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Abstract

Autonomous driving has garnered significant attention in recent years due to its transformative
potential in mobility, including enhanced road safety, reduced traffic congestion, and improved
economic efficiency. Equipped with advanced sensors, AI-driven perception, and decision-making
capabilities, autonomous driving systems demonstrate the potential to surpass human drivers in
efficiency and reliability. However, ego-centric autonomous systems are constrained by limited sen-
sor ranges and occlusions, which hinder their ability to perceive complex and dynamic environments
effectively. To address these challenges, collective perception has emerged as a promising solution.
By leveraging communication technologies, collective perception enables data sharing among in-
telligent agents (e.g., autonomous vehicles and smart infrastructure) within multi-agent systems.
This data sharing significantly improves situational awareness while reducing uncertainties.

This thesis investigates multi-agent data fusion based on deep-learning algorithms and point
cloud data. While recent advancements have tackled problems with occlusions and extended per-
ception ranges, existing collective perception approaches often overlook critical issues, including
inefficiencies in data processing and sharing, communication latency, unsynchronized sensor data,
and spatial misalignment caused by localization errors. Current methods predominantly rely on
dense bird’s-eye-view (BEV) maps derived from sparse point cloud data, leading to computational
inefficiencies and excessive bandwidth consumption due to the transmission of dense feature maps
generated by neural networks. To overcome these limitations, this thesis proposes fully sparse
neural networks that leverage the intrinsic sparsity of point clouds, minimizing computational
overhead and reducing communication bandwidth requirements. Additionally, the thesis addresses
overlooked challenges, such as unsynchronized sensor data, ensuring a more robust approach to
collective perception. Furthermore, a novel uncertainty estimation approach is also introduced,
enhancing the reliability of perception systems.

Specifically, this dissertation presents two innovative fully-sparse neural networks: GevBEV for
BEV semantic segmentation and SparseAlign for object detection. Together with the data prepro-
cessing and training techniques used for these networks, they are referred to as framework in this
thesis. The BEV semantic segmentation framework generates BEV maps to guide route planning,
while the object detection framework identifies traffic participants to aid collision avoidance.

Unlike previous traditional BEV semantic segmentation frameworks that produce discrete BEV
maps, the proposed framework, GevBEV , employs spatial Gaussian distributions on the sparse and
discrete observation points to interpret the driving space in a continuous manner. This approach
allows for precise segmentation details while avoiding unreliable extrapolation in unobserved areas.
Any point within the continuous space is supported by evidence from the Gaussian distributions
centered on the original observation points. Moreover, GevBEV utilizes the Dirichlet distribution
and evidential learning to estimate uncertainty, outperforming state-of-the-art frameworks in BEV
semantic segmentation while providing enhanced reliability for decision-making and shared-data
selection in cooperative autonomous driving.

This thesis also introduces a novel object detection task, Time-Aligned Cooperative Object Detec-
tion (TA-COOD), which addresses sensor asynchrony. The task involves processing asynchronous
sensor data to predict objects at globally aligned timestamps. To tackle this challenge, a novel fully
sparse framework, SparseAlign, is proposed to efficiently process sequential point cloud data and
capture accurate temporal context from the point-wise timestamps of the point clouds. SparseAlign
has been experimentally demonstrated to significantly outperform state-of-the-art frameworks while
requiring fewer computational resources. Ablation studies further demonstrate that the temporal
modeling based on point-wise timestamps is crucial for capturing accurate temporal context of
objects, leading to more precise predictions for TA-COOD.

Keywords: Autonomous driving, collective perception, semantic segmentation, object detec-
tion, data fusion, point clouds





Kurzfassung

Autonomes Fahren hat in den letzten Jahren aufgrund seines transformativen Potenzials in der Mo-
bilität erhebliche Aufmerksamkeit erlangt: dazu zählen verbesserte Verkehrssicherheit, reduzierte
Verkehrsstaus und gesteigerte wirtschaftliche Effizienz. Ausgestattet mit fortschrittlichen Sensoren,
KI-gesteuerter Wahrnehmung und Entscheidungsfähigkeiten, zeigen autonome Fahrsysteme das Po-
tenzial, menschliche Fahrer in Effizienz und Zuverlässigkeit zu übertreffen. Ego-zentrierte autonome
Systeme sind jedoch durch begrenzte Sensorreichweiten und Sichtbehinderungen eingeschränkt, die
ihre Fähigkeit, komplexe und dynamische Umgebungen effektiv wahrzunehmen, behindern. Um
diese Herausforderungen zu bewältigen, hat sich das Konzept der kollektiven Wahrnehmung als
vielversprechende Lösung herausgebildet. Durch den Einsatz von Kommunikationstechnologien er-
möglicht die kollektive Wahrnehmung den Datenaustausch und die Datenfusion zwischen intelli-
genten Agenten (z. B. autonomen Fahrzeugen und intelligenten Infrastrukturen) in Multi-Agenten-
Systemen. Dieser Datenaustausch verbessert die Situationswahrnehmung erheblich und reduziert
Unsicherheiten.

Diese Dissertation untersucht die Datenfusion in Multi-Agenten-Systemen basierend auf Deep-
Learning-Algorithmen und Punktwolkendaten. Trotz bedeutender Fortschritte, beispielsweise in
der Behandlung von Sichteinschränkungen und Wahrnehmungsreichweiten, werden in bestehenden
kollektiven Wahrnehmungsansätzen oft kritische Probleme übersehen, einschließlich Ineffizienz in
der Datenverarbeitung und -weitergabe, Kommunikationslatenz, nicht-synchronisierte Sensordaten
und räumliche Fehlanpassungen aufgrund der Lokalisierungsfehler. Aktuelle Methoden stützen sich
überwiegend auf dichte Vogelperspektivenkarten (BEV), die aus dünn besetzten Punktwolkenda-
ten abgeleitet werden, was zu Berechnungsineffizienz und einem übermäßigen Bandbreitenverbrauch
führt, da dichte Merkmalskarten, die von neuronalen Netzwerken erzeugt werden, übertragen wer-
den. Um diese Einschränkungen zu überwinden, schlägt diese Dissertation Methoden vor, die dünn
besetzte Strukturen von Punktwolken ausnutzen, den Rechenaufwand minimieren und die An-
forderungen an die Kommunikationsbandbreite verringern. Darüber hinaus werden bislang nicht
betrachtete Herausforderungen, wie nicht-synchronisierte Sensordaten, adressiert, um eine robus-
tere Herangehensweise an die kollektive Wahrnehmung zu gewährleisten. Des Weiteren wird ein
neuartiger Ansatz zur Unsicherheitsabschätzung eingeführt, der die Zuverlässigkeit der Wahrneh-
mungssysteme verbessert.

Insbesondere stellt diese Dissertation zwei innovative, vollständig dünn besetzte neuronale Netz-
werke vor, GevBEV für BEV-semantische Segmentierung und SparseAlign für Objekterkennung.
Zusammen mit den für diese Netzwerke verwendeten Datenvorverarbeitungs- und Trainingstechni-
ken werden sie in dieser Arbeit als Framework bezeichnet. Das BEV-semantische Segmentierungsf-
ramework erzeugt BEV-Karten zur Routenplanung, während das Objekterkennungsframework Ver-
kehrsteilnehmer identifiziert, um Kollisionen zu vermeiden.

Im Gegensatz zu traditionellen BEV-semantischen Segmentierungsframeworks, die diskrete BEV-
Karten erzeugen, verwendet das vorgeschlagene Framework GevBEV räumliche Gaußsche Vertei-
lungen auf den dünn besetzten und diskreten Beobachtungspunkten, um den Fahrraum kontinuier-
lich zu interpretieren. Dieser Ansatz ermöglicht eine präzise Segmentierung, während unzuverlässi-
ge Extrapolationen in unobservierte Bereiche vermieden werden. Jeder Punkt im kontinuierlichen
Raum wird aus den auf den ursprünglichen Beobachtungspunkten zentrierten Gaußverteilungen
bestimmt. Darüber hinaus nutzt GevBEV die Dirichlet-Verteilung und evidenzbasiertes Lernen
zur Unsicherheitsabschätzung; dies führt dazu, dass es die aktuellen State-of-the-Art-Modelle in
der BEV-semantischen Segmentierung übertrifft und gleichzeitig eine erhöhte Zuverlässigkeit für
Entscheidungsfindung und Datenauswahl im kooperativen autonomen Fahren bietet.

Diese Dissertation stellt eine neue Objekterkennungsaufgabe vor, Time-Aligned Cooperative Ob-
ject Detection (TA-COOD), die mit Sensor-Asynchronität umgeht. Die Aufgabe umfasst die Ver-
arbeitung asynchroner Sensordaten, um Objekte zu global ausgerichteten Zeitstempeln vorherzu-



sagen. Zur Bewältigung dieser Herausforderung wird ein neuartiges, vollständig dünn besetztes
Framework, SparseAlign, vorgeschlagen, das sequentielle Punktwolkendaten effizient verarbeitet
und präzisen zeitlichen Kontext aus den punktweisen Zeitstempeln der Punktwolken extrahiert.
Es konnte experimentell gezeigt werden, daß SparseAlign Framework geringere rechnerische An-
forderungen hat und dennoch eine deutlich bessere Leistung als die aktuellen State-of-the-Art-
Frameworks bietet. Ablationsstudien zeigen außerdem, dass das zeitliche Modellieren auf Basis
der punktweisen Zeitstempel eine wichtige Rolle dabei spielt, den genauen zeitlichen Kontext von
Objekten zu erfassen, was zu präziseren Detektionen für TA-COOD führt.

Schlüsselwörter: Autonomes Fahren, kollektive Wahrnehmung, semantische Segmentierung,
Objekterkennung, Datenfusion, Punktwolken
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1 Introduction

1.1 The Concept of Collective Perception

Benefits of cooperative work

In the context of biological evolution, cooperation proves advantageous within the harsh frame-
work of competitive selection. Cooperation refers to the process by which a group of organisms
collaborates and acts in pursuit of a common or mutually beneficial goal. For instance, certain ant
species engage in collective decision-making when identifying new nesting sites. Similarly, scout
bees communicate information regarding potential sites through pheromone signaling, enabling the
entire colony to collectively evaluate and choose the most suitable location. In another example,
orcas exhibit cooperative behavior during hunting, utilizing intricate vocalizations and coordinated
strategies to efficiently capture prey.

Mimicking animal behaviors, swarm robots initially embraced the concept of cooperation in
numerous research endeavors by the end of the last century (Dudek et al., 1993). This collaborative
framework, wherein multiple robots work in unison, facilitates the execution of complex tasks,
reducing the necessity for sophisticated individual robotic design. Such a collective design paradigm
enhances the economic efficiency, scalability, and resilience of the overall robotic system, making it
considerably more robust against potential system-wide failures.

However, as highly intelligent organisms, animals often build more intricate systems of coopera-
tion. As per Poole et al. (1998), an Intelligent Agent (IA) is a system that operates intelligently
within an environment by reasoning based on its knowledge, analyzing and interacting with the
environment accordingly. In the case of a robotic artificial agent, knowledge is acquired through
sensors that capture environmental data, which is subsequently processed into a format suitable
for guiding appropriate actions.

A seminal contribution to the field of cooperative intelligent robotics is the Cooperative Dis-
tributed Vision (CDV) system introduced by Matsuyama (1999). Matsuyama posits that intel-
ligence is not confined to a central processing unit, such as the brain, but rather emerges from
dynamic interactions with the surrounding environment. Accordingly, the CDV system presents
an intelligent framework grounded in these dynamic interactions among distributed vision-enabled
agents. This framework consists of three key modules: perception, action, and communication.
Utilizing the images captured by each agent’s camera, the perception module analyzes the envi-
ronment and identifies moving objects within the images. Through communication and sharing
the detected objects, the agents collaboratively adjust their orientations towards target objects,
thereby improving their observational capabilities and understanding of the environment.

Cooperation in Intelligent Transportation Systems (ITSs)

The idea of cooperation extends to transportation systems, where every participant within traffic
is considered an individual agent. These agents may have different departure points and destina-
tions, yet they frequently traverse the same road segments. By collaboratively sharing real-time
traffic conditions, overall traffic safety and efficiency can be significantly enhanced, benefiting all
traffic participants involved. As intelligence is integrated into these agents, this collaborative sys-
tem evolves into an ITS, a comprehensive transportation and management system that efficiently
integrates advanced technologies including information, communication, sensor, control and com-
puter technology into the entire transportation management system. It creates a comprehensive,
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Figure 1.1: Collective perception scenario1

real-time, accurate, and highly efficient system that plays a role in a wide range and in all aspects of
transportation. Within this system, agents collaboratively enhance each other’s capabilities, par-
ticularly in terms of sensory functions and field-of-view (FoV). This cooperative interaction enables
more effective environmental perception, optimizing overall system performance. As per European
Telecommunications Standards Institute (ETSI, 2023), such cooperative components, including IA,
Intelligent Infrastructures (II) that contribute to the operation and functionality of the ITS, are
called ITS-stations. These stations are interconnected and facilitate information sharing.

