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ABSTRACT: 
 
Terrestrial laser scanning provides a three-dimensional sampled representation of the surfaces of terrestrial objects. The fully automatic 
registration of terrestrial laser scanning point-clouds is still a question as it involves handling huge datasets, irregular point distribution, 
multiple views, and relatively low textured surfaces. In this paper, we propose a key point based method using intensity and geometry 
features for the automatic marker-free registration of terrestrial laser scans. We apply the SIFT method for extracting feature points 
from the reflectance image and geometric constraint for excluding false matches. To evaluate the performance of proposed method, we 
employ a test scene in downtown Hannover, Germany. Reference orientations were acquired by the standard orientation procedure 
using retro-reflective targets and manually assisted target selection. In the experiments, we present the results of the proposed method 
regarding performance, accuracy and running time for the test scene. 
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1. INTRODUCTION 

Terrestrial laser scanning provides a three-dimensional sampled 
representation of the surfaces of terrestrial objects, such as 
buildings, sculptures and so on. In most cases, the acquisition of 
several scans is needed to obtain full scene coverage, and 
therefore the data collected from different locations of a scanner 
must be transformed into one global reference frame. The fully 
automatic registration of terrestrial laser scanning point-clouds 
is still a question as it involves handling huge datasets, irregular 
point distribution, multiple views, and relatively low textured 
surfaces. If a good priori alignment is provided and the point 
clouds share a large overlapping region, existing registration 
methods, such as the Iterative Closest Point (ICP, (Besl and 
McKay, 1992)) or Chen and Medioni’s method (Chen and 
Medioni, 1991), work well (for a comparison, see 
(Rusinkiewicz and Levoy, 2001)). However, in practical 
applications of laser scanners, partially overlapping and 
unorganized point clouds are usually provided without good 
initial alignment. In these cases, the existing registration 
methods are not appropriate since it becomes very difficult to 
find the correspondence of the point clouds. 
 
 
2. CURRENT APPROACHES AND OPEN QUESTIONS 

For practical purposes, the identification of tie points between 
scans is nowadays solved using artificial markers which are set 
up in the scene prior to scanning. Using retro-reflective 
materials, they can be detected automatically in the laser scan 
using threshold methods. However, distribution and collection 
of the targets is quite time-consuming and often exceeds the net 
scanning time by a factor of five (Brenner et al., 2008). 
Furthermore, due to practical requirements, an optimal 

distribution often cannot be obtained, resulting in a non-optimal 
distribution of registration errors. In those cases, it would be 
desirable to select tie points evenly distributed in the 
overlapping scan volume. 
 
To addresses the above problems, there has been extensive 
research for developing automatic registration of terrestrial laser 
scans. Brenner et al. (2008) investigate two different 
registration methods targeted at the determination of suitable 
initial values. The first one is based on planar patches, using 
corresponding planar features to compute the orientation. In 
their autonomous method, following the extraction of planar 
patches from different scans, plane triples are assigned, 
transformations are computed and scored, and the 
transformation with the highest score wins. However, the 
extraction and assignment of the planar patches may become a 
quite complex task in the case of confusional scenes. The 
second one is a non-symbolic approach based on an iterative 
alignment scheme using the normal distributions transform. 
Barnea and Filin (Barnea and Filin, 2008) present a 
computational approach for the registration problem. They 
exploit 3D rigid-body transformation invariant features to 
reduce significantly the computational load involved in the 
matching between key features. Bae and Lichti (Bae and Lichti, 
2004) use variation in geometric curvature and approximate 
normal vector of the surface to determine the possible 
correspondence of point clouds. This requires the computation 
of the normal vector and the curvature itself. These descriptors 
have high potential to be effected by noise because of the 
dependency on second-order derivatives. 
 
Recently, there have been approaches to extract tie points in 
laser scans without artificial markers using the well-known 
scale invariant feature transform (SIFT, (Lowe, 2003)). This 
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method has originally been developed for image matching and 
has been shown to be robust against changes in illumination, 
scale, rotation and affine distortion. Since most terrestrial laser 
scanners have the ability to capture images as well, the obvious 
way to use SIFT for laser scans is to extract feature points from 
the images first, and then compute their 3D coordinates using 
the known relative orientation of camera and scanner (Bendels 
et al., 2004; Barnea and Filin, 2008). However, Böhm and 
Becker (2007) have even shown that good results can be 
obtained by applying the SIFT operator to the reflectance image 
of the scanner directly. 
 
