
 

Formalization of Spatial Constraints 
Stefan Werder 

Institute of Cartography and Geoinformatics, Leibniz Universität Hannover 
Stefan.Werder@ikg.uni-hannover.de 

 
ABSTRACT 
 

Constraints are inherent in most spatial datasets. However, they are often not defined explicitly 
and therefore cannot be enforced. This leads to the need for an explicit formalization of spatial con-
straints. In order to identify the diverse formalization requirements, previous research on constraint 
classification and usage in both data integration and generalization is analyzed. Also different ap-
proaches for modeling and enforcing constraints are presented. As a result from the analysis, a flexi-
ble and expressive constraint formalization based on the Object Constraint Language (OCL) is pro-
posed. It is then shown how the so-called GeoOCL is able to satisfy most of the identified 
formalization requirements. 

 
1 INTRODUCTION 
 

Ensuring consistency of spatial data is a crucial and often complex task. Besides technical issues, 
consistency can be checked if the underlying constraints are properly modeled and enforced. The term 
constraint thereby includes alpha-numerical as well as spatial definitions. In order to allow for auto-
mated checking, constraints have to be modeled explicitly. 

Research on classification and usage of constraints as well as modeling and enforcing constraints 
has been carried out in several disciplines. The most important are data integration and generalization. 
However, little research exists that incorporates both disciplines, although they are tightly related.  

In generalization, constraints specify in most cases the requirements that the target product has to 
meet, e.g. concerning the legibility of a produced map. In data integration, being in the focus of our 
research, constraints are mainly used for checking data integrity. Concerning data integrity, con-
straints can be enforced on existing datasets but also when datasets of different theme, acquisition 
time, or quality have to be conflated. An example for a spatial constraint being used in both discip-
lines is the enforcement of minimum length of line segments. In generalization this constraint ensures 
legibility, whereas in data integrity the correct modeling respectively acquisition is enforced, i.e. 
street line segments being longer than 0.2 m. 

Normally constraints can be specified for a dataset in general. Nevertheless, they can be also spe-
cific based on the target application. In some cases they originate directly from the way data acquisi-
tion is organized, e.g. for rectangular houses often only two sides are measured. Houses are then 
modeled with four right angles leading to parallel sides of equal length. 

In our project we use constraints for checking data integrity during a data integration workflow. If 
two datasets have to be conflated, first the constraints on each dataset are evaluated. Then they are 
combined and the constraints concerning both datasets are evaluated. Because the data integrity 
process shall be used as part of a Spatial Data Infrastructure (SDI), it is implemented based on the 
Web Processing Service (WPS) standard [17] established by the Open Geospatial Consortium (OGC). 
Implementing for an SDI implies the usage of other common standards too, which is shown through-
out the paper. 



 

The rest of the paper is structured as follows. In Sect. 2 the requirements for constraint formaliza-
tion are collected from the classification and usage of constraints in both data integration and genera-
lization research. In Sect. 3 the diverse approaches for modeling and enforcing constraints are pre-
sented. The synthesis of the requirements and approaches finally leads to the proposal of a flexible 
and expressive constraint formalization language called GeoOCL in Sect. 4. 

 
2 CLASSIFICATION AND USAGE OF CONSTRAINTS 
 

For the creation of a flexible and expressive constraint formalization, the requirements of several 
scenarios, applications, and domains have to be considered. Therefore the general requirements con-
cerning constraints that have been identified and modeled in a selection of data models and diverse 
research projects are shown in this section. In Sect. 4.4 we then check to which extent our proposed 
solution adheres to the given requirements. We present research on constraints from both the data in-
tegration and the generalization community, because they represent two sides of the same coin. 

Building a single taxonomy covering all diverse classification schemata presented in the follow-
ing, seems from our point of view an impracticable, if not impossible, task. Therefore we didn’t ad-
dress the issue to which respective constraint subclass of an author individual constraints such as per-
pendicularity are assigned to. In order to compare several works at that detailed level we propose to 
label individual constraints with adequate tags. 