Collective perception: understanding the environment with cooperation

Perception is the process of analyzing, identifying and interpreting the sensory information to
understand the information and the environment. It is the cornerstone for comprehending the be-
havior of traffic participants and anticipating their future actions, a crucial step towards realizing
an effective ITS. Through cooperative work, the intelligent traffic agents interact with each other
and exchange sensory information. By analyzing the information collected from different agents,
the perception system achieves a more comprehensive understanding of the environment. There-
fore, collective perception is defined as the process of perception based on the collective sensory
information. As the example shows in Figure 1.1, the view of vehicle V0 is occluded by the bus and
this vehicle is not able to observe the traffic situations at the intersection. However, by utilizing
the information shared by vehicles V1 and V2, vehicle V0 is able to expand its perceptual range.
This extended perception enables vehicle V0 to more effectively capture and interpret the ongoing
situations at the intersection, thereby facilitating the formulation of safer and more efficient driving
decisions.

Officially, the technical protocol outlined by ETSI (2023) defines Collective Perception as an
integral component of ITS that involves sharing safety-relevant information about the current
context of the ITS-station’s environment. The data shared among ITS-stations, encapsulated
within a Collective Perception Message (CPM), serves the purpose of enhancing environmental
awareness through cooperation. This thesis adopts this definition and concentrates on ITS-stations,
specifically intelligent vehicles and infrastructures.

1Left image in the figure is a modified version of the image designed by macrovector/Freepik, https://www.
freepik.com/free-vector/autonomous-vehicle-isometric_6375496.htm

https://www.freepik.com/free-vector/autonomous-vehicle-isometric_6375496.htm
https://www.freepik.com/free-vector/autonomous-vehicle-isometric_6375496.htm
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1.2 Intelligent Vehicles (IVs)

Intelligent Vehicles (IVs) are vehicles equipped with intelligent driving systems that enable them
to operate in either partial or fully autonomous modes. With advanced modern sensors and infor-
mation and computation technologies, IVs are becoming increasingly intelligent. In transportation
systems, the cooperation of IVs with the IIs has offered significant potential for improving road
safety, enhancing efficiency by minimizing travel time, promoting fuel economy, reducing green-
house gas emissions, and ensuring environmental sustainability, all while maintaining passenger
comfort. Due to these advantages, Original Device Manufacturers (ODMs) globally have invested
substantial resources in the development of IVs, aiming to alleviate human drivers from some or
all driving responsibilities. The Society of Automotive Engineers (SAE, Table 1.1) classifies IV
automation into six levels, based on the degree of human intervention required in driving tasks.
The first three levels necessitate constant human involvement, whereas the final three levels allow
the vehicle to assume full control under specific or all conditions.

Level Description Examples
0 No Automation
1 Driver Assistance adaptive cruise control
2 Partial Automation vehicle can control both steering and accelera-

tion/deceleration simultaneously
3 Conditional Automation vehicle can manage most aspects of driving, but a

human driver might need to intervene if prompted
4 High Automation vehicle can perform all driving functions under

certain conditions or environments
5 Full Automation vehicle can perform all driving functions in all

conditions without human intervention
Table 1.1: Levels of Automation in Autonomous Driving (SAE J3016 SAE International (2021))

By the end of 2023, the automation level (ref. Table 1.1) of the mainstream IVs equipped with
Advanced Driver Assistance Systems (ADASs) has remained stagnant, predominantly hovering at
levels 2 and 3 for an extended period. Notably, only a few companies had ventured into com-
mercializing higher-level autonomous vehicles allowing for limited driverless operation in specific
conditions. For instance, Waymo and Baidu Apollo successfully launched their level-4 Robotaxi
services to be operated in San Francisco and Shanghai, respectively. In the long run, the automo-
tive industry aims to develop vehicles being entirely autonomous (SAE, level 5), freeing humans
from the act of driving. These vehicles, known as Self-Driving Vehicles (SDVs) or Autonomous
Vehicles (AVs), possess the capability to drive independently and optimize decision-making. This
transition holds promise for significantly safer driving practices and a reduction in traffic accidents.

However, the intricate real-world driving environment poses technological, regulatory, and safety
challenges for achieving full automation. For instance, low-light conditions during nighttime driving
may impair the visibility provided by camera-based systems. This limitation can be addressed
through the use of LiDAR, a sensor that determines object distances by emitting and receiving
laser signals. Nevertheless, both LiDAR and camera systems may encounter difficulties under
adverse weather conditions, such as snow, rain, and fog. Moreover, all sensors are constrained by
limitations in sensing range and resolution. Addressing these challenges is a critical prerequisite
for the realization of fully autonomous driving systems.

From the perspective of perception, the challenges in achieving full automation stem from in-
sufficient sensory data and limitations in knowledge acquisition within the driving environment.
While SAE Level 4 IVs are capable of managing most driving scenarios, they struggle with "cor-
ner cases"—rare but recurrent situations encountered on many driving routes that constitute a
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small portion of overall driving mileage. Some of these corner cases are caused by insufficient
observations. For instance, a pedestrian crossing the road might be occluded by the building or
infrastructures. Equipped with 36 sensors to ensure redundancy in sensory information, Baidu’s
Apollo RT6 might still face challenges in overcoming occlusion. As all sensors are mounted on
the same vehicle, they are subject to limitations such as occlusion and restricted sensing range,
underscoring the critical importance of better sensor placement. Instead, collecting the perceptual
information from neighboring AIs and IIs that are placed at vantage positions could reduce blind
spots, extend the FoV and enhance perception capabilities of the ego vehicle, achieving a more
comprehensive understanding of its surroundings.

1.3 Safe and Efficient Mobility with IVs and Collective Perception

As the population and economy expand, the demand for mobility grows substantially, amplifying
the complexity of transportation needs within constrained time and space. This surge poses signif-
icant challenges to developing effective traffic solutions without compromising safety and comfort.
Instead of building new traffic infrastructures such as broader and better road networks, optimized
travel and driving decisions on the existing roads are more economical and sustainable to meet the
growing mobility demands.

Safer driving operations contribute to a decreasing number of accidents, subsequently mitigating
congestion. It also reduces traveling time by optimized route selection based on real-time traf-
fic information. Additionally, efficient negotiation among traffic participants leads to an overall
enhanced traffic flow, offering benefits to all involved parties.

However, assuring driving operations necessitates continuous driver focus throughout the trip.
This attentiveness enables drivers to consistently observe and comprehend their surroundings, en-
abling sound and timely driving decisions. However, human drivers might unintentionally disregard
traffic rules due to a lack of awareness or while operating a vehicle under subconscious or even un-
conscious conditions, such as intoxicated conditions under the influence of alcohol, or fatigued after
extended travel periods. These misconducts of drivers contribute to 88% of traffic accidents in
Germany (Statistisches Bundesamt, 2017). As a compensation for human drivers against their
imperfectness in driving, modern IVs are equipped with ADASs to simplify their driving tasks and
assist drivers in responding correctly to emergent situations. For example, Adaptive Cruise Con-
trol (ACC) adjusts the vehicle’s speed—accelerating, decelerating, and occasionally stopping—in
response to the movements of nearby objects. This technology relieves drivers from the constant
need to monitor their vehicle’s speed and the actions of surrounding vehicles, consequently lower-
ing the risk of fatigue-related driving incidents. Automatic Emergency Braking (AEB) aids drivers
in imminent collision risks and promptly responding to such situations. Benefiting from these
assistance functionalities, fatal accidents have been decreasing in recent years, despite an overall
increase in the total number of accidents. (Statistisches Bundesamt, 2023). With higher levels of
vehicle automation enabled by collective perception, observations of the driving environment have
the potential to become more comprehensive and precise, thereby enhancing overall safety.

A higher automation level requires sufficient knowledge for a comprehensive understanding of
the driving environment. Achieving this depth of understanding necessitates communication to
expand the knowledge base of IVs in both macro and micro perspectives. This ensures not only
safer operations but also optimized routing and enhanced traffic efficiency through negotiations. In
instances where instantaneous decisions for subsequent driving operations are necessary, a compre-
hensive understanding of nearby object behaviors on a micro scale is vital. Through communication
with nearby objects and adjacent infrastructures, the ego-vehicle can expand its observation range,
minimizing occlusions, and enhancing environmental comprehension. Real-time traffic information
reception and negotiations with other networked vehicles in macro scale allow for route optimization
among these involved vehicles.
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1.4 Motivation and Objectives

Collective perception mainly contains three stages: data preparation, sharing and fusion. Previous
works (Chen et al., 2019a; Marvasti et al., 2020b; Xu et al., 2022c; Wang et al., 2020a; Xu et al.,
2022b,a) have made significant progress in collective perception by sharing dense Bird’s Eye View
(BEV) feature maps which are extracted by Deep Neural Networks (DNN). They have proven
that preparing and sharing the intermediate-processed feature maps outperforms the frameworks
that share the fully processed information, such as the detected bounding boxes of objects. These
detected results contain errors which directly influence the accuracy of the fusion results. In ad-
dition, the size of intermediate-processed data is adjustable. With a good data selection strategy,
sharing the intermediate-processed data is more communication-efficient than the bulky raw data
(e.g., point clouds) sharing. Therefore, this thesis focuses on preparing, sharing and fusing the
intermediate-processed data.

However, different from sharing the BEV feature maps which demands substantial communica-
tion bandwidth and high computational resources for processing, this thesis concentrates on more
efficient sparse frameworks that utilize the sparsity of point-cloud data. Typically, previous works
employ 2D or 3D dense convolutions to extract features from point clouds. As the detection range
of point clouds expands, the computational demands of these frameworks increase quadratically or
cubically. Exploring the sparsity feature of point clouds, this thesis attempts to explore fully-sparse
frameworks that are more computational- and communication-efficient to solve the object detection
and BEV semantic segmentation problem. Beyond the framework design, training these models is
also computationally demanding because the data from multiple agents should be processed at the
same time. Thus, this thesis also explores efficient training methods.

After the intermediate-processed data are shared and fused, they can be used for different percep-
tion tasks. Object detection and semantic segmentation are two primary perception tasks. Object
detection focuses on identifying and locating other traffic participants within the driving scene,
providing data that can be used to predict their behavior and avoid potential collisions. In con-
trast, semantic segmentation assigns each data point—such as pixels in camera images or points in
LiDAR-generated point clouds—a semantic label to distinguish different types of surfaces and ob-
jects. Since IVs typically operate on approximately 2D road surfaces, sensor data can be projected
into BEV space to produce BEV semantic segmentation results. This projection aids route plan-
ning by offering a detailed overview of the static environment, particularly the occupancy status
of drivable surfaces, which is crucial for safe path planning. Together, object detection and BEV
semantic segmentation provide complementary information about the dynamic and static elements
of the driving environment, making them the primary perception tasks in this work.

In BEV semantic segmentation tasks, estimating the uncertainty of the predictive results is
essential for enabling the model to recognize its own limitations. However, prior research has not
focused on uncertainty estimation. This thesis aims to address this gap by modeling uncertainty and
evaluating the reliability of the generated predictive semantic segmentation results. Also different
from previous works that make predictions over the unobserved areas, this thesis takes advantage
of sparse operations and only learns and predicts based on the observed areas to prevent invalid
predictions which may lead to safety problems. For example, an unobserved road area which is
occupied by other vehicles might also be classified as an empty drivable road surface because it is
close to an observed road surface. This might lead to traffic accidents.

For the object detection task, the detection accuracy is very sensitive to the localization errors
and time asynchrony. Because the objects (vehicles) are highly dynamic. In addition to frame-
work design for vehicle detection, this thesis addresses the fusion challenges posed by localization
errors and time asynchrony. While previous studies have attempted to mitigate the influence of
localization errors (Wang et al., 2020a; Xu et al., 2022a; Yuan et al., 2022; Yuan and Sester, 2022)
and communication delays (Xu et al., 2023; Yu et al., 2023), none have addressed the issue of
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asynchronous sensor timestamps. To bridge this gap, this work introduces a novel benchmark,
time-aligned cooperative object detection (TA-COOD), which aims to align objects observed by
asynchronous sensors and predict the final object position at a globally synchronized timestamp.

1.5 Contributions

The contributions of this thesis are summarized as follows:

1. This work proposes a novel probabilistic model for BEV semantic segmentation, named
GevBEV. It interprets the 2D driving space as a probabilistic BEV map with point-based
spatial Gaussian distributions, from which one can draw density values as the evidence pa-
rameters for the categorical Dirichlet distribution at any new sample point in the continuous
driving space. The experimental results show that GevBEV not only provides more reli-
able uncertainty quantification but also outperforms the previous works on the benchmarks
OPV2V and V2V4Real of BEV map interpretation for cooperative perception in simulated
and real-world driving scenarios, respectively. A critical factor in cooperative perception
is the data transmission size through the communication channels. GevBEV helps reduce
communication overhead by selecting only the most important information to share from
the learned uncertainty, reducing the average information communicated by 87% with only a
slight performance drop.

2. To explore the influence of the asynchronous sensor ticking time on the collective perception,
this work propose to predict a bounding box for each object at the globally aligned timestamp
and propose the benchmark TA-COOD. For this purpose, two new datasets OPV2Vt and
DairV2Xt are generated by interpolating the data frames of the OPV2V (Xu et al., 2022c)
and DairV2X (Yu et al., 2022). Based on these two datasets, an efficient spatial-temporal
fusion model SparseAlign is designed to process the sequential point cloud data to generate the
TA-COOD result. The experimental results confirmed the superior efficiency and performance
of the proposed fully sparse framework compared to the state-of-the-art dense models. More
importantly, they show that the point-wise observation timestamps of the dynamic objects are
crucial for modeling the object temporal context and recovering their time-related locations.