Inspired by this, it has been our goal to improve these 
results.We address the major drawbacks of the methods which 
use SIFT features directly. First, SIFT has been deliberately 
built to work across huge scale and viewpoint differences. 
However, using laser scans, the scale and viewpoint are known. 
Second, applying SIFT in the image or reflectance data only 
ignores the geometric information available in the scan data. 
Therefore, geometric important features may be ignored by 
SIFT method if they are not so distinctive in the reflectance 
image. On the other hand, SIFT will be indifferent to high 
responses that are due to the actual features, or to fake ones 
resulting from objects partially covering an object in the 
background and thus creating a feature-like effect. The latter 
may lead to false matches. Thus, it was our goal to improve the 
extraction of interest points by incorporating geometric 
information. 
 
In this paper we present an automatic registration method, using 
geometric feature-point matching. Geometric curvature (e.g., 
the Gaussian and mean curvature) is invariant to 3D rigid 
motion. Therefore, the change of geometric curvature of the 
surface formed by a point and its neighborhood are used for 
selecting the possible correspondences of point clouds. We add 
the Gaussian, mean curvature values to the SIFT feature 
descriptor vector so that not only the gray values but the surface 
geometric properties take part in the detecting and matching of 
feature-points to optimize the matching process and reduce the 
computational cost involved in the matching between geometric 
features. We also show how the information embedded within 
the range data is utilized to improve the quality of the selected 
geometric feature points, such as discarding the fake features 
(resulting from partially occluded objects) by distinguishing 
layered surfaces with respect to their distances. 
 

2.1 Registration methods 

Registration of terrestrial laser scanning data is to find the 
rotation and translation parameters which makes corresponding 
locations in the two point clouds SP1 and SP2 coincide. Due to 
the six degrees of freedom to place and orient the acquired 
point cloud in 3D space, any two corresponding points p1, 

p2 with p1 SP1, p2 SP2, are related by a rigid 
transformation. 
∈ 3\ ∈ ∈

1 2p Rp T= +  (1) 

where R is a 3×3 rotation matrix, and T ∈  is the translation 
vector. The transformed point of  (i.e., 

3\

2p2p′
2Rp T= +′ ), and 

its correspondence p1 in SP1, do not exactly coincide because of 
measurement errors. Then, the transformation parameters for R 
and T can be found by minimization of the sum of 
distance

1

2

2p p′−∑ between p1 and . Therefore, the 

major task is to calculate rotation and translation parameters 
between the two point clouds SP1 and SP2. 

2p′

 
If a good priori alignment is provided and the point clouds share 
a large overlapping region, existing registration methods, such 
as the Iterative Closest Point (ICP, (Besl and McKay, 1992)) or 
Chen and Medioni’s method (Chen and Medioni, 1991), 
achieve a good performance. However, those methods fail if the 
initial alignment given is too far away from the true relative 
position and orientation. Therefore, methods to obtain a good 
initial alignment are of importance. 
 

3. THE TEST TERRESTRIAL LASER SCANS 

In this paper, the test scans have been acquired using a Riegl 
LMSZ360I scanner, which has a single shot measurement 
accuracy of 12mm, field of view of 360°×90°and a range of 
about 200 m. At 0.12° step width, a full scan takes 
approximately four minutes and results in a maximum of 
3000×750 = 2.25 million scanned points. We selected an area 
called “Holzmarkt” in the historic district of Hannover, 
Germany, as an example for a densely built-up area (Brenner et 
al., 2008). In order to obtain reference values, manual 
alignment using artificial targets has been carried out, leading to 
errors generally in the range of a few millimeters. Table 1 
shows the relative positions and orientations of the scans for 
those combinations that have been used for the alignment tests. 
One can verify that the scanner has been placed at approximate 
distances of 5m and with arbitrary orientation. Using the 
reference values, we also calculated the overlap between scans 
(as shown in Table 2). 
 

Pair ω (°) φ (°) κ (°) X(m) Y(m) Z(m)
01-02 -1.088 -0.112 51.731 -5.50 0.96 0.02
01-03 0.551 0.419 57.447 -10.69 1.87 0.08
01-03a -25.707 15.540 62.495 -10.64 1.96 0.05
01-04 1.984 0.481 119.261 -16.77 2.53 0.14
01-05 -0.692 0.678 -118.535 -21.05 4.24 0.16
01-05a 40.577 -19.397 -111.274 -21.12 4.11 0.09
01-06 -0.154 0.276 29.409 -24.71 2.74 0.29

... ... ... ... ... ... ... 
02-03 1.432 -0.958 5.733 -2.50 4.64 0.08
03-04 0.824 -1.174 61.834 -2.72 5.47 0.01
04-05 1.482 2.238 122.148 3.58 2.90 -0.08
05-06 0.096 0.665 147.948 3.07 -2.51 0.07

... ... ... ... ... ... ... 
 