2.1 Constraints in data integration 
Integrity constraints are used by Cockcroft [5] for improving spatial data quality. Constraints are 

enforced upon insertion of features into a data set. The concept of severity is used by Cockcroft to 
produce different types of warnings and for consideration of a GIS user’s role. She comes up with a 
taxonomy of spatial integrity constraints with the three classes topological, semantic and user con-
straints which are each further classified as static or transitional. Semantic integrity constraints make 
use of the meaning of objects, keeping the user from inserting for example “a road running through 
any body of water” [5]. User defined integrity constraints go one step further and are used to represent 
specific domain knowledge. Static enforces that constraints are satisfied at any time (“height of a 
mountain may not be negative” [5]) whereas transition describes how the data may be changed 
(“height may not decrease” [5]). For the modeling of semantic constraints she proposes a knowledge 
base in order to be able to reason about the constraints and also to benefit from the object-oriented 
approach. That way a constraint can be modeled for a (abstract) supertype and inherited from all sub-
types. 

Improving spatial consistency of existing vector data sets is the aim of the work of Servigne et al. 
[21]. Three kinds of spatial consistency errors are identified, namely structural, geometric and topo-
semantic errors. Structural errors are due to a mismatch between the data model and its storage, for 
example often tricks are used to store a polygon with holes. Because they depend on the data model, 
they cannot be specified in a general way. Geometric errors arise if shapes or positions, referred to as 
geometric attributes, of objects are invalid. Topo-semantic errors are related to the topological rela-
tions of semantically defined real world objects. The definition and implementation of the latter con-
straints follows the work of Ubeda and Egenhofer [23]. A general framework is presented that can be 
used for databases and an example is given for cadastral data. Servigne et al. also propose the re-
usage of geometric properties, as they commonly apply to data modeling. Checking processes should 
be evaluated regarding if all erroneous objects are detected and if legal objects are also detected. This 
concept can also be found in binary classification, where the classes are termed false negatives and 
false positives. Identified limitations of the framework of Servigne et al. are error tolerance and usage 
of exceptions. Because objects or object classes often differ in their accuracy, the error tolerance 
should be defined for each of them separately. Also it cannot be assumed that constraints always ap-
ply to all objects. Therefore a framework should permit exceptions for individual objects or subtypes. 



 

Borges et al. [2] aim at a holistic approach to address the relationship between spatial information, 
relationships and integrity constraints and merge them into one data model called “OMT-G”. Con-
cerning the classification of constraints they use the already listed results of Cockcroft [5]. A new as-
pect is the consideration of relationships that are closer to the mental model of the users, for example 
“near”, “north of”, and “in front of”. 

Constraints are seen by Reeves et al. [19] from a different perspective. They use ideas from varia-
tional Computer Aided Design (CAD) models. There individual features are described by a so-called 
parametric model consisting of parameters and functions that derive primitives based on them. Reeves 
et al. list four main constructs for the parametric functions. Constraint-Based Definitions exploit ex-
plicitly defined spatial relationships between geometric items, for example perpendicularity. In con-
trast, Constraint-Based Virtual Definitions use higher order concepts, for example projection of one 
geometry onto another. Grapho-Numeric Expressions permit the usage of geometric items as argu-
ments for functions, for example the distance between two individual items. The last construct are 
Numeric and Boolean Valued Expressions. The application domain for which the constraints are 
modeled are road traffic markings, e.g. pedestrian crossings and stop lines. 

The specification and implementation of constraints for a geo-virtual reality system used for land-
scape modeling is shown by Louwsma et al. [12]. The classification of Cockcroft [5] is extended by a 
classification in another five subclasses. These are (1) number of involved objects/classes/instances 
(single vs. multiple instance of one vs. multiple classes), (2) type of properties and relationships in-
volved (metric, topological, temporal, thematic, complex), (3) dimension (spatial, temporal, thematic, 
and mixed), (4) must never vs. must always, and (5) theorem-based (physically impossible) vs. de-
sign-based. Some research questions remained open according to Louwsma et al. Amongst others 
these are constraint checking, that is identifying if constraints conflict with one another, and the ques-
tion of extendibility to 2.5D and 3D objects. 