3. Fully sparse frameworks are explored for both BEV semantic segmentation and object de-
tection. To this purpose, efficient 3D backbone networks and fusion methods are designed.
The experimental results on the synthetic dataset OPV2V (Xu et al., 2022c) and the real
datasets V2Vreal (Xu et al., 2023) and DairV2X (Yu et al., 2022) all show that the proposed
frameworks outperform the state-of-the-art with large margins.

1.6 Structure of the Thesis

In Chapter 2, the background for autonomous driving and collective perception is presented. The
chapter begins with a brief history of pioneering work in autonomous driving and early developments
in collective perception. Next, it discusses the current state of research in this field, focusing
on the three main components of V2X technology: perception sensors, vehicle localization, and
communication systems. In the last section, the three main stages of collective perception are
introduced.

In Chapter 3, the theoretical foundations relevant to this thesis are presented, covering deep
learning modules, components of collective perception, and the localization correction technique.
Additionally, commonly used evaluation metrics for object detection and semantic segmentation
are discussed.
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In Chapter 4, related work about autonomous driving and collective perception is reviewed.
The chapter begins by examining limitations in previous driving-space representation methods,
including object detection and semantic segmentation. Following this, it introduces perception
algorithms based solely on ego-vehicle sensors. Collective perception, as an extension of ego-based
perception, presents new challenges such as spatial misalignment of data from multiple IAs due to
localization errors, communication delays, and sensor asynchrony, as well as higher computational
demands and significant data collection costs. The final section of the chapter discusses state-of-
the-art algorithms developed to address these challenges.

Chapter 5 introduces the datasets used in this work, comprising two simulated datasets and two
real-world datasets. Chapter 6 begins with a formal mathematical definition of collective percep-
tion and then presents an efficient development tool designed for this purpose. Using this tool,
comparative experiments in cooperative object detection are conducted to investigate agent-based
training methods—which calculate gradients only for specific agents—to reduce computational re-
source consumption.

In Chapters 7 and 8, the main proposed frameworks for cooperative object detection (COOD),
including TA-COOD and BEV semantic segmentation, are explained, respectively. Each task is
explained with the detailed architecture of the models, the experiment configurations, and the final
evaluation of the results generated by these models.

In the last two chapters, a summary of this work is given in the conclusion part, and an outlook
for collective perception is discussed.





2 Background

This chapter begins with a brief overview of the historical development of communication technolo-
gies relevant to autonomous driving. Next, it introduces the perception system for autonomous
vehicles, focusing on the sensors that enable its functionality. Incorporating data sharing among
IAs, the perception system could enhance its performance in terms of perception accuracy and reli-
ability, by increasing its field-of-view and decreasing occlusion. The perception system can improve
its accuracy and reliability, achieving an expanded field of view and reduced occlusion. However,
such cooperation hinges on dependable localization and communication technologies. Section 2.2.2
and Section 2.2.3 provide an overview of these technologies, underpinning the assumptions underly-
ing the experiments conducted in this thesis. Finally, this chapter defines the three implementation
stages of collective perception, namely CPM preparation, sharing and fusion.

2.1 A Brief History of Communication for Autonomous Driving

Dating back to the 1980s, the German Ernst Dickmanns, widely regarded as the pioneer of AV,
achieved a milestone by developing VaMoRs (Versuchsfahrzeug für autonome Mobilität und Rech-
nersehen by Dickmanns and Zapp (1987)), which was a Mercedes-Benz van installed with an in-
tegrated computer and was able to autonomously navigate on traffic-free streets, reaching a speed
of 96 kilometers per hour. However, Ernst Dickmanns was not the originator of the concept of
autonomous driving. This idea was first envisioned in 1925 by an American inventor Francis P.
Houdina, who built what is believed to be the first radio-operated driverless automobile, a Chandler
motor car controlled by the radio sent from a second following car. These radio-controlled cars can
be considered as driverless cars but not strictly as autonomous cars because of the indirect inter-
vention of humans in the following car. However, it can be regarded as the pioneer of Connected
Autonomous Vehicle (CAV) for cooperative driving.

Starting from Futurama (Geddes, 1940), a remotely-controlled car exhibited in 1939’s World’s
Fair, the idea of guiding the driverless car with electric cables beneath the driving tracks was
adopted and explored in the following decades by many laboratories, such as RCA Labs (Zworykin
et al., 1957), Ohio State University’s Communication and Control Systems Laboratory, and the
United Kingdom’s Transport and Road Research Laboratory. In 1986, Bosch-Blaupunkt introduced
one of the earliest on-board navigation systems EVA (Pilsak, 1986) and Carnegie-Mellon University
built an autonomous system NAVLAB (Pomerleau, 1988) which utilizes sonar, camera, and laser
range finder to find obstacles and achieve self-localization and navigation.

Along with the development of AVs, the route-guidance system system (RGS) via Vehicle-to-
Infrastructure (V2I) communication (Wolf and Begun, 1940; Rosen et al., 1970) and its extension
to Vehicle-to-Vehicle (V2V) communication (Tsugawa, 1992) was also evolving. The V2I system
aims to remotely provide guidance information to the drivers to find correct routes. To enhance
flexibility in information exchange and reduce reliance on infrastructure, V2V communication was
introduced. V2V enables vehicles to communicate directly with each other anytime, anywhere,
offering a more adaptable and decentralized approach to information sharing.

Based on the advancements and accomplishments of V2I and V2V technologies alongside the evo-
lution of vehicle automation, large projects such as PROMETHEUS and DRIVE in Europe (Gillan,
1989), the IVHS (Intelligent Vehicle Highway System) Program in the United States (Sweeney,
1993), and SSVS (Super Smart Vehicle System) in Japan (Tsugawa et al., 1991) were launched in
the 1990s, seeking to further explore the potential of intelligent traffic agents and their interaction by
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leveraging advanced technologies such as modern microelectronics, sensor technology, telecommuni-
cations, and informatics. The common objective of these projects was enhancing safety, efficiency,
economic viability, comfort, and environmental friendliness.

2.2 Autonomous Driving Systems (ADSs)

Beginning with early explorations of driverless and communicative vehicles in the previous cen-
tury, autonomous driving systems have since undergone rapid evolution, advancing significantly in
intelligence and capability in the current century. This can be attributed to the swift progress in
sensor systems, computing hardware, and the state-of-the-art algorithms harnessed by Artificial
Intelligence (AI) (Poole et al., 1998). Since the initial adoption of Radar for emergency brake as-
sistance in the 1950s (Middlehurst, 2017), the evolution of modern AVs has incorporated a diverse
array of sensors within their perception systems. These include cameras, LiDAR (Light Detection
and Ranging) sensors, and infrared depth sensors, all of which collectively supply comprehensive
environmental data. Over the course of this progression, the introduction of the Global Navigation
Satellite Systems (GNSS) has significantly enhanced the localization and navigation capabilities of
vehicles. Alongside GNSS, technologies such as the Inertial Navigation Systems (INS) (Zhang et al.,
2012; Wahyudi et al., 2018; Kourabbaslou et al., 2019), Real-Time Kinematic (RTK) (Uradziński,
2011; Li et al., 2018), and Simultaneous Localization and Mapping (SLAM) (Durrant-Whyte and
Bailey, 2006) are employed to further refine localization accuracy.

With advanced sensors and the localization and navigation systems, the AI-based egocentric-
ADS has successfully passed the driving test in some specified scenarios. To enhance safety further,
communication technologies for Vehicular Ad Hoc Networks (VANETs) have been introduced to
alleviate problems with occlusions and extend the observation range. This thesis concentrates on
the LiDAR-based collective perception system with considering the challenges introduced by sensor
synchronization, localization errors, and communication latency. In the following, technologies
related to these issues and the reason behind the choices of experimental settings in Chapter 7 and
Chapter 8 are introduced.

2.2.1 Sensors and perception

Perception is the process of understanding the environment via sensing. By processing the sensed
data, the perception system should interpret and represent the data into a higher semantic level so
that this information can be utilized for making driving decisions. To make a correct decision, the
vehicle should know its own position relative to the map for navigation and the positions of other
traffic participants to avoid collisions.

Among all available sensors, cameras stand as the predominant sensors for ADSs due to their
ability to capture rich environmental data and their cost-effectiveness. Several cameras are mounted
on the vehicle to capture RGB images of the surrounding environment. These images are processed
by deep-learning (DL) models and interpreted into information of higher semantic level that is easier
to be used by the computer for decision making. For instance, these DL models can identify the
traffic participants within the 2D images. Combining the geometries, the calibration parameters,
of several cameras, and the 3D locations of these detected participants can be computed. With this
information, the ego-vehicle can avoid collisions. By interpreting road geometry from the images
and assessing the detected objects’ relative positions in relation to the ego-vehicle, the autonomous
driving system is able to plan the trajectory for its subsequent actions.

While camera-based perception systems serve as the "eyes" for driving tasks, their accuracy
in locating objects, particularly those at a distance, remains limited, because the camera-based
approach lacks inherent depth information and relies on subsequent algorithmic estimations. It
indirectly queries 3D information either by estimating the depth information or by the geometries of
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several cameras; therefore, it is more sensitive to inaccuracies arising from sensor calibration. These
errors can propagate and potentially magnify during the algorithmic process of projecting 2D points
into 3D space. Additionally, their effectiveness notably diminishes in inadequate lighting conditions.
In contrast, a LiDAR sensor actively sends and receives laser beam signals for detecting distances
relative to the obstacles, provides accurate measurements in a few hundred meters, and operates
independently of lighting conditions. Moreover, LiDAR directly captures real-world 3D information
without the algorithmic projection from 2D to 3D. Infrared depth sensors can also be utilized as
compensation for cameras, but their accuracy and detection range fall far behind the LiDARs. Due
to these advantages, LiDAR can be regarded as essential for safer autonomous driving. Therefore,
this thesis focuses on building perception frameworks that process point cloud data captured by
LiDARs for the two perception tasks: Bird’s Eye View (BEV) semantic segmentation and object
detection.

Taking the point clouds as input, object detection aims to find the pre-defined target objects in
the driving environment that might cause collisions. Because the on-ground vehicles are driving
approximately on the 2D BEV surfaces, for simplicity, these surfaces are interpreted by BEV
semantic segmentation as a 2D BEV semantic map. Each pixel on this map is assigned a semantic
label corresponding to its classification. Based on these semantic labels, the IVs are able to navigate
themselves in the 2D driving environment.

2.2.2 Localization

Exact localization of IAs is a prerequisite for successfully aligning and fusing the features from
different IAs. Consequently, localization errors pose a significant challenge within the collective
perception framework. It is imperative that this framework minimizes the impact of such errors as
much as possible. The following discussion provides an overview of the current state of localization
technologies to underpin the assumptions related to localization in the experimental context.

As an essential component for vehicle navigation systems, the GNSS-based localization accuracy
ranges from a few meters to over 20 meters (Tan and Huang, 2006) depending on the visible
number of satellites and the weather and environmental conditions. It suffices for human drivers to
ascertain their location and plan their route. Yet, for the autonomous driving systems, centimeter-
level precision, or at least accuracy within a few decimeters (∼30cm) is essential to ensure accurate
positioning within road lanes. To attain this level of precision, techniques such as INS, RTK, and
SLAM can be used on top of GNSS.

INS operates based on the principles of inertia, utilizing sensors to track a vehicle’s motion. It
can be used to correct the positioning and navigation information by fusing GNSS information with
the velocity and orientation measured by high-accuracy gyroscopes and accelerometers. However,
the errors of INS drift over time. Similarly, RTK also combines GNSS information with additional
correction data to improve the localization accuracy. This correction data, which includes precise
satellite positions, is transmitted from base stations with known locations. However, a significant
limitation of RTK is its dependence on communication with these base stations within a restricted
range, due to limited signal strength. Consequently, RTK is often ineffective in areas where signal
obstruction occurs, such as tunnels, areas under dense tree canopies, and regions affected by multi-
path errors caused by nearby buildings (Uradziński, 2011). Differently, SLAM constructs real-time
local maps autonomously by matching the information of consecutive frames of data measured by
onboard sensors, enabling the vehicle to navigate based on its relative position within these maps.
When provided with a global reference map, the vehicle determines its global location by aligning
and registering the local map into the global map. Sensors such as short-range Radar (Ward and
Folkesson, 2016), Localizing Ground-Penetrating Radar (LGPR) (Cornick et al., 2016; Ort et al.,
2020), camera (Parra et al., 2010; Li et al., 2013; Suhr et al., 2017) as well as LiDAR (Wei et al.,
2020; Levinson and Thrun, 2010; Elbaz et al., 2017; Wang et al., 2019) can be used to improve
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the localization accuracy. In general, LiDAR-based solutions achieve the best performance due
to their high-accuracy measurements. For instance, by registering the road geometric elements,
such as curbs and markings detected from point clouds data, into the global feature map of the
environment, the lateral and longitudinal errors can be reduced to less than 30 cm. Similarly,
matching deep features that are generated by DL models can also achieve the localization accuracy
under 30 cm (Elbaz et al., 2017; Wang et al., 2019).

In this thesis, it is assumed that state-of-the-art algorithms are employed to deliver localization
with centimeter-level accuracy, facilitating effective data fusion for collective perception.