Table 1: Reference values for the relative orientation of scan 
pairs. (First part: relative orientation of SP1 and all other scans. 
Second part: relative orientation of successive scans. The tilted 
scans, which were marked with an “a” suffix, were acquired at 

the same positions as the upright scans.) 
 

Pair Overlap (%) Pair Overlap (%)
01-02 83.1 02-03 82.6
01-03 77.7 03-04 81.3 
01-03a 73.3 04-05 83.6 
01-04 68.8 05-06 80.3 
01-05 63.0 ... ... 
01-05a 59.7   
01-06 50.5   

 
Table 2: Overlap percentage for the scan pairs used for the 
alignment tests. (First column: overlap of SP1 with all other 

scans. Second column: overlap of successive scans.) 
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4. PROPOSED ALGORITHM 

Nowadays, almost all the terrestrial laser scanners can 
return the distance from the point on surface and the energy of 
the backscattered laser light in this point for each measurement. 
This leads to two different sets of data. The 3D data are 
recorded from the distance measurement, whereas a panorama 
image can be generated from the reflectivity information. We 
will refer to this image as the reflectance intensity image for it 
looks similarly to a real intensity image taken by cameras. 
 

4.1 Preprocessing of Reflectance Intensity Images 

The reflectance intensity image is generated from the 
backscattered laser light which is a signal of high dynamic 
range. The strength of the return varies over a large range, from 
almost no return due to low reflective, far away surfaces, to 
direct reflection from retro reflective material. For the Riegl 
LMSZ360I this fact is accounted for by storing the reflectance 
information as 16-bit numbers. Since most of the displays and 
many standard image processing tools are still designed for 8-
bit image data, we decide to convert the reflectance information 
to 8-bit. As shown in Figure 1, due to lost information in the 
course of conversion from 16-bit data, the 8-bit reflectance 
intensity image has characteristic of low contrast (as shown in 
Figure 1(a)). Therefore, we have to firstly apply image 
preprocessing to make this low contrast image appear more like 
a typical intensity image. 
 
Histogram equalization and normalization are usual tools for 
increasing the contrast of images, especially when the usable 
data of the image is represented by close contrast values. 
Histogram equalization and normalization can be outlined as 
follows: 
 
1. Histogram equalization accomplishes increasing the contrast 
of images by effectively spreading out the most frequent 
intensity values. A disadvantage of the method is that it is 
indiscriminate. It may increase the contrast of background noise, 
while decreasing the usable signal. Consider a reflectance 
intensity image, and let  be the number of occurrences of the 

gray level i . The probability of an occurrence of a pixel of 
level  in the image is 

in

i
 

i( ) /p i n n= ,   (2) 0i L −∈ …， ， 1

x

 
L being the total number of gray levels in the image, n being the 
total number of pixels in the image, and p being in fact the 
image’s histogram, normalized to [0, 1]. Let us also define c as 
the cumulative distribution function corresponding to p, defined 
by: 

=0

c( ) ( )
i

i
j

i p= ∑  (3) 

where c also known as the image’s accumulated normalized 
histogram. We would like to create a transformation of the form 
y= T(x) that will produce a level y for each level x in the 
original image, such that the cumulative probability function of 
y will be linearized across the value range. The transformation 
is obtained by: yi = T(xi) = c(i). Notice that the T maps the 
levels into the domain of [0, 1]. In order to map the values back 
into their original domain, the following simple transformation 
needs to be applied on the result: 
 

  ( )  
iiy y Max Min Min= − +′    (4) 

 
2. Histogram normalization stretches an image’s pixel values to 
cover the entire pixel value range (0 – 255). The intensity image 
is preprocessed by subtracting the minimum grey value from 
each pixel and dividing by its max–min range. Visually the 
image appears to have increased in contrast. 
 