Besides the aforementioned virtual reality system three additional scenarios are presented by van 
Oosterom [15]. This includes the Dutch cadastral data, for which more than 50 constraints have been 
defined in several categories, including temporal constraints. For modeling topographic data the clas-
sification of constraint types differs yet again. There the five types of (1) single entity and single 
attribute, (2) single entity and multiple attributes, (3) geometry, (4) topology, and (5) relationship 
were identified. The third scenario covers the split of a parcel using a transactional Web Feature Ser-
vice (WFS-T), whereby topology constraints as well as the question of atomic transactions have to be 
handled. 

2.2 Constraints in generalization 
A comprehensive constraint analysis for application in automated map generalization has been 

carried out by the Department of Geography of the University of Zürich as part of the AGENT project 
[8]. Constraints are used as a specification of which design specifications the solution (the result of 
the generalization process) should meet. In the report constraints are classified into five categories: 
(1) graphic constraints are concerned with the legibility of the map and therefore affect mainly mi-
nimal requirements that have to be satisfied for feature and symbol geometry, e.g. size, (2) topologi-
cal constraints, (3) structural (or semantic) constraints which “describe higher order concepts and in-
volve less explicit relationships” [8] and include diverse concepts such as alignment, size 
relationships, and spatial distribution but also the semantic of objects called “logical context”, e.g. 
rivers are not permitted on hilltops, (4) the more abstract Gestalt constraints relating to aesthetics and 
aspects of perception, and (5) procedural constraints related to the involved generalization process 
steps. 

Besides the classification also several key aspects of constraints are identified in the report [8]. 
Constraints can specify situations to maintain or to avoid and often can be equivalently expressed ei-
ther way. The satisfaction of constraints may be absolutely required (also referred to as “hard” con-



 

straints in the literature), being subject to optimization (termed “soft” or “weak”), or also being both, 
that is if absolute boundaries are defined but in these boundaries the optimal solution shall be found. 
If a constraint considers only one state of an object it is called intrinsic, if it compares the state with a 
prior one then it is called extrinsic. Another important aspect is the scope or extent of a constraint. 
Spatial scope deals with the neighborhoods where the constraint is applied, that is within a feature, 
between features, between feature classes, or within regions. In contrast, contextual scope deals with 
the priority of constraints and the circumstances under which they may be eventually relaxed. Con-
straints can consider only one object (called independent) or consider relations between objects 
(called contextual). Nevertheless, constraints often affect one another and a solution must consider 
their priority and their severity. Severity describes the deegree to which a constraint is violated. In or-
der to establish the balance between priority, severity, and scope the usage of a constraint manage-
ment system is proposed. 

In the AGENT project [8] also modeling issues concerning constraints have been addressed. An 
important task is to discover the structures that are needed for constraint definition, for example the 
explicit modeling of neighborhood, analysis of alignments, or the classification of features according 
to parameters of their geometry or topology, e.g. sinuosity of rivers or roads. 

Burghardt et al. [3] extended respectively changed the classification defined in the AGENT 
project. Application of their project is the formalization of constraints for common generalization 
tasks of several European National Mapping Agencies. The top level of their constraint topology dif-
ferentiates between legibility constraints and preservation of appearance. However, more important is 
the different view on semantic aspects and the distinction by geometry type. Semantic aspects are not 
seen as an extra class. In contrast they can be combined with every other class and are therefore rele-
vant for all of them. Geometry type distinguishes if a constraint affects point, line, or area features. 

A comprehensive inventory of map objects relations for topographic maps is given by Steiniger 
and Weibel [22]. The typology includes only horizontal relations, whereas update and vertical rela-
tions are omitted. Horizontal refers to relations existing at the same scale, whereas vertical refers to 
relations between different scales. Scale here refers to map scale, resolution and level of detail in the 
same manner. Horizontal relations exist in both data integration and generalization tasks, whereas 
vertical relations are addressed by generalization. Update relations refer to changes of map objects in 
time. The typology is based on several research projects, including the work from the AGENT 
project. 

 
3 MODELING AND ENFORCING CONSTRAINTS 
 

The approaches for modeling and enforcing constraints are as diverse as their classification and 
usage. The different approaches are shortly described in this section and examples for, respectively 
references of, their usages are given. 