2.2.3 Communication

To facilitate communication among traffic agents, various communication technologies are employed
based on specific scenarios. Among these scenarios, vehicles play the main role with their miscon-
duct emerging as the most crucial factor contributing to traffic accidents (Statistisches Bundesamt,
2017). In the pursuit of enhancing road safety and optimizing traffic services, the concept of Ve-
hicular Ad Hoc Networks (VANETs) was initially introduced in 2001. This innovative approach
facilitates communication and networking among vehicles, with autonomous vehicles within this
network referred to as Connected Autonomous Vehicles (CAV). Under the framework of VANET,
there are three types of communication scenarios, namely Vehicle-to-Vehicle (V2V), Vehicle-to-
Infrastructure (V2I), and Vehicle-to-Everything (V2X).

V2V communication, also called Inter-Vehicle Communication (IVC), allows information ex-
change among vehicles. For instance, they can share accident, congestion, and speed limit informa-
tion to improve traffic safety and efficiency (Arena and Pau, 2019). V2I communication handles the
interaction between the vehicles and the RSUs, hence also named as Roadside-to-Vehicle Commu-
nication (RVC). The communication in this scenario is bidirectional. From the vehicle side to the
roadside, the traffic information in a broader range and better view-of-sight can be shared. Take
a busy traffic intersection as an example; infrastructure equipped with high-mounted cameras can
provide more comprehensive observations of the overall traffic conditions compared to relying solely
on the on-board cameras of vehicles. Sharing the information about the traffic situation from the
infrastructure significantly improves the vehicles’ ability to understand this environment and make
better driving decisions accordingly. In the opposite communication direction, the RSUs can collect
information from the vehicles, update the cloud database in real-time, and adjust the supervision
and management of the traffic accordingly (Arena and Pau, 2019), benefiting all end users in the
VANET. By integrating V2V and V2I communications, while also taking into account vulnerable
road users and other connectable devices, V2X technology enables vehicles to communicate with
any traffic entities that may influence or be influenced by vehicular activity (Lee et al., 2017). For
instance, communication with vulnerable road users, such as pedestrians and cyclists, can prevent
collisions with them (Lin et al., 2015).

Range tech. standard DTR(bps) range(m) latency(ms)

Short

Bluetooth IEEE 802.15.1 1M–3M 10 100
BLE IEEE 802.15.1 1M 50 6
ZigBee IEEE 802.15.4 20K–250K 75–100 30
UWB IEEE 802.15.3 480M 75 0.1

Medium DSRC/WAVE IEEE
802.11p/1609.4

27M 300 100

Long LTE 3GPP Rel. 14 17.7M 100– >5K < 10
5G-NR 3GPP Rel. 15 >1G 50– >5K < 1

Table 2.1: VANET communication technologies classified with communication ranges.
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To implement the aforementioned communication scenarios, various communication technologies
are employed. Based on their communication ranges, these technologies can be categorized into
short, medium, and long ranges (Ahangar et al., 2021). Table 2.1 includes examples of exemplary
standardized technologies within each range class. The key features that are relevant to the data
fusion process of collective perception are listed.

Communication latency refers to the time delay that occurs between the moment a signal is
transmitted and when it is received. A low latency is important for perception systems because
it requires the shared information to be as fresh as possible to accurately localize the dynamic
objects in the driving environment. If the latency is too high, the data arriving at the goal agent
would be outdated. This introduces challenges to predict accurate locations of the dynamic objects
in real-time. To ensure low latency, the data transfer rate (DTR) also plays a critical role. It
reflects the number of bits that can be transferred per second. The DTR should match or be larger
than the communication workload to prevent congestion in the communication channels. Once
the communication traffic is jammed, the data transfer might consume much more time than the
lowest latency the communication can provide. At last, the communication range is provided in
the table as it holds significance for the respective use cases. For example, Bluetooth may not be
suitable for V2I communication, as vehicles are typically situated at a longer distance from the
infrastructure elements than the communication range of Bluetooth. In Table 2.1, the listed DTRs
and ranges are the higher boundaries; the latency is the lowest transmission time required if the
communication channels are operating in the most efficient mode. The standardized protocols are
also given as reference to retrieve more details regarding the corresponding techniques.

In general, the technologies with very short communication ranges, such as Bluetooth and BLE
(Bluetooth 4.0), are not suitable for inter-agent communication. However, they can be used for
intra-vehicle communication of on-board sensors to simplify the complexity of wiring in the vehi-
cle. ZigBee and Ultra Wide Band (UWB) signals can reach relatively longer distances, having the
potential for inter-agent data transmission. Especially, when multi-hop communication is applied,
more distant agents are interconnectable. However, ZigBee is not suitable for crowded areas be-
cause of its low DTR. In contrast, UWB uses a wide bandwidth from 3.1 to 10.6 GHz (Ahmed et al.,
2015), enabling heavy data exchange. Besides, it can penetrate obstacles, assisting the localization
in dense environments (Martín et al., 2020). As a medium range communication technology, Ded-
icated Short-Range Communication (DSRC) under the standard IEEE 802.11p is modified from
WiFi technology (IEEE 802.11). Wireless Access in Vehicular Environment (WAVE) under IEEE
1609.4 is an extension of DSRC, supporting the co-existence of safety and non-safety applications
over DSRC channels. They are specially designed to enable reliable communication for both V2V
and V2I, providing information exchange, such as traffic signals and accident alerts (Zeng et al.,
2009; Kenney, 2011), in a wide area network. Despite increased DTR, DSRC/WAVE can hardly be
used in dense traffic because of congestion issues caused by the absence of optimized channel access
control (G. and R., 2018). Besides, with DSRC’s range limit of 300m, the vehicles running at high
speed need to change network topologies frequently, leading to handover problems (Abboud et al.,
2016). To solve these problems and facilitate large-scale V2X communication, the Third Generation
Partnership Project (3GPP) group has defined the long range C-V2X technology in the technical
report 3GPP Release 14 1. It introduced the LTE-based C-V2C technology (Moradi-Pari et al.,
2023). However, with the rapid advancement of information and computer technologies, intelligent
agents now have the capability to process large volumes of data, enhancing their perception per-
formance. Consequently, communication technologies must also be capable of managing massive
data exchanges to effectively support these agents. To this end, 5G technology is introduced in
the latter releases of 3GPP standards. For instance, 5G-NR increases the DTR to Gigabyte level

13GPP Rel.14: TR21.914. https://www.3gpp.org/specifications-technologies/releases/release-14

https://www.3gpp.org/specifications-technologies/releases/release-14
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and reduces the latency to less than 1ms, enabling more advanced collective perception systems
by sharing richer and more diverse information.

2.3 Implementation of Collective Perception

2.3.1 CPM preparation

Collective perception can be achieved through a three-step process: preparation, sharing, and
fusion of CPMs. In the preparation phase, any information that may benefit recipients is identified
and prepared for dissemination. However, due to limited communication bandwidth, it is essential
to prioritize and share only the most critical information. This raises the question: what should
be shared? An effective strategy is therefore needed to identify and select the most important
information for transmission.

Level Name Possible processing procedures
1 Data acquisition LiDAR, camera, radar
2 Preprocessing down-sampling, transformation
3 Features normals, curvatures, deep features
4 Analysis object detection, semantic segmentation, tracking
5 Understanding threat/safety assessment
6 Decision navigation, steer, brake, speed

Table 2.2: Definition of different data processing levels

Inspired by Hall and Llinas (1997), the content of CPMs can be classified according to their
processing levels as shown in Table 2.2. As the information is distilled to a higher processing
level, it contains less detail and gets smaller in data size. In the data acquisition level, raw data
from various sensors—including LiDAR, cameras, and radar—can be shared to provide recipients
with complete sensory information from cooperating sources. However, sharing raw data typically
demands substantial communication bandwidth. For example, the raw point cloud data captured
by LiDARs may contain millions of 3D points. At a capturing frequency of 10 Hz, it generates tens
of Megabytes of data per second, saturating the communication channels.

After data acquisition at level 1, the raw data can be down-sampled to a smaller size and
transformed to required coordinates before sharing. For example, by receiving the location of
an ego-vehicle, the cooperative vehicle can transform the point cloud data to the ego-vehicle’s
coordinate system or down-sample the point cloud to voxels (Chen et al., 2019a) before sharing.
Also, the data can be further processed to obtain features in level 3, such as normals and curvatures,
calculated from the neighborhood points in the point cloud or so-called deep features learned by
a Deep Neural Network (DNN) (Marvasti et al., 2020a; Chen et al., 2019b; Wang et al., 2020a).
Starting from level 4, the data become lightweight, only requiring little communication resources.

Despite the success of early works (Allig et al., 2019; Aoki et al., 2020; Niels et al., 2019) on
improving perception performance by sharing high-processing level messages, they might be error-
prone and task-specific, and cannot be generalized for use on other tasks. Instead, the mid-level
messages, especially the learned deep features (Marvasti et al., 2020a; Chen et al., 2019a; Xu et al.,
2022c; Wang et al., 2020a), are proven to be beneficial in balancing the perception performance
and the communication bandwidth requirements.

This thesis takes LiDAR as a focus because of its high accuracy in measuring 3D environments
and better reliability under different light conditions. The CPMs are prepared at level 3. More
specifically, the local point cloud data captured by LiDAR is processed by a DNN to extract deep
features for sharing.
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Figure 2.1: CPM sharing strategy.

2.3.2 CPM sharing

As illustrated in Figure 2.1, there are mainly two strategies for sharing the prepared CPMs: hand-
shaking and broadcasting communication. By handshaking, the ego vehicle first sends a request
CPM containing its own pose Pego to the cooperative vehicle. Then the cooperative vehicle trans-
forms its local raw data into the coordinate system of the ego-vehicle and processes the transformed
data F ego

cav for sharing. Instead, in the broadcasting communication, the cooperative vehicle directly
sends its local processed data Fcav and its pose Pcav to the ego-vehicle. The coordinate transforma-
tion of the data is accomplished at the recipient. The handshaking approach simplifies data fusion
but places a higher demand on communication resources, while the broadcasting strategy is more
communication-efficient but requires feature transformation at the fusion stage. This thesis em-
ploys both strategies, assuming ideal communication with 100% throughput rather than simulating
the actual communication process.

2.3.3 CPM fusion

To fuse the received CPMs into the ego-vehicle’s local coordinate system, two main challenges
must be addressed: inaccurate poses of IVs (Wang et al., 2020a; Xu et al., 2022a; Yuan et al.,
2022; Yuan and Sester, 2022) and time asynchrony due to communication latency (Xu et al.,
2023; Yu et al., 2023) and asynchronous sensor clocks. Pose errors make it difficult to accurately
align features from cooperative vehicles within the ego-vehicle’s coordinate system, which can
degrade cooperative perception performance and even negatively impact the ego-vehicle’s own local
perception. Furthermore, time asynchrony results in outdated CPMs that do not accurately reflect
the real-time positions of the detected target objects. This thesis explores all these challenges while
developing and evaluating the perception frameworks.





3 Theoretical Fundamentals

This thesis employs deep learning techniques to construct the collective perception framework.
Accordingly, the relevant deep learning modules are first introduced in Section 3.1. Subsequently,
the main network components, task heads, and loss functions utilized in this work are described in
detail in Section 3.2. Additionally, the pose graph optimization algorithm is discussed in Section 3.3,
as it plays a critical role in enabling localization correction within the framework. Finally, the
commonly used evaluation metrics for object detection and BEV semantic segmentation tasks are
defined in Section 3.4.

3.1 Deep Learning Modules

3.1.1 Multi-layer perceptrons

Multi-Layer Perceptrons (MLPs), also called feed-forward neural networks, consist of fully con-
nected neurons with a kind of activation function, such as sigmoid , tanh, ReLU (Rectified Linear
Unit), and softmax. A layer of fully connected neurons is called a fully connected layer in which
each input neuron is connected to each output neuron. A MLP contains one input layer, at least
one hidden layer, and one output layer. An example of MLP with two fully connected layers is
shown in Figure 3.1. The outcome of each neuron in the hidden layers and the output layer is the
weighted sum of the outcomes of the previous layer. In addition, a constant bias value can be added
to this sum, as the b1 and b2 shown in Figure 3.1. Mathematically, the MLP can be expressed with

y = f3(f2(f1(x))) (3.1)

where x and y are the input and the output vector, respectively. f∗ is the function of the fully
connected layer which can be formulated as

hlj = σ(
∑
i

(xiwij) + bj) (3.2)

where xi is the outcome value from the ith neuron in the previous l− 1th layer, wij is the weight
between the ith previous neuron and the jth neuron in the current lth layer, bj is the bias at the
lth layer, σ is the activation function, and hlj is the outcome value of the jth neuron in the lth
layer.

MLPs are of extreme importance for building neural networks. In this work, they are used for
encoding the input point features and position and time embeddings for transformers.