 (( ) /(  )) 255.0
iiy y Min Max Min= − − ×′  (5) 

 
Böhm and Becker (Böhm and Becker, 2007) apply histogram 
equalization to increase the contrast of reflectance image. Then 
they extract the SIFT features and match these features in 
equalized reflectance image. However, in this paper, we prefer 
applying histogram normalization instead of equalization 
because the histogram normalization operator does not increase 
the contrast of background noise which usually leads to false 
matches. After this preprocessing, we take the advantage that 
we can rely on a standard implementation for feature extraction 
and do not have to alter lots of parameters. 
 

4.2 SIFT Feature Based Key Points Matching 

The Scale Invariant Feature Transform (SIFT) developed by 
Lowe (2003) is invariant to image scale and rotation, and 
provides robust matching across a substantial range of affine 
distortion, change in 3D viewpoint, addition of noise, and 
change in illumination. Our application employs a standard 
SIFT feature extraction and key point matching based on those 
features. For example, Figure 1(c) shows 301 matches obtained 
from 12093 extracted SIFT feature points. 
 

4.3 Geometric Constraint 

Due to invalid points, holes, dark or reflective spots on the 
object’s surface, especially symmetry and self-similarity of the 
façade structures in the scans, the pairs of matched points 
contain a lot of false matches. As shown in Figure 1(c), 
repetitive elements such as windows and bricks on the ground, 
which are especially dominant in the example scene, cause false 
matches, when the geometry of the scene is ignored. 
 

 
 

Original reflectance intensity image 
 

 
 

Matching result from equalized reflectance image 
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(c) Matching result from normalized reflectance image 
 

Figure 1: Comparison of the matching result between SP1 and 
SP2 from histogram equalization and normalization using SIFT 

method. 
 

In our method, we include the discrete geometric properties of 
the key points to exclude false matches from the registration. In 
particular, the Gaussian and mean curvature values are 
computed based on the method of Cohen-Steiner and Jean-
Marie (Cohen-Steiner and Jean-Marie, 2003) because of its 
time-efficiency, accuracy, and generality. There are some open 
problems to address for computing geometric curvatures in 
scans: One is ensuring that the point is on an object and not part 
of the background. Another is that the objects in different 
depths have a different appearance in the range image. Objects 
that are closer to the scanner are described by more points and 
have a more dominant appearance compared to objects that are 
further away. Therefore, the scanner placement significantly 
influences the object representation in the data. This 
dependency leads in turn to a bias in the number of extracted 
feature-points, favoring closer objects, and causing same 
objects to be described by different curvature values. In 
addition, discrete curvature is second-order derivatives of the 
surface which is sensitive to noise and small perturbations. 
 
 

 
(a) Range ball        (b) Object’s boundary(c) Gaussian curvature 
map 
 

Figure 2: Curvature estimation within the bounding ball. 
 
However, in the case of laser scanning point clouds, the scale, 
viewpoint and the relationship of neighbor points are known. 
Based on the above information, we use the Euclidean distance 
between neighbor points to distinguish the different objects in 
scenes avoiding erroneous calculation of curvatures. We 
propose an approach which estimates the curvature of a point 
and not only covers neighborhoods of variable size but also 
takes into account the topology of the surface in that 
neighborhood. As shown in Figure 2(a), our approach is based 
on a bounding ball whose center is at each point of the matches, 
whose radius represents the scale at which the shape is analyzed, 
and whose boundary intersects the object’s boundary (as shown 
in Figure 2(b)). In our method, we set the radius as 0.5m. We 
calculate the discrete curvature of a center point and also taking 

into account the Gaussian-weighted curvatures of its 
neighboring points within the radius. By doing that, most 
influence of the scanner placement and noise can be reduced. 
 
As far as correct matches are concerned, the curvature values of 
the pair points should be close. Ideally, the difference of pair 
points’ curvature values should be zero. However, for the 
reason that noise and errors do exist in scans, we can consider 
the pair points as correct matches when its curvature difference 
is relatively close to zero. Finding the standard deviation of 
curvature difference between two entire point clouds is 
unrealistic because they are not one-to-one correspondence 
between each other. In most cases, the standard deviation is 
estimated by examining a sample taken from the data set. The 
most common measure used is the Sample Standard Deviation 
(SSD). In our method, we set the threshold as 3σ , where σ  is 
the SSD of the curvature difference of the candidate matches 
and can be calculated as follows: 
 

2
1 2k

1= (
n

i
K Kσ −∑n-1

)      

