is presented to process the collected camera
images and ultrasonic distance data.

Furthermore, two smartphones are used to collect raw data from
their magnetometer and barometric sensor. Based on both, the
reference and the smartphones’ data set, a classifier for the detection
of vehicle encounters is then trained to operate on pure smartphone
sensor data. Experiments on real data show that a Random Forest
classifier can be successfully applied to recorded smartphone sensor
data. The results prove that the presented approach is able to detect
overtaking vehicle encounters with a F1-score of 71.0 %, which is
sufficient to rank different cycling routes by their ’stress factor’.
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1 INTRODUCTION
Bicycles do not have the same safety precautions as cars, and phys-
ical contact with other vehicles is dangerous even at low speeds.
In 2021, 84,125 cyclists and passengers were involved in accidents
on German roads, and 372 of these were lethal [2]. Thus, cyclists
react more sensitive about close by passing vehicles and feel uncom-
fortable and vulnerable during these situations. Therefore, many
cyclists ride close to parked cars at the roadside and risk accidents in
the so-called dooring zone due to carelessly opened doors or threaten
pedestrians by riding on the sidewalk. Ultimately, perceived crash
risk is the most common reason found in [18] discouraging people
from using bicycles and, in the worst case, lead to an increase of
motorized traffic.

Generally, the literature divides traffic safety into objective, sub-
jective and inferred safety. While the objective safety is based on e.g.
network infrastructure, traffic load, land use and former accidents,
the subjective safety is examined by user studies and the inferred
safety reflects the traffic participants’ interaction potentials based
on their distance among each other [3]. Among other examples for
analyzing objective safety, the work of [5] examines the influence
of structural (and other) aspects on traffic accidents, [19] reviewed
studies on bicycle safety which include cycling exposure, or [21]
examines the accident risk for cyclists based on historical accident
data and exposure by estimated daily cyclist volumes.
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Figure 1: Communication between the components of the sensor platform. The smartphone is connected to the logging unit
via Wi-Fi and the side sensors are attached via USB-cables.

In the revision of the German Road Traffic Act in April 2020, the
overtaking distances of motor vehicles to (among others) bicycles
are specified in § 5 (4) StVO1 as at least 1.5𝑚 in town and 2𝑚 for out
of town roads. Nevertheless, this limit continues to be undercut in
most cases on the road, as shown in a field study on car overtaking
behavior [20].

There are different approaches to study overtaking processes and
their respective context. Simulators can be used to reproduce experi-
ments in a controlled setting with representative subject groups like
in [8]. However, the observed behavior can only be transferred to
real situations with caution. Compact and mobile sensors nowadays
allow good recording of naturalistic cyclist behavior [10] and real
overtaking events in on-going road traffic [4, 6, 24], so that studies
are increasingly being conducted in this way. However, particularly
conspicuous sensor technology can in turn influence the behavior
of motor vehicle drivers, leading to miniaturization of measure-
ment setups like the open-source projects OpenBikeSensor [12] or
One Metre Plus [7]. The latter also contains an overview of further
studies with sensor-equipped bicycles. Even if the projects are de-
signed to be open for participation, the specific hardware required
is an entry barrier as well as a handicap in everyday measurement
and therefore a limitation in crowd sourcing. With the increasing
popularity of smartphones, there is a wide range of crowd-sourcing
campaigns and projects for collecting environmental data in every-
day life, making it possible to collect significantly more and more
diverse data in an efficient way. Smartphone based crowd-sourcing
projects on cycling topics are for example [11] recording dangerous
situations and near misses, or [22, 23] determining underground
roughness.