3.1.2 Convolutional neural network

Convolutional Neural Networks (LeCun, 1989), or CNNs, are a class of neural networks that are spe-
cialized for processing data with grid-like topology (LeCun et al., 2015), such as images. Compared
to MLPs, CNNs contain a series of convolution layers that are more efficient as each convolution
operation only covers a portion of the input data. More specifically, each convolution layer performs
a series of convolution operations between two matrices, where one matrix is the restricted portion
of the input matrix I, also called receptive field (Figure 3.2 green or dashed blue box over input
grid) and one matrix is a set of learnable parameters that are arranged in grid K, also called kernel
or filter (Figure 3.2 red box). Mathematically, this operation can be expressed as

31
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Figure 3.2: An example of a two-dimensional convolution

oi,j = (K ∗ I)(i,j) =
∑
m

∑
n

ai+m,i+n · km,n (3.3)

where ai+m,j+n and km,n are the elements in the input matrix I and kernel matrix K, respectively.
The indices i and j indicate the convolution location. Since the same operation with Equation (3.3)
is applied at each input location, this series of operations can be computed in parallel so that less
processing time is required. In Figure 3.2, the input data is a 4 × 4 × 1 tensor, and the kernel is
2× 2× 1, where the last dimension is the number of channels, also called depth. In real use cases,
the kernel is smaller in size than the input data but normally has more channels. For example, an
input image normally is composed of three (RGB) channels. One may use more than three kernels
to perform convolution over each channel of the input image and take the summation of the outputs
over all channels as the final output of each kernel. As a result, the final output has the dimension
of W ×H × C, where W and H are the width and height of the output tensor, respectively. C is
the number of kernels or output channels.

To reduce computational demands, the convolutional kernel can move with larger step sizes
instead of a step size of one, as shown in Figure 3.2. This step size is referred to as the stride.
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(a) Kernel size 3, stride 2 and dilation 1. (b) Kernel size 3, stride 1 and dilation 2.

Figure 3.3: Variants of convolution kernels.

Figure 3.3a illustrates an example of a convolutional kernel with a size of 3 and a stride of 2,
where the kernel window shifts forward by two pixels at each step (the dashed red box moves to
the new position shown by the solid red box). In addition to adjusting the stride size, the kernel
elements can be arranged sparsely across the input to increase the receptive field without increasing
computational load. This variant, known as dilated convolution, involves dilating the kernel at a
specified ratio. Figure 3.3b depicts a kernel of size 3, stride 1, and dilation 2, where the kernel
elements (red squares) are spaced out and operate on every second input element. The black arrows
indicate the dilation ratio, which is two in the example.

On top of each convolutional layer, which is a linear operation, an activation function is always
attached to introduce non-linearity so that the convolution layers can learn more complex non-
linear features. ReLU and its variants, such as leaky ReLU , are the most commonly used activation
functions because of their computational simplicity and representational sparsity. In addition, the
CNNs may also contain normalization layers, which re-center and re-scale the output data after
each convolutional layer to accelerate and stabilize the training process of the network. To simplify
the explanation, when the term convolutional layer appears in the following chapters, it refers to
the convolution layer attached with the normalization layer and the activation function.

To apply the convolutional layers on LiDAR data, the 3D point clouds captured by LiDAR
should be rasterized into small units, which are called voxels. This process of rasterization is called
voxelization. The outcome is a 4D tensor of shape X×Y ×Z×C, where X,Y,Z are the discretized
lengths along the x, y and z axes in the 3D world, respectively. The input channel C normally
contains the aggregated features from the points in each corresponding voxel. For example, the
averaged coordinate and intensity values of the points in that voxel. Since the point cloud data are
very sparse, dense 3D convolutions over the 4D tensor (X×Y ×Z×C) waste a lot of computational
resources due to unnecessary calculations in empty spaces. Therefore, this thesis uses fully sparse
convolutions.

3.1.3 Sparse convolution

The convolution layers can be extended to any dimension. However, the computational demands
increase exponentially as the dimension increases. Modern computers are able to process 3D con-
volutions only on very limited input data size, such as cropped point clouds in a limited field of
view or discretized with larger voxel size. To increase the computational efficiency, sparse convo-
lution (Graham and der Maaten, 2017) is introduced to deal with the convolution operations over
point clouds that are represented with sparse tensors of shape N × C, where N is the number of
voxels and C the number of features for each voxel.

The conversion from dense convolution to sparse convolution is simply a technical trick that
avoids unnecessary calculations over empty spaces. Figure 3.4 shows the differences. The left
subfigure Figure 3.4a demonstrates atomic operations (multiplication and addition) of the dense
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convolution. To utilize the parallel computation of GPUs, a kernel mapping function that specifies
the operand addresses or indices for each atomic operation of convolutions needs to be defined. As
shown in Figure 3.4a, the kernel, input, and the output matrix are first stretched to an array. Then
the kernel parameters are multiplied with the input elements, where the multiplication results are
finally added to the corresponding output addresses. In this case, the kernel mapping function is
represented with the lines that connect the data point of the kernel, the input, and the output
element addresses. Each type of line represents one convolution operation for one output element.
If the input is sparse as shown in Figure 3.4b, the atomic operations are significantly fewer than
for the dense convolution.

Because of the flexibility of defining the kernel mapping functions, the output shape can also
be flexibly adjusted as illustrated in Figure 3.5. The example in Figure 3.4b results in an output
Odense of shape 2 × 2. To keep the sparsity of the input data, the kernel mapping functions
can be defined to only calculate the convolution result for the output locations that are aligned
with the input locations, resulting in Oin. This output format is regarded as the standard sparse
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Figure 3.6: Attention mechanism for retrieving information from an animal database1

convolution. However, if the data is highly sparse, an isolated location is hard to learn from the
features of distant locations in the input as the kernel window can never cover other input elements.
To this end, Coordinate-Expandable sparse Convolution (CEC) is introduced to expand the input
tensor coordinates and obtain the dilated output tensor Odilate. All three output formats can be
utilized alternatively to balance between the computational complexity and the learning ability of
the models.

3.1.4 Attention mechanism and transformers

Attention is one of the most important cognitive mechanisms of humans for efficient perception.
This mechanism tends to selectively process the most important information and ignore the other
information. In machine learning, attention can be used to efficiently allocate the computational
resources and only concentrate on learning the relevant features that are beneficial for generating
the target results. It has been widely used in the machine learning tasks that require processing
heavy data in grid-topology, such as computer vision (Itti et al., 1998; Mnih et al., 2014), or long
sequential data such as machine translation (Bahdanau et al., 2015; Sutskever et al., 2014) and
speech recognition (Chorowski et al., 2014). The attention mechanism can significantly reduce the
computational overhead of these tasks. Besides, incorporating the positional encoding that encodes
the spatial and temporal information into the learned deep features, the attention mechanism can
process sequential data in parallel instead of processing them recurrently in order to build the
temporal context. This significantly increases the data processing efficiency. Therefore, this thesis
uses the attention mechanism to process the sequential point-cloud data.

Theoretically, the general attention mechanism in machine learning makes use of three com-
ponents: keys K, values V , and queries Q. For understanding, the interplay among these three
components can be compared to a search process in a text corpus or database, as the example
shown in Figure 3.6. The two queries give the instructive information heavy animals with large
quantity for the search process and interact with the keys, which can be regarded as a compact
summary of the features of values, to find the importance for each value so that the weighted sum
of the values is retrieved as the final attention result. As the example shows, the given two queries
indicate that values (animal features) with larger weight and quantity in keys are of greater impor-
tance. As a result, the elephant and pig are retrieved from the database because the weight is the

1Database: www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals

www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals
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most important factor in the query (darkest blue) and the quantity is the second most important
factor.

This instructive information of queries can be encoded into a mathematical representation – a
vector. In the example, two such queries with three features are given for searching two items that
fulfill this instruction. In general, the tensor shape of queries can be written as L × dk, where
L is the number or length of queries and dk is the number of query features, also called feature
embedding dimension. The keys K and values V have the tensor shape of S × dk and S × dv,
respectively. In the example, L = 2, S = 6 and dk = dv = 3. Mathematically, the attention can be
expressed as

Attention(Q,K,V ) = W · V = softmax(Q ·KT ) · V (3.4)

where the weight W for the values V is calculated by performing a softmax function over the
last dimension of the dot product between Q and the transpose of K. This attention realization
is called Dot-Product Attention. According to Vaswani et al. (2017), this type of attention tends
to generate dot products of large magnitude, pushing the softmax function to generate extremely
small gradients during training, hence deteriorating the model performance. To this end, the Scaled
Dot-Product Attention is introduced by scaling the dot product with a factor 1/

√
dqk. The new

attention function is then updated to

Attention(Q,K,V ) = W · V = softmax(
Q ·KT√

dqk
) · V (3.5)

When L ̸= S, the attention is also called Cross Attention. However, in some cases, the same
input might be respectively used as K,V and Q for the purpose of learning the sequence represen-
tation by exchanging information and learning the relationships between the elements in the same
sequence. This is called Self-Attention. For simple implementation, attention normally uses the
same embedding dimension d = dk = dv for all inputs.

To improve the learning ability of the attention layers, Vaswani et al. (2017) proposed to project
the Q,K,V with linear layers into h different representation subspaces and learn more diverse
features from these spaces. Each attention head learns from one subspace, all h attention heads
are performed in parallel. This version of Mult-Head Attention (MHA) is formulated as

MultiHeadAttn(Q,K,V ) = Concat(head1, . . . ,headh)W
O (3.6)

headi = Attention(QWQ
i ,KWK

i ,V W V
i ) (3.7)

where the learnable parameters WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , W V
i ∈ Rd×dv project the input

features into different subspaces of reduced dimensions dk = dv = d/h. Each head has its own
projection parameters. The attended feature headi has the shape of S × dv. Features from all h
heads are concatenated along the embedding dimension and projected with WO ∈ Rd×d to obtain
the final attention result.

Based on MHA, Vaswani et al. (2017) designed a transduction model, called Transformer , for
learning the representations of sequential data in parallel, significantly reducing the training time.
The overall architecture of the transformer is demonstrated in Figure 3.7. It is mainly composed
of an encoder and a decoder, each of which contains N identical layers. Each layer in the encoder
contains a MHA and a fully connected feed-forward sub-layer, around which a residual connec-
tion (He et al., 2016) with the layer normalization (Ba et al., 2016) is employed. The decoder has
a similar structure; however, with one more MHA sub-layer inserted. The bottom masked MHA
layer ensures that each position in the sequence only attends to its preceding positions. The out-
put of this layer is then updated by attending to the output of the encoder stack in the following
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Figure 3.7: The overall architecture of transformer

MHA layer. The output of the feed-forward sub-layer in the last decoder layer is finally fed to
a linear layer followed by a softmax function to obtain the output probabilities. At the bottom
of the illustrated encoder and decoder (Figure 3.7), the input and output tokens are converted to
vectors of dimension d. These embedded vectors, also called Embeddings, are then added with a
positional encoding to make them aware of the token locations in the sequence while performing
the attentions.

The positional encoding encodes the location information into the same dimension d as the
embeddings. It plays an important role in the transformer for identifying the spatial and temporal
correlations between different tokens. The most commonly used position encoding is the sin-
cos position encoding as described with Equation (3.8). Inspired by the binary representation
of numbers (Kazemnejad et al., 2023), it forms the encoding vector

−−→
PEt ∈ Rd as a geometric

progression from 2π to T · 2π on the wavelengths (Vaswani et al., 2017), where T is the encoding
temperature which is set to 10000 by default, i ∈ {0, . . . ,d− 1} is the dimension index and t ∈ [0,
2π] is the position of the token in the sequence. The frequency ωk decreases with the encoding
dimension.

−−→
PEi

t = f(t)i :=

{
sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1
(3.8)

ωk =
1

T 2k/d
(3.9)
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3.2 Components of Collective Perception

3.2.1 Backbone neural networks

In this work, three backbone networks are used to extract the point cloud features. VoxelNet (Zhou
and Tuzel, 2018) is an extension of a 2D CNN to process 3D data. To reduce computational
demands, PointPillar (Lang et al., 2019) proposes to directly encode point clouds into 2D feature
maps using linear layers and then only use 2D convolutions for feature extraction. While VoxelNet
uses dense 3D convolutions to obtain better 3D features and PointPillar uses 2D convolution to
be efficient, the fully sparse convolutional network, MinkUnet can be regarded as a compromise
between feature extraction performance and computational efficiency. For all these networks, point
clouds should first be encoded into voxels or pillars as input for convolutions. In the following, the
voxel encoding process will be explained first. The details of the selected backbone networks are
then discussed.

Voxel encoding

In order to process the point cloud data with convolutional layers, the unordered points in the
point clouds should be first discretized into voxels, which are the elements of 3D grids. To formulate
this voxelization process, the following assumptions are made:

– The input point cloud (PCD) is represented with a 2D tensor of shape Npcd × Cpcd, where
Npcd is the number of points and Cpcd is the number of point features, including the xyz-
coordinates px, py, pz, the intensity pι and the timestamp pτ if given.

– The observable 3D space within the ranges [Xmin,Xmax], [Ymin,Ymax] and [Zmin,Zmax] re-
spectively for the x,y,z axes, is rasterized with the voxel size of vsx × vsy × vsz into a 3D
grid of shape X × Y × Z.

– Only the nonempty voxels v that contain 1 ≤ m ≤ M points are retained for further pro-
cessing. The total number of nonempty voxels is notated as Nv. Each point vi in v has Cin

input features that are derived from the original PCD features.