2
1 2H

1= (
n

i
H Hσ −∑n-1

)    (6) 

 
where K1 and H1, K2 and H2 are the Gaussian and mean 
curvatures of matches in SP1 and SP2, respectively and n is the 
number of candidate matches. Due to the lack of texture 
information in the reflection image, we find the matched points 
on planar surface, such as wall and ground, usually turn out to 
be false matches. Therefore, we take the points as false matches 
if their curvature values are less than a certain threshold. In our 
method, we calculate the Sample Standard Deviation of the 
Mean (SSDM) of Gaussian and mean curvatures as the 
threshold: 
 

2
1K1

1= (
n

i
K Kτ −∑n-1

)      

2
2K2

1= (
n

i
K Kτ −∑n-1

)      

2
11

1= (
n

H
i

H Hτ −∑n-1
)      

2
22

1= (
n

H
i

H Hτ −∑n-1
)   (7) 

 
To sum up, we regard the candidate matched points as correct 
matches if they meet following outlines, otherwise they should 
be excluded as false matches. 
 

1. K1＞ K1
τ AND H1＞ H1

τ ; 

2. K2＞ K2
τ AND H2＞ H2

τ ; 

3. k1 2 3K K σ− < ; 

4. H1 2 3H H σ− <  

 
Therefore, in our method, we can safely exclude the false 
matches according to the deviation of geometric curvature of 
the matches. The full scene of Gaussian and mean curvature 
map of SP1 are shown in Figure 3, where red color is for 
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positive values, green for negative, and blue for invalid points 
(such as points in the sky). 
 
 

 
 

(a) Gaussian curvature map 
 

 
 

(b) Mean curvature map 
 

Figure 3: Gaussian and mean curvature map of SP1 and SP2. 
 
 

 
 
Figure 4: Matching result between SP1 and SP2 with geometric 

constraint. 
 
Although the SIFT method with geometric constraint already 
provides good matching results, false matches are nevertheless 
possible because lots of structures, which are similar in both 
gray scale and geometric shape, do exist in test scene. Since the 
following registration steps are sensitive to such false 
correspondences, we apply an additional filtering to the 
matches based on the RANSAC method (Fischler and Bolles, 
1981). Randomly a sample of point pairs is drawn from all 
SIFT matches. From the pair of three points a rigid body 
transformation is computed. All SIFT matches are checked 
against this transformation for consensus. The sample with the 
largest consensus is selected for registration. Figure 4 shows the 
151 matches from 301 candidate pairs of points by using 
geometric constraint. Only 116 are confirmed as valid 3D 
corresponding tie points using RANSAC (as shown in Figure 5). 

Since the rotation matrix R and translation vector T for initial 
alignment is available now, the ICP algorithm (Chen and 
Medioni, 1991) (Besl and McKay, 1992), which alternately 
establishes correspondences and refines the transformation 
parameters R and T, achieve a good performance and align two 
point cloud by minimizing the error metric derived from the 
distance between them. 
 

 
 

Figure 5: Best consensus matches found through RANSAC 
imported as tie points for registration. 

 
 

5.  EXPERIMENTS 

As described in Section 4, the first step is preprocessing of 
reflectance intensity image. Then the SIFT features are 
extracted and matched from both reflectance images. As an 
example, Figure 6(a) shows the total number of matches from 
equalized or normalized reflectance image between SP1 and all 
other scans. However, Figure 6(b) shows the number of correct 
matches from equalized or normalized reflectance image. The 
correct matches are defined as the pairs of points whose 
distance (

1

2

2p p′− ) between p1 and (2p′
22p Rp T′ = + ) is less 

than 0.5m. One can see the normalized images achieve better 
performance by involving more correct matches and less total 
matches.  
 

  
(a)The number of total matches (b)The number of correct 
matches 

 
Figure 6: Numerical comparison of the matching results 

between SP1 and all other scans from histogram equalization 
and normalization using SIFT method. 

 
Figure 7(a) identifies the proposed geometric constraint 
improves the ratio of correct matches greatly. Figure 7(b) shows 
most correct matches are placed between 10m and 60m from 
the scanner and almost cover all around the scene. Therefore, 
we can expect accurate results by using these matches to 
calculate position and orientation parameters. Table 3 shows 
that by using geometric constraints we can safely exclude most 
of false matches and at the same time keep all the correct 
matches. The proposed method can improve the ratio of correct 
matches by a factor of more than two. 
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(a)Ratio of correct matches  (b) Distance from points to scanner 

Figure 7: Compare the matching results with and without 
geometric constraint. 