In this paper, different aspects of the previouslymentionedworks
are combined. A flexible extensible sensor platform for bicycles
is developed, which complements data recorded in parallel with
smartphone sensors. The platform (see Figure 1) includes a side-
ways looking camera and an ultrasonic distance sensor connected
to a Raspberry Pi based control unit. For the smartphone, in addi-
tion to GNSS for localization, the focus is on the magnetometer,

1German Road Traffic Act: http://www.gesetze-im-internet.de/stvo_2013 (accessed
2023-02-10)
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Figure 2: Methodology and data flow overview. The sensor
platform data is used to generate a reference data set. In com-
bination with smartphone training data the reference data is
used for machine learning (ML). The resulting classifier can
be applied to further crowd-sourced smartphone data.
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which is affected by the ferromagnetic properties of most vehicles,
and the barometer, which can detect pressure waves from pass-
ing vehicles. Since the effect of vehicle encounters on the sensor
values of a smartphone is not fully known, the sensor platform
semi-automatically generates reference data for overtaking events
to train and validate a machine learning classifier to detect them
in the sensor stream of the smartphone (see overview in Figure 2).
In this way, overtaking events by cars are detected using only a
smartphone (model must allow access to the barometric pressure
sensor) mounted on the bicycle handlebars and collected in an
easy-to-implement crowd-sourced campaign on (perceived) bicycle
safety.

The three major contributions of this paper can be summarized
as follows:

• Development and construction of a modular mobile sensor
platform

• Method for automatic extraction of vehicle encounters from
image and ultrasonic data

• Classification approach for vehicle encounter detection in
smartphone barometer and magnetometer data

• Publication of used code, sensor and reference data

2 MODULAR SENSOR PLATFORM
The technical setup aims to be extendable, using mainly low-cost
sensors and offering the flexibility to adapt to various measurement
scenarios. Overall, there are three key points that need to be met:

• Ensure ease of use in the data collection process and follow-
up

• Sensor platform must be adaptable for other measurement
scenarios

• The hardware configuration used for recording should be
comparable to using a common smartphone

Figure 3: Photo of the measurement setup of the prototype
sensor platform on a bicycle. The logging unit is located on
the luggage rack and the side sensor below it at the height of
the rear wheel.

As a technical realization of these requirements, the measure-
ment system is based on a single board computer with Ubuntu
Linux as operating system. Robot Operating System (ROS) [16] is

used to manage the communication and recording2 of all sensor
nodes. The system is controlled via a web interface3 displayed on
the smartphone, which simultaneously streams its sensors data via
a ROS node. The web interface provides ease of use and system
overview, ROS ensures adaptability for other tasks and easy inte-
gration of other sensors, and the use of a smartphone fulfills the last
requirement. Figure 1 shows the schematic setup of the different
components of the sensor platform and their interconnection for
communication and data transfer and Figure 3 the realization on a
bicycle.

2.1 Hardware
The system is developed around a single-board computer (the log-
ging unit). The sensor nodes are able to connect via USB (side
sensors) or Inter-Integrated Circuit (i2c) as well as the smartphone
via a tethered or wireless network connection (see Figure 1).

The logging unit is based on a Raspberry Pi 4b with 8𝐺𝐵 of
memory. It serves as the core unit of the system as it is responsible
for fetching data from the sensor nodes and storing them to a con-
nected storage device via the ROS framework. The rack mountable
platform also contains the battery supplying the system with power
for multiple measurement hours. The battery supplies all system
components via a USB-Power Delivery (USB-PD) connection at
12𝑉 except for the phone, as it is not tethered to the logging unit.

The side sensors are packaged into a 3D-printed holder4 that is
connected to the logging unit via two USB cables and are mounted
sideways on the bicycle, facing left towards the road. The distance
measurement is realized by an HC-SR04 ultrasonic sensor. The cor-
responding image data is captured from a Qumox SJ5000 action
camera that provides the video signal via USB. Both devices use
their USB connection for power and data.

The magnetometer and the barometer are embedded into the
setup by a Samsung Galaxy Note 9 or Samsung Galaxy S6 smart-
phone. These could theoretically be replaced by any smartphone
that exposes its barometric pressure sensor to readings from third-
party applications. This enables the recording of not only the ex-
plicitly required sensors, but also all other available smartphone
sensors. Global navigation satellite system (GNSS) services are also
directly available on the smartphone, which can be streamed al-
together to ROS via an app. The smartphone itself serves a dual
purpose, providing a way to view the web interface to view the
status of ROS, in addition to transmitting sensor data. It is attached
to the bicycle in a stable handlebar mount during the measurement
runs, so that it can be safely kept in view.