In this work, three voxel feature encoding (VFE) methods are used, namely mean VFE , linear
VFE with one linear layer and MLP VFE with three fully connected layers. The mean VFE
takes the mean features of all the points in the voxel as the final features for this voxel. It is
the default VFE for the SpConv backbone network. Linear VFE is the default method for the
PointPillar and the VoxelNet backbone network and MLP VFE is for MinkUnet. Both linear and
MLP VFEs compose the feature vector f i

v for the point vi by concatenating features of the absolute
coordinates pix,p

i
y,p

i
z, the point intensity piι, the relative coordinate within the voxel p̃ix,p̃iy,p̃iz, the

center coordinates of the voxel vix,viy,viz. This representation is formulated in Equation (3.10) and
Equation (3.11), where |v| is the cardinality of the set v that contains the points of a voxel.

f i
v = [pix,p

i
y,p

i
z,p

i
ι,p̃

i
x,p̃

i
y,p̃

i
z,v

i
x,v

i
y,v

i
z], i ∈ v (3.10)

p̃i∗ = pi∗ −
∑

j∈v p
j
∗

|v|
, ∗ ∈ x,y,z (3.11)

The linear VFE is realized by projecting the point features f i
v into the goal voxel embedding

dimension Cv via a linear layer (R1×Cin → R1×Cv) and taking the maximum value among all
points in v for each dimension of Cv (Rm×Cv → R1×Cv , m = |v|). The MLP VFE, instead, uses
a MLP layer for the projection and the final voxel feature fv is the mean of the projected point
features that belong to the voxel.
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Figure 3.8: The architecture of VoxelNet

fv = max(linear(f i
v)) (3.12)

fv = mean(mlp(f i
v)) (3.13)

VoxelNet

VoxelNet was first proposed by Zhou and Tuzel (2018) for 3D object detection on point cloud
data. As illustrated in Figure 3.8, this network mainly consists of three modules: the VFE, the
Convolutional Middle Layers (CML) and the Region Proposal Network (RPN). The VFE encodes
the original point-cloud data into voxel embeddings by a linear layer. The VoxelNet implemented
in this work uses the linear encoding following Equation (3.12). The encoded voxel features are
the input for the CML module, which contains three 3D convolutional layers to further encode
the point-cloud features in the 3D space. The first and the last layer have the strides of (1,1,
2), respectively, on the x, y, and z axes, and the second layer has the strides (1,1,1). Therefore,
the output feature Fcml ∈ RX×Y×Z×C is compressed along the Z axis and has strides of ×(1,1,
4). To obtain 2D feature maps for the RPN, the feature Fcml is then flattened along the Z-axis
to shape X × Y × ZC. The RPN is composed of three down-sampling 2D convolutional layers
with stride two. Therefore, feature maps of three different resolutions are obtained. They are
two, four, and eight times down-sampled, respectively. Over each output of these three layers, a
transposed 2D convolutional layer is employed to up-sample the features back to stride two (two
times down-sampled) and then concatenated to merge the features learned from different resolutions
and receptive fields.

PointPillar

Instead of voxels, PointPillar (Lang et al., 2019) uses the pillar feature network (PFN) to encode
input point clouds into a grid of pillars, as shown in Figure 3.9. PFN can be regarded as a special
case of VFE, similar to VoxelNet. However, the voxel size on the z-axis is set to vsz = Zmax−Zmin.
This results in the encoded feature of shape X×Y ×1×C. Omitting the third dimension, the pillar
feature map Fpillar ∈ RX×Y×C is obtained. Over this feature map, the PointPillar network can
directly perform 2D convolutions to extract the point cloud features which is much more efficient
than the 3D convolution. This feature extraction model has the same structure as the RPN of
VoxelNet; however, with different numbers of convolution layers in each convolution block and
different numbers of encoding channels. The details are shown in Figure 3.10. The RPN employed



40 3 Theoretical Fundamentals

x

y

z

Pillar

Figure 3.9: The encoded pillar
vectors of PointPillar network

2DConv1 64
x2

2DConv2 128
x4

2DConv3 256
x8 T2DConv1

128
x2

T2DConv2

128
x2

T2DConv3

128
x2

C

RPN

2D
C
on
v4PFN

PCD

Figure 3.10: The overall architecture of PointPillar network

in PointPillar uses 4, 6, 6 convolution layers and 64, 128, 256 channels for the three 2D convolution
blocks, respectively. In addition, the output dimension of the transposed 2D convolution blocks
is also reduced to 128 channels, leading to a concatenated output of 384 channels, which is then
projected to the output feature dimension of 256 channels by the final convolution block 2DConv4.

SpConv

SpConv network is a fully sparse 3D convolutional network that is composed of a stack of sparse
3D convolutional layers, as shown Figure 3.11. In this network, two types of 3D sparse convolution
are used, namely SpConv3D and SubMConv3D1. SpConv3D is the sparse version of the Conv3d
in PyTorch2. Therefore, it dilates the input coordinate and generates the output in the format of
Odilate as shown in Figure 3.5. Aligning to the dense Conv3d , a spatial shape is given for each
SpConv3D to constrain the output coordinates to the given shape. Differently, SubMConv3D takes
Oin as its output coordinates which is the same as the input. This is used to keep the sparsity of
the intermediate sparse tensors so as to keep the efficiency of sparse convolutions.

This network first voxelizes the input point clouds and encodes each voxel with mean VFE as
introduced in Section 3.2.1. Then the voxel features are further processed by a series of sparse
convolutions, each convolution layer is notated by Layer Name (output dimension, convolution
stride). For example, the first convolutional layer is a SubMConv3D layer which projects the input
voxel features into the output dimension of 16 without down-sampling (stride = 1). Then three
convolution blocks with down-sampling of the voxels in each block are attached. As shown on
the right side of Figure 3.11, each block contains three convolution layers, namely one SpConv3D
followed by two SubMConv3D layers. Only the first layer uses a convolution stride of two to down-
sample the voxels two times. In other words, the number of the voxels is down-sampled, but the
size of the voxels is doubled. After three convolution blocks, the voxel features are down-sampled
eight times. The output dimension of each block is 32, 64, and 64, respectively. The last layer of
this network is a SpConv3D layer with the output dimension of out_dim (normally set to 128),
the stride two along the z-axis, and the stride one along the x- and y-axis.

MinkUnet

Unet (Ronneberger et al., 2015) was initially proposed for processing medical images. It merges
features of different resolutions at each convolution stage to enhance the feature extraction and

1Implementation in GitHub. https://github.com/traveller59/spconv
2PyTorch implementation of dense 3D convolution.. https://pytorch.org/docs/stable/generated/torch.nn.

Conv3d.html

https://github.com/traveller59/spconv
https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html
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Figure 3.11: The architecture of SpConv 3D backbone network

representation ability of the network. Because of this advantage, it is widely applied or extended
to other research fields, including point-cloud data processing. As shown in Figure 3.12, the
MinkUnet (Choy et al., 2019) with the Unet-like structure is selected as a backbone network to
extract the features of the point cloud in this work. As the name indicates, MinkUnet uses the
fully sparse 3D convolutions implemented in the MinkowskiEngine library1, which is very memory
efficient.

The input point cloud is first voxelized and encoded with the MLP-based VFE into the shape
of Nv × Cv, where Cv = 32. The encoded voxels are then fed to the four convolutional blocks,
Conv1 contains only one layer to digest the input, Conv2 to Conv4 consist of three convolutional
layers, in which the first layer down-samples the sparse tensors to lower resolution. In each down-
sampling step, the resolution is halved, and the new generated voxel size is doubled. Therefore, the
convolution stride at the down-sampling step nds is s = 2nds and P∗ represents the output features
at different strides s. For example, P1 means the decode features in stride s = 1. Similarly, P̂∗
represents the concatenated features of P∗ with the corresponding shortcut features. In the up-
sampling layers, the transposed convolutional layers have a structure similar to the counterparts
in the down-sampling layers. The features from the shortcuts of the convolutional layers are all
concatenated with the features from the transposed convolutional layers. All sparse convolutional
layers in the MinkUnet are batch normalized and activated with Leaky ReLU. In the end of the
network, the voxel features fv and the encoded point features f̃ i

v are concatenated to devoxelize the
stride-one voxels P1 and obtain features P0 for each point.

3.2.2 Feature fusion

This thesis focuses on fusing the learned deep features as it can flexibly adjust the feature content
to balance between the collective perception performance and the communication bandwidth re-
quirement. However, the deep features for CPM can be in any format. According to the methods
used in this thesis, the format can be categorized into Map Feature Sharing (MFS) and Keypoint
Feature Sharing (KFS). With the MFS strategy, the IAs share the learned full deep feature maps
with each other. This map can be the output of any intermediate layer of the network. To reduce
the CPM size, KFS selects the most important keypoint features in the Region of Interest (RoI).
These keypoints can be either 3D points or 2D points in the feature map.

1Minkowski Engine. https://github.com/NVIDIA/MinkowskiEngine

https://github.com/NVIDIA/MinkowskiEngine
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Figure 3.12: The architecture of MinkUnet

In addition to the CPM format, the feature fusion method can also be classified into two cate-
gories: non-learnable fusion and learnable fusion. The non-learnable fusion method indicates that
no parameter in this fusion process is required to be learned during the training process. Typically,
these methods employ operations like the maximum, addition and concatenation. In contrast, a
learnable fusion method is a fusion module with learnable parameters. In the following, the non-
learnable Maxout fusion and the learnable Attention fusion are introduced as they are used in the
baseline or comparative models in this thesis.

Maxout fusion

Maxout fusion was used in Fcooper (Chen et al., 2019a). As the name indicates, it takes the max-
imum value from the feature maps of different IAs. Assume the feature maps are F ∈ RN×W×H×C ,
where N is the number of IAs, W,H,C is, respectively, the width, height, and the number of chan-
nels of the feature map of each IA, the Maxout operation is performed over the first dimension N .
The output feature F ∈ RW×H×C is then regarded as the fused feature of the ego-IA.

Naive Fusion

Naive Fusion involves mixing all the BEV feature points from all IAs. It takes the averaged
feature at each BEV position as the final fused feature of multiple IAs. Similarly to Maxout fusion,
this method does not contain any learnable parameters. It is simple; however, it is not learnable.

Attention fusion

The attention mechanism is useful for selecting the important information; therefore, it is also
employed by Xu et al. (2022c) to merge the feature maps of different IAs. Similarly to Maxout
fusion, attention fusion also operates over the first dimension that corresponds to the number of
IAs; however, it uses the attention mechanism. It uses a self-attention module to attend to the
features across the IAs, as shown in Figure 3.13. Mathematically, it takes the same feature tensor
F ∈ R(W ·H)×N×C as the queries, keys, and values for the attention module, where W ·H can be
regarded as the batch size, N the sequence length, and C the embedding dimension. The attended
feature is reshaped into Fattn ∈ RN×W×H×C and only the feature map F ego

attn ∈ RW×H×C of the
ego-IA is selected as the final fused features.
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Figure 3.13: Attention fusion. Green, blue and yellow feature maps are from N = 3 different IAs.

3.2.3 Task heads

The task heads are the modules injected into the neural network that aim to achieve some learning
tasks, such as object detection and semantic segmentation heads. These task heads may contain one
or several sub-heads, which can be categorized into classification and regression tasks. Classification
tasks aim to generate scores for classifying points or objects to the predefined semantic labels.
Scores can also be used to rank points or regions of interest (RoIs) to select the most important
information for further processing. Regression tasks learn to predict numerical values, such as the
pose and size of an object in the driving scenario.

For autonomous driving, the objects in the driving scenarios should be identified and located
so that the driving system can safely plan driving decisions to avoid collisions with these objects.
This involves the object detection task. In addition, the vehicle should be aware of its own position
relative to the driving environment. By generating semantic maps in real time, the IAs can not
only be aware of their location relative to the current environment, but also be able to know their
global location by registering the current semantic map into the stored global map. The task of
generating such semantic maps is called BEV semantic segmentation as the maps are 2D in bird’s
eye view.

Object detection

Object detection involves the process of identifying and localizing objects within a given scene,
using captured 2D images or 3D point clouds. The focus of this work is the 3D object detection
process on point cloud data, as in the example shown in Figure 3.14. To identify predefined target
objects, such as vehicles, the object detection head should look over all possible locations of the
observed areas and generate probability scores for each location to draw a conclusion if an object
exists at each of these locations. This process is achieved by a classification sub-head. However,
the driving scene is a continuous 2D space in bird’s eye view, resulting in infinite locations that
require classification scores. To this end, the classification heads operate only on the discretized
feature maps and generate one score for each point on the feature maps. Based on these feature
map points, a regression sub-head is required to predict the accurate bounding box (bounding box)
represented by Equation (3.14), where x,y,z are the coordinates of the center point along each axis
in the 3D space, and l,w,h,r are the length, width, height, and orientation of the bounding box,
respectively.

B = [x,y,z,l,w,h,r] (3.14)

For numerical stability during the training process, the regression targets of bounding boxes are
always encoded. There are two commonly used encoding methods, anchor-based encoding (AEnc)
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Figure 3.14: 3D object detection Figure 3.15: Anchors for regression target encoding

and center-based encoding (CEnc). Assume that the ground truth bounding box is Bg (Equa-
tion (3.15), green box in Figure 3.15), then AEnc encodes the targets Bt (Equation (3.16)) based
on the anchor box Ba (Equation (3.17), orange box in Figure 3.15) and Bg using Equation (3.19)
to Equation (3.22). As in the example shown in Figure 3.15, two anchors with orientation angles
of 0 and 90 degrees are generated in each cell of the grid of the feature map for the AEnc. Note
that this configuration is commonly used in many previous works (Zheng et al., 2021; Yuan et al.,
2022; Xu et al., 2022c), although an arbitrary number of anchors for each cell could be used. In-
stead, CEnc (Equation (3.23) to Equation (3.25)) encodes the target based on Bg and the center Ca
(Equation (3.18)) of the features map points. The center point is shown in Figure 3.15 as a black
point in the center of the grid. The final encoded targets Bt are the values that the regression head
needs to predict.