Widely-used is the simple approach of implicit constraint definition in the data model, described 
in more or less detail in the corresponding documentation. There constraints are part of the definition 
of object classes and their enforcement is not specified. Prominent examples are the standards Geo-
graphic Information – Spatial Schema (ISO 19107), the Geography Markup Language (GML), X3D, 
and the Industry Foundation Classes (IFC). ISO 19107 provides “conceptual schemas for describing 
and manipulating the spatial characteristics of geographic features” [11] which includes definitions 
for geometry, topology and spatial operations. Constraints concerning geometry are for example used 
for defining interpolation, or for stating that polygons must be coplanar. Topological constraints must 
be satisfied when complex objects are built from several object parts. The parts then have to be dis-
joint and have common boundaries (touch). Being built on base of the ISO 19107 standard, GML [16] 
brings in additional constraints in form of additional object classes. These are shared geometries 



 

(“XLinks”) and the “Rectangle” class, which is conceptually a subtype of a polygon with five points 
and four right angles. However, it is not derived by restriction, but modeled independently due to re-
strictions of the XML Schema language. IFC [10], an open format specified for interoperability in the 
building industry, also defines several object classes having constraints, for example “IfcRectangu-
larPyramid”. The same applies to the X3D standard [25] used for modeling 3D objects. 

From the presented research approaches Borges et al. [2] also use an implicit constraint definition. 
In their object-oriented data model for geographic applications called “OMT-G” constraints are im-
plicitly defined by the proposed classes and their relationships. The actual integrity checking is then 
delegated to the implementation in a database which is not addressed by the authors. 

An explicit constraint definition in the data model is shown by Reeves et al. [19]. Instead of ex-
tending the GML feature schema, which is the recommend approach for building application schemas 
based on GML, Reeves et al. produce a novel geometry schema with own geometry types that expli-
citly support constraints. Spatial relationships are modeled between “parent” and “child” geometries, 
whereby parents are composites of child geometries, for example include all stripes of a pedestrian 
crossing. The children on their part include the parameters needed for the constraint, for example the 
offset distance. According to Reeves et al. [19] the data can be exported to standard GML if all ex-
pressions are evaluated. 

Van Oosterom [15] presents another approach for explicit constraint definition based on the sce-
nario of modeling topographic data in the Netherlands. The constraints are specified along with the 
data model definition in an application specific XML format. 

Constraint checking with database triggers is used by Louwsma et al. [12], Duboisset et al. [9], 
and van Oosterom [15]. Database triggers are small pieces of procedural code that can be used to au-
tomatically check certain conditions when data is inserted, updated or deleted. The mentioned authors 
use triggers to avoid insertion of invalid data and make therefore use of the spatial extensions of the 
database management systems. 

Cockroft [6] stores constraints as metadata in a repository, which are then part of the database. 
The repository contains besides constraints on attribute values and spatial relationships also informa-
tion about quality and lineage of data as well as its rendering. In the presented approach constraints 
are defined in a graphical user interface and translated automatically into data definition language 
statements defining parts of the database model or as queries for a GIS system. 

This shows that the approach for the definition respectively modeling of constraints may differ 
from their enforcement. Cockcroft [6] uses for the enforcement the approach of constraints as queries 
or procedural code in a GIS. This approach is also used by Servigne et al. [21] which added con-
straint definition and error correcting interfaces as tools to a GIS. 

Another approach is the constraint definition in an ontology presented by Mäs et al. [13]. Con-
straints for spatial relations are defined by the authors using a slightly extended version of the Seman-
tic Web Rule Language (SWRL). The ontology, built up for a landslide application, also contains cor-
rection instructions given in natural language. These are part of a decision support system guiding 
field users during data acquisition. 

As part of the OGC Web Services, Phase 4 (OWS-4) Testbed topological constraints were also 
modeled in a language following the SWRL [18]. Therefore data has to be mapped first from GML 
into an internal schema in order to be checked. 

A later publication for the landslide application and from the same research group proposes the 
use of Constraint Decision Tables (CDT). Wang et al. [24] use CDTs to formalize constraints and 
correction instructions by means of a so-called Event-Condition-Action (ECA) rule. For an event like 



 

an update the conditions to check, and if they apply, the corresponding actions to take are formulated. 
The proposed action can also be a list of alternatives. The CDTs are converted to XML documents in 
the RuleML language and enforced by an independent software component. 