2.2 Software
Ubuntu Linux is used as the operating system for the Raspberry Pi
as it is the recommended OS to use with ROS framework. ROS is a

2ROS bike remote bag logging: https://gitlab.uni-hannover.de/tim-schimansky/ROS_
bike_remote_bag_logging
3ROS bike webcontrol: https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_
webcontroll
4ROS bike hardware: https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_
hardware

https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_remote_bag_logging
https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_remote_bag_logging
https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_webcontroll
https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_webcontroll
https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_hardware
https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_hardware
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software originally designed to control robots and it can be used in
this application because it offers high compatibility with common
sensors and the possibility of data logging. The sensor data streams
are bundled into topics and published in a unified interface on
the logging unit. To record the sensor data, the function originally
intended for debugging the robot is used. For this purpose, ROS
records a common file for all selected topics. The data in this file
is automatically synchronized with each other (according to the
accuracy of the calibration). The required ROS core and sensor
nodes are started at boot time when a hardware switch at the top
of the physical user interface is engaged. This way, only the ROS
service to trigger recording needs to be invoked on Raspberry Pi
via the web interface.

The processing of the recorded data is applied offline5. Since the
architecture of ROS is made for online processing tasks, it should be
possible to perform some processing on the sensor platform itself
in the future.

To use a phone as part of the sensor setup, an app called Ros-
AllSensors6, which connects to the ROS-core via a wireless network
connection, is used. The app is initialized before the measurement
starts and then minimized. When the data transfer is running, a
minimal web interface can be opened via the smartphone browser
to monitor the recording function and status.

3 DATA ACQUISITION AND PREPARATION
The following explains the data acquisition procedure using the
sensor setup described previously mounted to a bicycle (see Fig-
ure 3). In addition, the subsequent pre-processing for the automatic
extraction and characterization of overtaking processes is explained.
The collected raw sensor data and resulting reference encounter
events are published in [15].

3.1 Data acquisition
Since the aim of this work is to establish a relationship between
overtaking vehicles and the response of the smartphone sensors, it
is necessary to collect related reference measurement data. For this
reason, a mixture of different roads without structurally separated
cycle lanes is used for data acquisition. All roads are within the
urban area of Hanover (Germany) and have a maximum speed
limit of 30 − 50𝑘𝑚/ℎ. In addition to main roads, minor roads in
residential areas are used to diversify the data. To collect data
without vehicle encounters for diversification, a subset of the data
have been collected on bicycle-only paths (e.g. in the city forest).
This way, the reference data is not heavily biased towards any type
of road. During themeasurements, all other available sensor sources
of the smartphone are recorded for potential future analysis, as
they do not take up a significant amount of space on the drive.
An overview of the research area located in the city of Hanover
and the traveled routes are given in Figure 4. Measurements have
been made over the period of a total of 8 hours and 50 minutes
on a total of 12 measurement days and 5 hours and 29 minutes of
raw data have been collected. Measurements were all taken from

5ROS bike postprocessing: https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_
postprocessing
6ROS Driver for Android Sensors: https://github.com/rpng/android_sensors_driver
(accessed 2023-06-10)

late summer through winter during different daylight hours in dry
weather. Recording has been disabled when there are no foreseeable
encounters to save memory capacity. Within the collected raw data,
a total of 779 encounter events are included.

3.2 Platform based encounter detection
To achieve the initially mentioned goal, a classifier is trained us-
ing the reference data generated by the sensor platform. In order
to obtain a basic data set that links the vehicle encounters to the
sensor data, it is necessary to label and characterize actual vehicle
encounters. Since the processing of all recorded camera footage is
computationally intensive, it is only examined in situations when
an obstacle is in reasonable range (< 2.5𝑚) of the distance sensor.
Those images are analyzed using object detection and optical flow.
Based on this it is determined if the situation is an actual vehicle
encounter and the relative vehicle driving direction (overtaking or
opposing) is estimated. The accuracy of the detection is evaluated
by manually classifying the same encounters using a graphical
interface. This way a reference data set is created from the mea-
surement runs.