Bg = [xg,yg,zg,lg,wg,hg,rg] (3.15)
Bt = [xt,yt,zt,lt,wt,ht,rt] (3.16)
Ba = [xa,ya,za,la,wa,ha,ra] (3.17)
Ca = [xa,ya,za] (3.18)

dxy =
√
l2a + w2

a (3.19)

xt =
xg − xa
dxy

, yt =
yg − ya
dxy

, zt =
zg − za

ha
(3.20)

lt = log(
lg
la
), wt = log(

wg

wa
), ht = log(

hg
ha

) (3.21)

rt = rg − ra (3.22)

xt = xg − xa, yt = yg − ya, zt = zg (3.23)

lt = log(lg), wt = log(wg), ht = log(hg) (3.24)

rt = [sin rg, cos rg] (3.25)

To address this confusion in selecting the bounding box encoding methods, a comparative study
is conducted in Section 8.2.6 with AEnc, CEnc, and a different number of anchors instead of the
conventional configuration of two.
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Figure 3.16: Semantic segmentation of 2D images (Geiger et al., 2012)

Figure 3.17: Semantic segmentation of 3D points Figure 3.18: Semantic segmentation of a BEV map

BEV semantic segmentation

Semantic segmentation is the task of assigning a class label to each point that can be the pixel
on a 2D image (Figure 3.16), the point in a point cloud (Figure 3.17), or the point in a BEV map
(Figure 3.18). The focus of this work is BEV map semantic segmentation (BEV SemSeg). On the
one hand, the map generated by BEV SemSeg can be used for short-range navigation. On the other
hand, the road geometry generated by BEV map SemSeg is beneficial for localizing the vehicles
accurately.

3.2.4 Loss functions

To train the model with the above-mentioned task heads, loss functions are required to back-
propagate the gradients and update the learnable parameters in the neural networks. For the
classification head, the cross entropy loss Lce is commonly used. However, training the model with
cross-entropy loss on a dataset with an unbalanced amount of samples for different classes tends
to make the network learn more features from the majority class; the minority classes tend to be
overlooked. In this thesis, both object detection and BEV semantic segmentation for the class
vehicles have more negative (background) samples than positive (foreground) ones. To overcome
this bias in learning, focal loss Lfcl is introduced. In some safety-critical applications, such as
autonomous driving, quantifying the confidence of the classification result is beneficial. For this
purpose, evidential loss Ledl is used to train the BEV semantic segmentation model. For the
regression head, the smooth l1 loss L1 is employed.

Cross entropy loss

The concept of Entropy in information theory was introduced by Shannon and Elwood (1948) to
calculate the average number of digits required to encode information or messages. It quantifies the
average level of information, also interpreted as "surprise" or "uncertainty" of a random variable Y
which is distributed according to p : Y → [0,1]. For discrete events, the Shannon entropy is defined
as

H(Y ) = −E[log p(Y )] = −
∑
k

p(yk) log p(yk) =
∑
k

p(yk) log
1

p(yk)
(3.26)
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where p(Y ) is the distribution of all possible events yk, and p(yk) is the probability of the
occurrence of the k-th event. For the classification problem, yk can be regarded as the event that
one instance is classified as the k-th class out of all possible semantic classes. Based on the entropy,
the difference between two probabilistic distributions p : Y → [0,1] and q : Y∗ → [0,1] can be
measured with cross entropy as defined with

H(Y,Y ∗) = −Ep(Y )[log q(Y
∗)] = −

∑
k

p(yk) log q(y
∗
k) (3.27)

In machine learning, the cross entropy loss is derived from the Kullback-Leibler Divergence (KL-
Divergence) as described in Equation (3.28) to Equation (3.30), also known as the relative entropy
of p with respect to q. The distribution p can be regarded as the true underlying distribution, from
which the dataset D is drawn. The distribution q(yk|xi,θ) is then the approximated distribution of
p learned from the samples in dataset D, where xi is the i-th sample in D and θ is the parameters
of the modelM.

DKL(p∥q) = H(p,q)−H(p) (3.28)

= −
∑
ik

p(yk|xi) log q(yk|xi,θ) +
∑
ik

p(yk|xi) log p(yk|xi) (3.29)

=
∑
ik

p(yk|xi) log
p(yk|xi)
q(yk|xi,θ)

(3.30)

Training the machine learning model refers to the process of finding the distribution q that
infinitely approaches the true distribution p. This can be achieved by minimizing the KL-Divergence
between p and q. From Equation (3.28), one can observe that minimizing cross entropy H(p,q) has
the same effect as minimizing the KL-Divergence, because the entropy of p is an unknown constant
which does not depend on the model parameters θ. Therefore, the loss Lce can be expressed with

Lce = −
∑
ik

p(yik) log q(yik) = −
∑
ik

δ(ŷik) · log p̂ik (3.31)

δ(ŷik) =

{
1 if ŷik = yik

0 otherwise
(3.32)

where i is the sample index, ŷik ∈ {0,1} is the predicted label, yik ∈ {0,1} the ground truth label,
and p̂ik ∈ [0,1] the predicted probability for the k-th class of the i-th sample.

Focal loss

It is very common that the training dataset contains unbalanced numbers of samples for different
classes. In driving scenarios, the background samples are always in majority compared to the fore-
ground objects. This unbalance tends to weaken the model on learning the features of foreground
objects and generates a lot of false negative classification results. To tackle this problem, focal
loss (Lin et al., 2020) introduces a modulating factor to reduce the weight of the loss value for
well-classified majority examples and focus on misclassified hard examples. It regards each class as
a binary classification between the fore- and background.

Starting from Equation (3.27), the binary cross entropy loss of each sample over each class can
be simplified to

lbce(p̂ik,yik) = lbce(pt) = − log(pt) =

{
− log(p̂ik) if yik = 1

− log(1− p̂ik) otherwise
(3.33)
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pt =

{
p̂ik if yik = 1

1− p̂ik otherwise
(3.34)

The focal loss is then defined as

Lfcl =
∑
ik

αt(1− pt)
γlbce(pt) = −

∑
ik

αt(1− pt)
γ log(pt) (3.35)

where γ ∈ [0,∞) is the focusing parameter, normally set to γ = 2 by default. The modulating
factor is (1−pt)γ . As pt is approaching 1, this factor goes to 0 so that the well-classified samples are
down-weighted. The parameter αt is an additional factor used to balance the fore- and background
class, normally set to αt = 0.25.

Evidential loss

The conventional approach to converting the continuous model outputs, z (commonly referred
to as logits, as they represent values prior to the exponential-based softmax function), into class
probabilities involves applying the softmax function (Equation (3.36)). However, this method
often exaggerates probabilities due to the exponential nature of the function, leading to unreliable
uncertainty estimations. For instance, the softmax function can assign high confidence to incorrect
classes for out-of-distribution samples, as the model has not encountered these during training.
To address this limitation and enable the model to "know what it does not know," Sensoy et al.
(2018) proposed leveraging the Dempster-Shafer Theory of Evidence (DST) to improve uncertainty
estimation in classification tasks.

softmax(zk) =
ezk∑K
j=1 e

zj
(3.36)

DST generalizes the Bayesian theory with subjective probability (Dempster, 1968), also called
mass or degree of belief. It assigns the masses to the elements in a power set, which is the set of
all possible subsets of the states of a system. To quantify the belief masses and uncertainty with
a well-defined theoretical framework, Jøsang (2016) formalizes the belief assignment of DST with
Subjective Logic (SL) as a Dirichlet distribution because it models the second-order probabilities
(the probability of probabilities) and uncertainty.

The Dirichlet distribution is parameterized with the concentrations α = [α1, . . . ,αK ], where
αk > 0. Its probability density function is given by

Dir(p|α) =
1

Beta(α)

K∏
k=1

pαk−1
k (3.37)

Several examples of Dirichlet distributions over three classes are illustrated in Figure 3.19. When
the probability mass is concentrated at one corner of the triangle, such as in the case of α = (2,2,
10), it signifies a high probability for the class located at that corner. Conversely, the example with
α = (1,3,3) indicates that the classes at both the top and bottom right corners of the triangle have
the highest probabilities. When the concentration parameters for all classes are equal, the model
shows no preference for any specific class. However, as demonstrated by the example α = (0.9,
0.9,0.9), when concentration parameters are less than 1, an undesirable situation arises where all
corners of the triangle exhibit high probabilities. To prevent this, α is typically constrained with
α ≥ 1.

The total concentration, denoted as S =
∑K

k=1 αk, serves as a measure of the distribution’s
strength. A higher value of S indicates the distribution is more concentrated as the example
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Figure 3.19: Dirichlet distribution

with α = (20,20,20) and K = 3 shown in Figure 3.19. Intuitively, the belief masses bk can be
related to the concentration parameters αk. By assigning the belief masses to an uniform Dirichlet
distribution Dir(p|αi = 0, · · · ,αK = 0), the distribution becomes more concentrated. Sensoy et al.
(2018) formulates this relationship with

bk =
ek
S

(3.38)

αk = ek + 1 (3.39)

where ek ≥ 0 is termed as evidence. It ensures αk ≥ 1 to avoid the invalid distribution status
for the classification problem where the masses are pushed away to the extreme cases as shown in
the case of α = (0.9,0.9,0.9) in Figure 3.19. Based on this relationship, SL assumes that a frame
of K classes are mutually exclusive, each is assigned a belief mass bk. In addition, an overall mass
u is defined to quantify the uncertainty. This results in K + 1 mass values that sum up to one as
described in Equation (3.40), where u,bk ≥ 0 and k = 1, . . . ,K.

u+

K∑
k=1

bk = 1 (3.40)

From Equation (3.39) to Equation (3.40), one can derive that the uncertainty u is the number
of classes K over the strength S as shown in Equation (3.41).

u = 1−
K∑
k=1

bk = 1−
∑K

k=1 ek
S

= 1−
∑K

k=1(αk − 1)

S
=

S −
∑K

k=1 αk +K

S

=
K

S
(3.41)

At the beginning of the learning process, the prior distribution of the classification problem
is initialized as an uniform distribution Dir(p|αi = 0, · · · ,αK = 0) (Figure 3.19, α = (1,1,1)),
meaning no evidence is observed so that the distribution contains no information and is totally
uncertain (u = 1) about "what class does an input sample belong to?". During the training
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process, the belief or opinion masses are gradually assigned to the distribution parameters α to
sculpt the Dirichlet distribution. As the training ends, the class assignment probabilities of the i-th
sample xi are computed with Equation (3.42) to Equation (3.43), where αi is related to the output
f(xi|θ) of the neural network parameterized with θ. To generate evidence vectors that fulfill the
constraint ek ≥ 0, Sensoy et al. (2018) proposed to replace the softmax activation at the last layer
in a conventional deterministic neural network with the ReLU or the exponential activation.

αi = ei + 1 = f(xi|θ) + 1 (3.42)

p̂i =
αi

S
(3.43)

(3.44)

Assume yi is the so-called one-hot ground truth label vector of length K, with only one element
"1" that indicates the ground-truth class of the observation sample xi, the other elements of yi

are all "0". Then, the evidential loss can be formulated as the sum of squares loss ∥yi − pi∥22 with
respect to the class predictor (Equation (3.45)).

Ledl,i =

∫
∥yi − pi∥22

1

Beta(αi)

K∏
k=1

pαik−1
ik dpi (3.45)

=

K∑
k=1

E[(yik − pik)
2] (3.46)

By factoring out the ground truth label yik, Equation (3.46) can be transformed into

Ledl,i =

K∑
k=1

(yik − E[pik])2 + V ar(pik) (3.47)

=
K∑
k=1

(yik −
αik

Si
)2 +

αik(Si − αik)

S2
i (Si + 1)

(3.48)

=
K∑
k=1

(yik − p̂ik)
2 +

p̂ik(1− p̂ik)

(Si + 1)
(3.49)

To prevent the network from generating extremely large values during training, an additional
term regularizes the concentration parameters to be closer to the uniform distribution. This term is
formulated with the KL-divergence between the predicted distribution and the uniform distribution.
The final evidential loss function can be represented by

Ledl =
N∑
i=1

Ledl,i + λt

N∑
i=1

DKL

(
Dir(pi|α̃i)∥Dir(pi|⟨1, . . . ,1⟩)

)
(3.50)

where λt is the annealing coefficient that changes with the ratio between the epoch number Aepoch
and the maximum annealing step Amax, reads as

λt = min(1,Aepoch/Amax) (3.51)
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(a) Scanning scene with LiDAR (blue octagon) in the
arena (black rectangle). The scanned points are in red.

Edg
e

Node

(b) Scanning results captured at a sequence of
scanning poses, stating with the blue node and
ending with the pink node which is connected
to the starting node with a blue edge.

Figure 3.20: An example scene for optimizing the LiDAR poses while scanning the arena.

α̃i is the filtered version of αi to ensure that the KL-divergence only punishes the misleading pre-
dictions of αi. It can be formulated as Equation (3.52), where ⊙ is the element-wise multiplication.

α̃i = αi ⊙ (1− yi) + yi (3.52)

Smooth L1 loss

For the regression tasks, the commonly used loss is the L1 loss, which is the least absolute
deviation, and the L2 loss, which is the least square errors. They are described with Equation (3.53)
and Equation (3.54), where ŷ is the real target value and y is the predicted value.