 
The resulting position and orientation errors for our method are 
shown in Table 4. In order to evaluate the registration results, 
we compared the planar patch approach (Dold and Brenner, 
2006) with our proposed method using the reference orientation. 
In (Brenner et al., 2008), the orientation by planar patches was 
able to align SP1 with SP10 which have an overlap of 16%. In 
contrast, it seems that the proposed method is more influenced 
by scene contents. The proposed method fails after SP5a, which 
has a considerably larger overlap of 50%. However, the 
distance between SP1 and SP5a is 20 m, which is probably 
anyhow meet the distance between two scans one would prefer 
to obtain a dense city scan with few occlusions. 
 
Pair Total 

matches 
Right 

matches 
Right
ratio 
 (%) 

Total 
matches 

Right
matches

Right
ratio 
(%) 

01-02 301 116 38.5 151 116 76.8
01-03 130 30 23.1 45 30 73.2 
01-03a 132 32 24.2 49 32 65.3 
01-04 127 16 12.6 35 16 45.7 
01-05 113 10 8.8 25 10 40.0 
01-05a 111 10 9.0 28 10 35.7 
01-06 107 2 1.9 21 2 9.5 

02-03 437 172 39.4 216 172 79.6 
03-03a 1714 1438 83.9 1597 1438 90.0 
03-04 328 133 34.5 162 133 82.3 
04-05 609 309 50.7 342 309 90.4 
05-05a 1476 1220 82.7 1352 1220 90.2 
05-06 235 194 82.6 209 194 92.8 
 

Table 3: Comparison of matching results with or without 
geometric constraint. 

 
Pair △ω (°) △φ (°) △ (°) κ △X(m) △Y(m) △Z(m)

01-02 -0.031 -0.001 0.022 -0.001 -0.017 0.010
01-03 0.051 -0.082 -0.078 0.018 0.021 0.038
01-03a -0.075 -0.013 -0.032 0.032 -0.048 0.051
01-04 0.037 0.079 0.021 -0.053 -0.011 -0.025
01-05 -0.028 -0.104 0.115 -0.056 0.051 0.047
01-05a -0.108 0.126 0.022 0.091 -0.039 0.013
01-06 — — — — — — 

02-03 -0.018 0.011 -0.009 -0.031 0.019 -0.017
03-03a 0.033 -0.009 -0.026 -0.027 -0.021 0.009
03-04 -0.031 0.018 -0.013 0.017 -0.018 0.007
04-05 0.042 -0.020 -0.016 -0.033 0.032 0.012
05-05a -0.023 0.019 -0.021 -0.025 -0.016 -0.014
05-06 0.029 -0.014 -0.011 0.016 -0.022 0.019

 
Table 4: Deviation of the translation and rotation parameters 

from the reference values for the registration based on 
proposed method 

On the other hand, the proposed registration method has the 
advantage of being algorithmically simple and does not rely on 
the presence of planar structures. In addition, the proposed 
method is conceptually simpler and faster. Therefore, if it is to 
be preferred depends strongly on the application. As far as 
accuracy of proposed method is concerned, one can see that the 
maximum deviation from the reference is less than 10cm in 
translation, and 0.2° in orientation. This is better than the planar 
patch method which achieved a maximum deviation of less than 
20cm in translation, and 0.5° in rotation angles. 
 
Considering the required computation time, SIFT feature based 
matching took an average of 20s. In the case of computing 
Gaussian and mean curvature, it is quite time consuming to 
generate the full scene of curvature map. In practice, we only 
compute the Gaussian and mean curvature in the neighborhood 
of matched points. This is very quick and takes around 5s. Then 
a standard RANSAC will take another 5s. Thus, in total, 
approximately 30s were required on average to match two scans 
on a 2GHz Pentium laptop. 
 
 

6. CONCLUSIONS AND FUTURE WORK 

We have shown a key point based automatic method using 
intensity and geometry features for the marker-free registration 
of terrestrial laser scans. The method uses SIFT feature based 
key points extracted from the normalized reflectance image 
with geometric constraint. Results and the analysis show the 
proposed method’s efficiency and robustness. The method can 
be used to register laser scanning data at accuracy comparable 
to that of manual registration using natural tie points. 
 
For the future work, several issues are worth investigating. 
Our approach applies the SIFT method to extract feature 
points. Furthermore, other feature points, such as corner 
points, can be detected as geometric primitives by using 
Harris or SUSAN operators. In addition to using a geometric 
constraint, other primitives can probably be used for the 
prioritization of the correspondences. And finally, the 
proposed algorithm offers a pair-wise registration scheme. It 
can be extended into a multi-scan registration. 
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