The ultrasonic sensor emits a sound pulse and measures the time
until the echo is received. From this, a distance to the obstacle can
be determined using the known speed of sound. Some features of
cars like the wheel housing or the under run protection of a truck
may result in a flaky echo response. Accordingly, the measured
values are filtered in order to identify clusters of measured values,
which are related to one vehicle. Therefore, valid and invalid mea-
surements are treated as a binary mask and combined into a cluster
by morphological closing of size 𝑛. Then the opposite operation
of erosion with size 𝑛 is carried out. Gaps smaller than 2 · 𝑛 are
eliminated by the combined operation. Contiguous areas in the
processed mask are treated as a cluster. The beginning and end
of such a cluster are transferred into a list as one entry with time
stamps as well as location.

False positives emerge from passing trashcans, lampposts or
other individual objects on their right-hand side. Further, false pos-
itives can also occur if the road is narrow and bordered by parked
cars on the opposite side within a distance of 2.5𝑚.

The encounter candidates identified in the previous step contain
a small number of false positive detections. In order to remove
those, the footage from the side-mounted camera is analyzed using
a pre-trained version of the YOLO-network (You Only Look Once
pre-trained on COCO). YOLO is a Convolutional Neural Network
(CNN) with a holistic approach for particularly fast bounding box
detection and classification of objects in images [9, 14]. If no cars,
trucks or buses are detected using YOLO in the time period consid-
ered, the candidate is immediately discarded.

Additionally, to confirm or deny the passing of vehicles, the cam-
era footage is used to determine the relative direction of travel of
the encountering vehicles (oncoming/opposing). For this purpose,
the previously determined bounding boxes are used to determine
the optical flow of the vehicle in the image by a second CNN called
RAFT (Recurrent All-Pairs Field Transforms for Optical Flow) [17].

https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_postprocessing
https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_postprocessing
https://github.com/rpng/android_sensors_driver
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Figure 4: Overview of the routes covered (dark blue) with the measurement system in Hanover (Germany) and the detected
encounter events in the form of a heatmap.
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manner.
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RAFT outputs an estimated movement (angle and amount) for each
pixel of two consecutive frames. In order to determine the displace-
ment direction and the distance from the vehicle, the bounding box
is used to calculate the dominant values for both unknowns. Since
the bounding box usually includes more than just the vehicle, a
Kernel Density Estimation (KDE) is performed to estimate the offset
direction and distance. These result in the formation of maximum
points that correspond to the offset direction and distance of the
actual vehicle (see Figure 5).

Bike Position 1 Bike Position 2

standing Vehicle

dF

rO1 rO2

P1
α

(a) Relative movement - standing vehicle

Vehicle Pos. 1

standing Bike

Vehicle Pos. 2
dF

rO

P1

α

(b) Relative movement - standing bicycle

Figure 6: Transfer ability of the geometric problem with rel-
ative motion.

In the case of oncoming vehicles, the strength of the parallax in
relation to the driving speed and the measured distance must be
used to estimate whether it is a stationary or a moving vehicle. The
image shift only reveals the relative motion between the bicycle
and the observed vehicle. Therefore, this problem can be looked
at from the point of view of a static bicycle (see Figure 6), where
the relative speed determined from the image is compared with the
speed of the bicycle. If these two values are similar, the vehicle is
stationary.

The measured values of the lateral distance sensor are averaged
as the distance value 𝑟𝑂 , while the camera is used for the angle 𝛼 .
The distance traveled by the bicycle 𝑑𝑇 between two consecutive
frames is calculated from the GNSS speed 𝑣𝐹 and the time difference
between the frames 𝛿𝑡 . The horizontal movement angle 𝛼 is the
result of the pixel shift within the known horizontal field of view.
Together with the measured distance 𝑟𝑂 , a triangle is constructed
to calculate the distance. This way, the pixel shift corresponds to
𝑑𝑃 . The distance traveled 𝑑𝑇 along with the pixel displacement 𝑑𝑃
results in the total relative distance of the movement 𝑑𝐹 .