The last approach to be presented is the constraint definition based on the Object Constraint Lan-
guage (OCL). OCL [14] is part of the Unified Modeling Language (UML) which is the preferred lan-
guage for modeling conceptual schemas. For example, UML is also used in the standards GML and 
WPS from the Open Geospatial Consortium. OCL is a formal language used to describe constraints 
about objects in UML models unambiguously. OCL has been proposed for the constraint specification 
of geo objects in several research projects, for example by Casanova et al. [4], Duboisset et al. [9], 
Louwsma et al. [12], and van Oosterom [15]. Important to note is also, that OCL is used in the AFIS-
ALKIS-ATKIS Reference Model (AAA) as part of the German SDI [20]. The AAA model has been 
designed for the basic geodata sets of all public surveying and mapping authorities in Germany. Aim-
ing at GIS interoperability, its application schema is based on ISO and OGC standards and modeled 
in UML. 

In the following section we present why, from our perspective, OCL is the most promising of the 
presented approaches. 

 
4 OCL AND GEOOCL 

Starting with a short overview of OCL, the approaches of the mentioned research projects and the 
AAA model are shown in this section. Then we highlight the advantages of using OCL instead of, or 
as part of, other alternative approaches for modeling constraints as presented in Sect. 3. We also show 
the versatility of OCL concerning the enforcement of the defined constraints. Afterwards our proposal 
of a Geo Object Constraint Language (GeoOCL) is presented and analyzed regarding the require-
ments discussed in Sect. 2. 

4.1 Short overview of OCL 
OCL [14] can be used for several purposes, amongst others to specify invariants on classes and 

types in UML models. Invariants correspond exactly to constraints, because they “must be true for all 
instances […] at any time” [14]. The basic OCL syntax is shown by the following example, which 
specifies that all streets must have a maximum horizontal grade of 8 percent. 

context Street 
inv: self.horizontalGrade <= 8  

The term after the keyword context denotes the type, class, interface, association or data type to 
which the expression applies. The keyword self then refers to one instance of the context. The label 
inv: declares that an invariant constraint shall be used. In the term in the second line the value of the 
attribute horizontalGrade of a particular instance referenced as self is evaluated. The Boolean term 
must be true for all street instances. 

OCL has built-in support for Boolean, Integer, Real, String and Collection types including com-
mon operations on them. Also new operations can be defined in an OCL document. The next example 
shows some more sophisticated aspects of OCL. 

context Street 
inv: Street.allInstances()->exists(name = ‘Main street’) 
inv: self.country <> ‘DE’ implies self.maxSpeed <= 130 
inv: Street.allInstances()->isUnique(name) 

The Street.allInstances returns the set of all streets that exist. In the first invariant the constraint is 
enforced that at least one object with the given name exists. The second invariant shows how con-
straints can be enforced only on some instances with <> meaning “not equal”. So only if the term be-



 

fore implies is true, then the term after it is evaluated. Boolean expressions can also be formulated by 
if-then-else-endif constructs and several of them can be concatenated by and statements. The last 
invariant finally ensures that street names are unique. 

4.2 Approaches using OCL 
Louwsma et al. [12] actually only propose the use of OCL. As already mentioned before, their 

practical implementation is the direct specification of database triggers. However, they give detailed 
information on the possible OCL usage in their scenario. They also conclude, that “in future devel-
opment environments it should be possible to generate the […] application code that implements the 
constraints (as specified in UML/OCL) automatically” [12]. The problem they see is that “too more 
research is needed into the best way of incorporating integrity constraints in XML schemas” [12], 
such as GML. We will address the XML Schema aspect in the next paragraphs. Nevertheless, also a 
direct solution is possible, which has been shown by Duboisset et al. [9] as explained later. 

With an XML Schema [26] a set of rules for the validity of an XML document can be specified. 
With these rules for example valid datatypes e.g. double or string, legal range of values e.g. enumera-
tions or maximum and minimum values, and number of items of a collection can be defined. The fol-
lowing example is equivalent for the already presented restriction in OCL if the datatype horizontal-
GradeDouble is specified for the attribute or element horizontalGrade in the XML Schema. 

<xsd:simpleType name="horizontalGradeDouble"> 
  <xsd:restriction base="xsd:double"> 
    <xsd:maxInclusive value="8"/> 
  </xsd:restriction> 
</xsd:simpleType> 

However, the constraints that are expressible with an XML Schema are rather limited. Additional-
ly, most of them can be simply expressed by corresponding OCL expressions. Therefore we do not 
recommend transferring OCL constraints to XML Schema documents. By keeping them separate a 
more flexible solution is possible. 

Duboisset et al. [9] use an extended version of the OCL2SQL tool in order to automatically gen-
erate database triggers that are equivalent to OCL for different relational database management sys-
tems. For being able to specify topological constraints, they extended OCL with the 9 Intersection 
Model (9IM). Therefore they integrated eight new operations, one for each topological relationship on 
regions. The operations can be used on geometries and evaluate to true if they adhere to the given to-
pological relationship. Constraints can also be formulated for composite geometries and the number 
of parts implied in a topological relationship can be specified, for example that each part of one geo-
metry meets two parts of another. Additionally, they extended their so-called OCL9IM with an adverb 
model permitting to add one of seven adverbs such as “entirely”, “mostly” or “never” to the relation-
ships. In order to show the approach of Duboisset et al. the following slightly shortened OCL state-
ment is reproduced from their paper [9]. 

context DowntownBuildingLot 
inv: self.geometry->inside(“mostlyRev”, self.downtown.geometry) 

As can be seen in the previous example the “downtown geometry” must be also part of the “build-
ing lot” class because the OCL expression is limited to its context. Here the work of Casanova et al. 
[4] offers a solution by another adoption of OCL. They used OCL for quality checking of datasets 
modeled in the Geographic Data Files (GDF) standard, which is used for road related information. 
Concerning the operations they used standard OCL, however they addressed other restrictions of OCL 
in their work. Their adaptations permit amongst others to express constraints on multiple classes, us-
ing parametric constraints and easier constraint composition. Parametric constraints refer to con-
straints that take one or more parametric types as arguments that can be used in the OCL expressions, 
which is comparable to C++ templates or JAVA generics. 



 

The AFIS-ALKIS-ATKIS Reference Model [20] uses OCL mainly in ALKIS (Official Cadastral 
Information System). There alpha-numerical, geometric and topological constraints are expressed in 
OCL whenever possible. For example for land parcels several constraints have to be satisfied. Two 
land parcels are not allowed to intersect and the boundaries of a land parcel can either be specified by 
lines or circular arcs. Arcs have to be defined by three points which have to be given according to the 
orientation of the arc. The AAA Reference Model makes no proposal how the constraints can or 
should be implemented. 

4.3 Advantages and versatility of OCL 
In Sect. 3 several approaches for modeling constraints were presented and are analyzed in com-

parison to OCL in the following. Obviously, an implicit constraint definition in the data model is not 
feasible, because constraints have to be explicit in order to be checked. 

OCL is part of the data model definition in a conceptual schema in UML. It seems therefore not 
practicable to include the constraints in every file that includes data being modeled based on the UML 
schema, as proposed by Reeves at al. [19]. If new constraints are added, updated or removed, all data 
files would have to be changed. The approach presented by van Oosterom [15] with the application 
specific XML file for both data model and constraints is not standard-based, which UML and OCL 
are. 

As a specification language, OCL is independent from its actual implementation. Therefore, the 
level of abstraction is settled above actual implementations, such as database triggers ([9], [12], [15]), 
queries or procedural code in a GIS ([6], [21]), or constraints as metadata in a database repository 
([6]). 

The definition of constraints in an ontology ([13]) makes perfectly sense, especially concerning 
their re-usage. This way, constraints can be defined for concepts and not for distinct data models and 
their respective terminology. However, today’s data models are rarely modeled as ontologies. But 
OCL is prepared for future developments, because it could be included, or automatically derived, 
from ontologies. 

Constraint Decision Tables ([24]) define the actions that have to be carried out if constraints are 
violated. We see them as an extension to using OCL, because the actions depend on the application 
use case scenario. For the presented system for field data acquisition ([24]), guidelines for users have 
to be shown with correction instructions. However, if the data has to be inserted in a database other 
actions are needed. This means that the constraints should be defined in a fix manner, whereas based 
on the application scenario the actions differ. In OCL each invariant can be labeled with a name, 
which then could be reused in different CDTs. 