In order to evaluate the automatically extracted encounters, an
absolute reference is necessary. This is generated by means of a
lightweight GUI tool in which all epochs with a lateral distance
below the threshold of 2.5𝑚 are manually classified one by one. The
numbers for oncoming and overtaking events are listed in Table 1. A
visual representation of the distance distribution is given in Figure 7.
Extracting information about the passing distance and where the
encounters tend to occur is already possible from the resulting data
set. However, this requires the additional sensor technology on the
bicycle, which is why only reference data is collected with it.

Table 1: Amount of extracted vehicle encounters from the
reference data after the automatic (AU ) and after the
manual extraction procedure (MA).

Movement direction #
Oncoming AU 342
Overtaking AU 474∑

AU 816
Oncoming MA 215
Overtaking MA 564∑

MA 779

4 SMARTPHONE BASED CLASSIFICATION
The next step aims to bypass the additional sensors from the sensor
platform besides the smartphone by means of a machine-learning
model, which is used to learn the relationship between sensor
behavior and vehicle encounters7. The feature generation for the
classification is realized using a sliding window approach to be
independent of the length of single trajectories. The sliding window
approach is performed in a way that a window of fixed temporal
length is slid over the data stream (with a predefined step length) to
generate features for the respective window. Afterwards, a Random
Forest [1, 13] classifier is trained on the generated training data
samples.

The focus lies on the smartphone’s barometer and magnetometer,
as these show the strongest reaction to passing vehicles. In addition,
the collection of these for a crowd sourcing approach is significantly
less critical from a data protection point of view in contrast to
e.g. images. Vehicles in motion create a higher pressure zone in
front of them and a lower pressure zone behind them through
the displacement of air. This effect is particularly noticeable when
7ROS bike encounter detection: https://gitlab.uni-hannover.de/tim-schimansky/ROS_
bike_encounter_detection

https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_encounter_detection
https://gitlab.uni-hannover.de/tim-schimansky/ROS_bike_encounter_detection
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Figure 7: Histogram of all recorded vehicle encounters with respect to their passing distance. Colors are according to the
difference in automatic and manual extraction procedure. False positives are those samples that are incorrectly assigned to the
class. Meanwhile, false negatives are those that are not recognized as samples for the encounter classes.
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Figure 8: Example for the impact on the barometric pressure
sensor from an overtaking car (red area marks passing vehi-
cle).

vehicles are passing at high speed. However, the effect also occurs
at lower speeds (see Figure 8).

The magnetometer measures the magnetic flux density along
three orthogonal axes. Ferromagnetic objects influence the field
lines of the naturally occurring magnetic flux. For example, if a car,
bus or other vehicle in the vicinity of the magnetometer affects
the magnetic field, the local magnetic field lines and therefore the
readings will be affected as well (see Figure 9).

As the data set is very unbalanced, this approach discards the en-
counters with opposing vehicles, as they account for only 21 % of all
recorded encounters. In addition, the classes of non-encounters are
subsampled to achieve a class balance of the samples. The features
are determined by dragging a window over the data set. Features
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Figure 9: Example for the impact on the magnetometer from
an overtaking car (red area marks passing vehicle).

such as the standard deviation, minimum or maximum of all four
data traces are calculated for the respective data section. The same is
done for the rates of change to capture the influence of spontaneous
value changes. This combination of features has proven to be the
most reliable. The inclusion of features obtained from an FFT or the
quartile values of the signal did not show any significant improve-
ment in the tests. A reduction of the three magnetometer axes to the
magnitude and single sensor approaches have also been pursued.
For the sliding window approach, a window length of 5 𝑠 and a step
width of 1 𝑠 have been found to be appropriate. The split between
training and test data is performed on the unmixed result of the
sliding window approach to avoid moving overlapping/adjacent
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windows into both data sets. This results in less convincing test
metrics, but ensures transferability to new data.