OCL is also universal concerning the time when constraints are enforced. They can be checked 
e.g. upon insertion, update, or deletion of features as well as for complete existing datasets. 

The versatility of OCL concerning the enforcement of constraints is shown in Fig. 1 along with 
the approaches by Reeves et al. [19] with GML as well as van Oosterom [15] with XML. The OCL 
definitions are part of the UML model, although they are often stored in a separate file. Implementa-
tions enforcing these constraints then have several options depending on the target environment. We 
use e.g. the original (Geo)OCL in order to check geodata directly within a JAVA application. Howev-
er, OCL constraints are often translated, e.g. into database triggers defined in SQL as shown by Du-
boisset et al. [9] with their OCL2SQL tool, or into queries or procedural code in a GIS system. 

 



 

 
Figure 1: Different approaches for modeling and enforcing constraints. 

 
4.4 GeoOCL 

We have now provided the necessary background on OCL for presenting our research on creating 
a Geo Object Constraint Language (GeoOCL). In the following we provide evidence that OCL and 
our extension GeoOCL allow for flexible and expressive constraint formalization. Additional exam-
ples point out how to express some constraints. 

In general terms, GeoOCL extends OCL mainly by the new data type Geometry and new opera-
tions on that data type. GeoOCL therefore spatially enables OCL. As an extension, all constraints de-
fined in GeoOCL also apply to all sub-classes of the context they are defined in. The thematic scope 
of a constraint is already considered by the implies statement in OCL. GeoOCL follows the same ap-
proach by supporting spatial filter operations, as can be seen in the following example. The example 
also uses a local variable defined by the OCL construct let-in and a if-then-else-endif construct. 
In order to keep the example clean, the definition of a polygon as Well Known Text (WKT) in the pa-
rentheses is omitted here. 

context Street 
inv: let specialDistrict : Geometry = Geometry.fromWKT() in 

if self.geometry->intersects(specialDistrict) then self.maxSpeed <= 30 else 
self.maxSpeed <= 130 endif 

In more technical terms, the OCL grammar is extended to handle the new data type Geometry. 
Important to note is that Geometry is not a basic data type or literal such as String or Integer. Instead 
the data type follows the concept of a collection. Thereby the parts of a distinct Geometry can be ac-
cessed; e. g. for a LineString all lines with their respective start and end points can be referred to and 
therefore used in constraint expressions. This results also in the rule that all operations on Geometry 
are written with an arrow and not a dot notation. The operations defined for Geometry shall include 
all needed operations in the context of GIS. To date however only some are included, but based on 
previous research, constraint operations of different domains are collected. What is already consi-
dered, are operations for geometric, topologic and statistic constraints. Due to size limitations of this 
paper they cannot all be presented. However some examples for operations follow: geometric (area, 
length, perimeter, convexHull, collinear, distanceTo, direction), topologic (disjoint, touches, over-
laps), and statistic (count, mean). 



 

Constraints can be defined not only for each dataset in a separate OCL document, but also de-
pending on the requirements of a specific application. This already addresses the first recommenda-
tion by Cockcroft [5], namely the consideration of user roles. Different OCL documents offer a flexi-
ble constraint checking for different users or application scenarios without changing the underlying 
data model. Also the three identified constraint classes topological, semantic and user defined can be 
mapped with OCL. Topological constraints can be handled with the approach of Duboisset et al. [9]. 

Following the classification of Servigne et al. [21] constraints for the two classes of geometric 
and topo-semantic errors can be specified in a general way. The validity of the geometry referring to 
shape and positions can be checked with the already presented methods or by the derivation of new 
OCL operations. Topo-semantic constraints can also be addressed by OCL. We have also shown that 
OCL supports exceptions for individual objects or subtypes, e.g. by using the implies statement. 