The training data is used to train a Random Forest that deter-
mines the overtaking status based on the features computed for
each window. To avoid overfitting, the parameters for the maxi-
mum depth of trees, the number of samples for a split, the number
of trees and the number of samples for a leaf are approximated in
a parameter study. This is done in a staggered grid search, where
the first search is done in a coarse grid, and then a second search is
done around the resulting values in a finer grid.

The search yields a value of 20 for the maximum tree depth and
a value of 150 for the number of trees as the best compromise. The
numbers of samples for a split and per leaf are set to 5 and 10
respectively. The training results of the model can be found in
section 5.

5 RESULTS AND DISCUSSION
The results for the automated extraction as well as for the classi-
fication approach are described in the following subsection. The
approaches are evaluated based on the classification confusion ma-
trix and quality scores, precision, recall and F1-Score.

5.1 Platform based encounter detection
The recognition of the vehicle encounters from the data of the side-
mounted sensors (subsection 3.2) can be verified by linking amanual
classification of the same data. The set of 1466 samples includes
all events considered in the evaluation that could potentially be
a vehicle encounter. The results of the detection compared to the
reference can be seen in 2a and 2b. The number of false positive
samples, especially for the overtaking vehicles, is low at 0.8 %. The
recall values are at over 80 % each. Overall, the classification works
better for overtaking, than for opposing vehicles, as the precision
and the amount of false positives suggest. Since the false negative
rate refers to the total period without encounters and is difficult to
quantify, it is not included in the metric, but only the events pre-
selected on a distance basis. For this reason, the quality of automatic
detection based on distance selection can be considered good with
an overall accuracy of 84, 0 %.

A practical advantage over approaches such as OpenBikeSensor
[12] with completely manual labeling of overtaking events is obvi-
ous, because the automation shown allows drivers to concentrate
completely on the road while driving and any analysis can be done
afterwards. The detections can also be checked afterwards and the
definition of the classification can be adjusted based on the image
material more objectively, where other approaches have to rely
on the situational decision of the drivers (which are also subject
to errors). In addition, this approach allows the detections to be
supplemented with further information, such as the vehicle type,
from the images.

5.2 Smartphone based classification
In contrast to the analytical extraction of vehicle encounters from
the side sensor data, the classification based on the barometer and
magnetometer data is a machine-learning problem. Therefore, the
available data must provide a solid basis for training a classifier, and

Table 2: Quality measures for the test data of the automatic
extraction of vehicle encounters based on data from the side
sensors. Compared are no vehicle encounter (NV), oncoming
vehicle (OC), and overtaking vehicle (OT).

(a) Confusion Matrix

NV OC OT
∑

NV 569 115 3 687
OC 22 192 1 215
OT 59 35 470 564∑

650 342 474 1466

(b) Quality Scores

Precision Recall F1-Score
NV 87.51 % 82.8 % 85.1 %
OC 56.1 % 89.3 % 68.9 %
OT 99.2 % 83.3 % 90.6 %
Overall accuracy 84.0 %

the classes must be balanced among themselves. The data set con-
tains a total of 1791 samples for overtaking vehicles after applying
sliding window feature extraction (1391 after a training/test split
of 80 %/20%). Oncoming vehicles are completely neglected here
since they were not recorded in sufficient numbers. Combining
overtaking and oncoming vehicles also proved counterproductive
for the performance, as the characteristics of the two classes appear
to be too different. The samples for the background class, where
no encounters occurred, are reduced to the number of overtaking
samples for balancing.

The entries in the binary confusion matrix (see 3a) show that the
majority of the samples have been assigned to the correct classes.
Furthermore, it is clear that fewer samples of the OT class are
declared false negative than is the case for the NV class. This is
also consistent with the metrics in the table of quality scores (see
3b). The Overall Accuracy of 69.3% signals that two-thirds of
the samples are correctly identified in the classification of a fully
independent data set. In general, the F1 score reveals that overtaking
vehicles can be detected marginally better.

The barometer does not only record the pressure curve caused
by the encounter, but also other influences such as gusts of wind,
slipstream, and other effects. In the same way, the magnetometer
senses undesirable influences such as parked vehicles, metal bridges
(and possibly also rail tracks or overhead lines) and much more.
These effects could be part of the reason for the imperfect classifi-
cation results. It should also be considered that two different and
several years old smartphones were used, whose own influence on
the magnetometer was not taken into account. This should make
it more difficult for the Random Forest to learn uniform patterns.
This influence could be minimized by a prior calibration and the
use of up-to-date hardware.

6 CONCLUSION AND OUTLOOK
In this work, a low-cost, modular and mobile sensor platform is
developed. Mounted on a bicycle, it automatically detects vehicle
encounters in flowing traffic using camera images and ultrasonic
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Table 3: Quality measures for independent test data of auto-
matic vehicle encounter detection based on the smartphone
based classification approach using barometer and magne-
tometer data. Compared are no vehicle encounter (NV) and
overtaking vehicle (OT).

(a) Confusion Matrix

NV OT
∑

NV 233 135 368
OT 91 277 368∑

324 412 736

(b) Quality Scores

Precision Recall F1-Score
NV 71.9 % 63.3 % 67.3 %
OT 67.2 % 75.3 % 71.0 %
Overall accuracy 69.3 %

distance measurements. The used raw sensor data and reference
encounter events are published in [15]. The detection results are
used to train and evaluate a Random Forest classifier based on
features derived from barometer and magnetic flux data recorded
only by a smartphone.

The presented method for automated extraction of training data
from image and distance data has proven to be useful for the col-
lection of a larger and more comprehensive data set in the future
and to reduce manual labeling work by a large amount. However,
the preprocessing pipeline for vehicle encounter detection should
be improved to address factors such as the different sampling rate
of different smartphones, sensor outages or a general anomaly
detection.

The presented classifier shows that an automatic detection of
overtaking events purely based on consumer smartphones is pos-
sible with a F1-score of 71.0 %. Further enhancements, such as
additional training data collected by the sensor platform, refined
feature definitions, or data augmentation, could lead to higher qual-
ity scores and thus reliability. The reasons for the extensibility of
the results seem to be multifaceted. On the one hand, the classifier
utilizes sensors that are affected by many other influences in road
traffic. On the other hand, the amount of training data is expand-
able, especially for oncoming vehicles. This is a general problem for
learning-based methods. Increasing the size of the data set would
allow an extension to a three-class problem (incl. oncoming ve-
hicle detection) and could allow deep learning-based methods to
be applied. However, the current performance is sufficient for the
intended use case of a simple and crowd-sourcing based data col-
lection to compare and weight road segments among each other in
order to prioritize ’quieter’ ones for cyclist routing.

In the future, the developed modular mobile sensor platform
can be used to acquire more passing events and provide them as
new training data for an improved detector. This will also help
to map the frequency of vehicle encounters along the respective
roads or enable statistics about vehicle passing distances. This way
navigation applications could use this data to navigate cyclists on

less stressful and potentially safer routes or to be considered in
urban planning processes. The quality of the data obtained depends
on the sensor technology used. In this work, two smartphones were
used for data collection. It is therefore important to investigate in
the future whether the sensor properties of other devices have an
influence on the results.

Furthermore, it is conceivable that the system could be used
in other projects, for example air quality and temperature moni-
toring, road shading and surface condition measuring or wireless
network mapping. The platform can be extended easily with ad-
ditional ROS nodes connecting to the respective sensors. While
the current setup of the sensor platform only focuses on the de-
tection of vehicles passing on the left side to measure specifically
the distance of these vehicles, it could be extended to detect ve-
hicles on both sides by adding a second camera or LiDAR. This
way an overall traffic monitoring system could be established for
e.g. parking lot detection and automatic reporting of occupation
or illegal parking. The whole platform is realized in a low-cost
fashion, while providing reasonable results. Therefore, it could be
integrated into electric micro-mobility vehicles such as e-bikes and
shared e-scooters to establish a dynamic urban monitoring network.
Overall, the developed sensor platform is a solid base for future
data acquisition.
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