An example for the need of defining new OCL operations is given by the constraints on break-
lines, e.g. having minimum length or maximum curvature. The two operations length and maxCurva-
ture (returning the maximum curvature in degrees) then have to be implemented by tools that check 
these constraints. 

context Breakline 
inv: self.geometry->length() >= 10 
inv: self.geometry->maxCurvature() < 70 

Borges et al. [2] proposed the use of relationships being closer to the mental model. We see the 
task of translating a concept from the mental model to the corresponding discrete range of values one 
step before the formal OCL definition. Saying so, a concept such as “north” can be translated e.g. to 
315 < azimuth <= 45. 

The requirements concerning constraints mentioned by Reeves et al. [19] also can be mapped 
with OCL. Of course new operations have to be defined, e.g. for checking perpendicularity or higher 
order concepts such as projection. Grapho-Numeric expressions are also possible by using the respec-
tive attributes or objects as parameters for the new operations. 

The classification of Louwsma et al. [12] requests the consideration of the number of involved 
objects/classes/instances. This can get quite complex, however with the extensions to multiple classes 
by Casanova et al. [4] and the consideration of the number of parts implied in a topological relation-
ship presented by Duboisset et al. [9], we are confident that OCL can cope with that requirement too. 
Temporal logic is already considered by several OCL extensions. The other mentioned subclasses are 
also addressable with OCL, including extension to 2.5 and 3D. Identifying if constraints conflict with 
one another is out of the scope of a specification language such as OCL. 

The following example for the constraint stating that noise abatement walls are disjoint from 
street geometries, points out how constraints on multiple classes can be expressed in GeoOCL follow-
ing the notation of Casanova et al. [4]. 

context NoiseAbatementWall 
inv: Streets.allInstances()->forAll(s:Street|s.geometry->disjoint(self.geometry)) 

Concerning the categories specified in the AGENT project [8] only procedural constraints are not 
expressible, however Gestalt constraints could get quite complex. Procedural constraints are also not 
in the scope of our work, because we see constraints as a formulization of the solution and not of the 
way how it is reached. This makes processes exchangeable exactly as needed in the idea of Web 
Processing Services. 

For now we didn’t address the requirements that are not met by a solution based on the OCL yet 
and are subject to further research. First of all, the dynamic aspects, referred to as transitional by 
Cockcroft [5] and also mentioned by most other authors, have to be taken into account. In OCL pre- 



 

and postconditions of operations can be defined. If for all classes a (virtual) operation for the transi-
tion processes, such as data integration, is defined, then their pre and post-conditions can be specified. 
The (Geo)OCL expression for the already presented constraint requiring that the height of buildings 
may not be changed, but their size may differ by ten percent and they may be displaced in a limited 
range is shown in the following example. The variables followed by the keyword @pre refer to the 
state before the operation was executed, therefore making a comparison possible. This approach also 
allows for the specification of individual error tolerances for objects and object classes as requested 
by Servigne et al. [21]. 

context Building::integrate() 
post: self.height = self.height@pre and self.size <= self.size@pre * 1.1 and 

self.size >= self.size@pre * 0.9 and self.geometry-> 
distance(self.geometry@pre) <= 0.2 

For the consideration of the two important aspects of severity and priority the existent OCL fea-
tures are not sufficient. These two parameters should be defined for each constraint statement and 
could then lead to different values for the post-conditions. To date we cannot offer a solution for this 
problem, however it is on our research agenda. The scope of a constraint already can be specified 
with the presented OCL statements and adaptations such as the implies construct. A constraint man-
agement system then can be built that gets its information about severity, priority and scope of con-
straints solely from the OCL definition. 

Also the different levels of satisfaction for constraints as mentioned by the AGENT project [8] 
have to be considered in further research. A constraint definition equivalent to the inv keyword for 
constraints that are absolutely required, could be defined for constraints that are subject to optimiza-
tion, e.g. by introducing the keyword opt. 

 
5 CONCLUSIONS 
 

The formalization of spatial constraints has to answer several research questions. Firstly, the solu-
tion has to be able to cover requirements from different application scenarios and disciplines. In this 
context, it has been shown that requirements from the data integration and generalization community 
represent two sides of the same coin. Secondly, the formalization has to be standard-based in order to 
gain success. The proposed solution called GeoOCL spatially enables the Object Constraint Language 
(OCL). It has been shown to which extent the GeoOCL already satisfies the requirements and also 
open research questions have been addressed. 
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