L1 = |ŷ − y| (3.53)

L2 = (ŷ − y)2 (3.54)

Generally, the L2 loss function penalizes large errors more heavily than the L1 loss and is
preferred when the data is clean and the goal is to minimize the impact of small errors. In contrast,
L1 tends to be more robust to outliers in the data and prevents gradient exploding. Combining the
advantages of both loss functions, smooth L1 loss is introduced. As described in Equation (3.55),
the smooth L1 loss shifts between the L1 and L2 loss that are parameterized with β depending on
the error between the real and the predicted value.

L1sm =

{
0.5 · (ŷ − y)2/β, if |ŷ − y| < β

|ŷ − y| − 0.5 · β, otherwise
(3.55)

3.3 Pose Graph Optimization for Pose Alignment

Pose Graph Optimization (PGO) is an algorithm for improving the accuracy of estimated poses
(positions and orientations) of a robot or a sensor as it moves through an environment. It is
achieved by minimizing the errors in the poses by considering the relationships and constraints
between them. PGO is commonly used in simultaneous localization and mapping (SLAM).

A simple scene, where a LiDAR sensor (blue octagon) is scanning an arena (black rectangle) with
a landmark (green circle) in it, is shown in Figure 3.20a. A single measurement from the LiDAR
is visualized with red points. As the LiDAR moves within the arena, it captures a sequence of
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measurements, as illustrated in Figure 3.20b. Each measurement is associated with a specific pose,
which reflects the LiDAR’s location and orientation at the time of measurement. Using these poses
and their corresponding measurements, a graph can be constructed.

In this graph, each node represents a pose (e.g., the location and orientation of the LiDAR
during a measurement), while edges represent spatial constraints between the poses. For instance,
subsequent measurements are expected to align spatially as closely as possible. The goal of PGO
is to estimate all poses in the graph in a manner that best satisfies these constraints.

In the context of collective perception, where multiple intelligent agents (IAs) measure the same
environment, the pose of each IA is represented as a node in the graph. However, point clouds
captured by an IA’s LiDAR often consist of tens of thousands of points. Directly using point clouds
as measurement constraints for PGO presents two key challenges: (1) the high computational cost
required for processing large-scale point clouds, and (2) the increased communication bandwidth
needed to share these point clouds for collaborative PGO. Therefore, in this thesis, detected bound-
ing boxes (bounding boxes) are shared instead, serving as compact and efficient measurements for
PGO.

3.4 Evaluation Metrics

This thesis addresses the challenges of cooperative object detection and bird’s-eye-view (BEV)
semantic segmentation. To assess the performance of the proposed frameworks, Average Precision
(AP) (Padilla et al., 2020) (detailed in Section 3.4.1) is employed to measure object detection
accuracy, while Intersection over Union (IoU) (Section 3.4.2) is used to evaluate BEV semantic
segmentation accuracy. Additionally, a calibration plot (Section 3.4.3) is applied to assess the
quality of the estimated uncertainties in the BEV semantic segmentation results.

3.4.1 Average Precision (AP)

The commonly used metric to evaluate object detection is Average Precision (AP), which is calcu-
lated by the integral of the area under the Precision-Recall (P-R) Curve as the green area shown in
Figure 3.21. Mathematically, it can be expressed by Equation (3.56), where r is the recall and p(r)
is the precision at the recall r. In this work, the AP following the implementation in Algorithms 1
and 2 is used as the unified metric for object detection.

AP =

∫ 1

r=0
p(r)dr (3.56)

In order to calculate precision and recall, Algorithm 1 takes the detected bounding boxes Bpred
and their prediction scores (confidences) Spred, and the ground truth bounding boxes Bgt as input.
The detected bounding boxes are sorted according to their scores in a descending order, namely
s0 ≤ s1 ≤ · · · ≤ sNgt . The True Positive (TP) and False Positive (FP) flags of all detections are
initialized to 0. For each detected bounding box bi, its Intersection over Union (IoU) with each
ground truth bounding box bj in the same scan frame is calculated with

iouij =
I(bi,bj)

U(bi,bj)
(3.57)

where Intersection I(bi,bj) is the overlapping area of bi and bj (Figure 3.22 left), and Union U(bi,
bj) is the overall covered area of these two bounding boxes (Figure 3.22 right). Both Intersection
and Union are calculated in BEV which is critical for the route planning in the 2D driving space.
If the IoU of bi with any ground truth bounding box bj is larger than the threshold thriou, this
ground truth bounding box is removed from the set Bgt to avoid repeated matching between the
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Figure 3.21: AP: Area Under Recall-Precision Curve (AUC). The green areas (A1, A2, A3) are utilized to
ensure that the AP metric is less sensitive to minor variations in the ranking of P-R pairs that define the
P-R curve. The interpolated precision for these green regions is denoted as pinterp,∗.

Intersection Union

Figure 3.22: Intersection and Union of two bounding boxes. The resulting intersection and union are illus-
trated with the yellow region.

ground truth and the detections. Then the TP flag tpi of the detection bi is set to 1, otherwise
the FP flag fpi is set to 1. The cumulative sum of elements of TP is then calculated following
line Line 14 in Algorithm 1. Then the recall of the i-th detection ri is the cumulative sum t̃pi over
the total number of ground truth bounding boxes Ngt. The precision pi is then the ratio of t̃pi to
t̃pi + f̃pi. The output of this algorithm is a Precision-Recall (PR) curve described by Prec and
Rec. Given the PR-curve, AP is computed via Algorithm 2, which iterates over the PR values from
the end to the start of the PR curve and calculates the area under the PR-curve cumulatively with
pinterp · (ri+1 − ri), where pinterp is the maximum precision aligned to the right as the green line
shown in Figure 3.21.

3.4.2 Intersection over Union (IoU)

The Intersection over Union (IoU) is a commonly used metric for evaluating semantic segmentation
performance. This thesis uses separated binary classification heads for each target semantic class
because one pixel in the BEV map could belong to several semantic classes at the same time,
e.g., drivable road surface and vehicle. Specifically, one head is used for classifying the BEV
semantic map into road surface (foreground) and non-road surface class (background), and one
head for vehicle (foreground) and non-vehicle class (background). Therefore, the evaluation is also
computed separately for each class with Algorithm 3. As illustrated in Figure 3.23, the predicted
classification confidences p = (pfg,pfg), respectively for the fore- (yellow pixels) and background
(orange pixels), are generated for each BEV semantic map. The corresponding ground-truth labels
are represented with the semantic map y, where the green pixels with label 1 are the foreground
class and the gray pixels with label 0 are the background class. Based on the confidences p, the
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final classification result, namely the pixels xfg that are classified into foreground (yellow pixel in
Figure 3.23), can be computed with Algorithm 3, line 1. Similarly, the ground-truth foreground
pixels are represented with yfg (Algorithm 3, line 2). The IoU is then calculated with Algorithm 3,
line 3, namely the number of intersection pixels (Figure 3.23, pink) divided by the number of union
pixels (Figure 3.23, blue).

Algorithm 1 Calculation of Precision and Recall
Ensure: Bpred = {bi|i ∈ 0,1, . . . ,Npred}, Spred = {si|i ∈ 0,1, . . . ,Npred}, Bgt = {bj |j ∈

0,1, . . . ,Ngt}, TP = {tpi|tpi = 0,i ∈ 0,1, . . . ,Npred}, FP = {fpi|fpi = 0,i ∈ 0,1, . . . ,Npred},
thriou is the IoU threshold.

1: for i in range(0, Npred) do
2: IoU = ∅
3: for each bj ⊂ Bgt do
4: IoU = IoU ∪ {iouij(bi,bj)}
5: end for
6: if max(IoU) > thr then
7: j = argmax(IoU)

8: Bgt = Bgt − {bj}
9: tpi = 1

10: else
11: fpi = 1

12: end if
13: end for
14: ˜TP = {t̃pi|

∑i
0 tpi, i ∈ 0,1, . . . ,Npred}, F̃P = {f̃pi|

∑i
0 fpi, i ∈ 0,1, . . . ,Npred}

15: Rec = {ri|t̃pi/Ngt, i ∈ 0,1, . . . ,Npred}
16: Prec = {pi|t̃pi/(f̃pi + t̃pi), i ∈ 0,1, . . . ,Npred}
17: return Rec, Prec

Algorithm 2 Calculation of AP
Ensure: pinterp = 0, ap = 0, Prec = {pi|i ∈ 0,1, . . . ,Npred}, Rec = {ri|i ∈ 0,1, . . . ,Npred}
1: for i in range(Npred − 1, 0) do
2: if pinterp < pi then
3: pinterp = pi

4: end if
5: if ri < reci+1 then
6: ap = ap+ pinterp · (ri+1 − ri)

7: end if
8: end for
9: return ap
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Figure 3.23: Intersection over Union (IoU) for BEV semantic segmentation.

Algorithm 3 Calculation of BEV Semseg IoU

Ensure: p = {(pfgi ,pbgi )|i ∈ 0,1, . . . ,N}: predicted confidence map. y = {(yi|yi ∈ {0,1},i ∈
0,1, . . . ,N}: ground-truth labels. N : the number of pixels in the sample BEV map.

1: xfg = {xi|pfgi > pbgi ,i ∈ {0,1, . . . ,N}}
2: yfg = {yi|yi = 1,i ∈ {0,1, . . . ,N}}
3: IoU = |xfg ∩ yfg|/|xfg ∪ yfg|
4: return IoU

3.4.3 Calibration plot

The calibration plot is used to analyze the quality of the predictive uncertainty. It is the correlation
plot of the classification accuracy versus the classification uncertainty. First, the uncertainty u ∈
[0,1] is divided into ten bins, and each bin has an interval of 0.1. Subsequently, the average
classification accuracy ac of all the samples in each uncertainty interval is calculated. Examples of
the calibration plot are shown in Figure 3.24. The blue bars are the average classification accuracy
in each bin. A perfect calibration plot is shown by a diagonal line (calibrated line), indicating the
highest negative correlation between classification accuracy and uncertainty, i.e., high accuracy is
associated with low uncertainty. The left sub-figure shows the desired calibration plot of a perfect
model on uncertainty estimation. The middle sub-figure shows an example of an overconfident
model, where the model performs less accurately than the desired accuracy at the given uncertainty
intervals. In contrast, the right sub-figure shows the underconfident case where the model has higher
accuracy than the calibrated line.

In addition to the calibration plot, Calibration Error (CE) is proposed to give a quantitative
metric for evaluating the model’s performance on estimating the uncertainty. It is the average
of the absolute errors between the weighted classification accuracy of the model and the desired
accuracy on the calibrated line. Mathematically, it can be calculated by Equation (3.58), where ui
and aci are the uncertainty and the average accuracy at the i-th bin, respectively.

CE =

∑10
i=1 |ui − aci|

10
(3.58)
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Figure 3.24: Examples of calibration plot





4 Related Work

Empowered by deep learning, the perception system of autonomous vehicles is able to extract
complex features from the data, such as images and point clouds, that contains rich spatial and
contextual information. These features are then used for specific perception tasks, such as object
detection and semantic segmentation. These tasks aim to interpret the sensing data and represent
the driving space in a way that is beneficial for decision-making of autonomous driving.

In the following section, previous work on object detection and semantic segmentation for au-
tonomous driving is reviewed. Based on these studies, the properties and challenges of driving
space representation are discussed. Then a review on ego-vehicle-based perception systems for
object detection and semantic segmentation is introduced in Section 4.2. Recognizing the advan-
tages of leveraging data from previous frames to enhance performance, the section also introduces
temporal modeling techniques for autonomous driving. Finally, uncertainty estimation techniques
are explored, as they are crucial for making safer driving decisions.

Most collective perception frameworks are implemented as extensions of ego-based perception
frameworks. This extension involves the data fusion process from various IAs and addresses the
challenges that arise during this process. The state-of-the-art collective perception models related
to this aspect are discussed in Section 4.3.

4.1 Representation of Driving Spaces

Object detection (Jiao et al., 2019; Li et al., 2022a) is a typical way to interpret the dynamic
driving space of an AV. Detected objects are typically characterized by 2D or 3D bounding boxes
derived from camera or LiDAR data. However, this interpretation may be incomplete, as areas
without detections or those obstructed by occlusions remain uninterpreted. These regions may
include drivable areas, non-drivable areas, or zones occupied by undetected or unobserved objects.
As a result, the AV may struggle to make reliable driving decisions based solely on object detection
outcomes.

Semantic segmentation is another widely used method for interpreting the driving space. It
classifies each measurement point—either pixels in images or points from LiDAR reflections—into
specific semantic classes. To distinguish points within the same semantic class that belong to dif-
ferent object instances, this method is extended to panoptic segmentation (Kirillov et al., 2018),
where each measurement point is assigned both a semantic label and an instance identity. Al-
though semantic and panoptic segmentations provide a comprehensive and detailed view from the
perspective of the ego vehicle in range view, they appear partial and sparse when converted to a
BEV representation, which is typically used by the AV for planning driving maneuvers (Qiu et al.,
2022).

Typically, the interpretation of the driving space is further extended to BEV semantic segmenta-
tion to mitigate the aforementioned limitations. The driving environment is represented as a BEV
2D image (Zhou and Krähenbühl, 2022; Xu et al., 2022a) and each pixel in the BEV map is marked
with a semantic label, which gives a holistic overview of the driving surface for vehicle mapping
and planning (Loukkal et al., 2021). In previous image-based works, BEV interpretations are also
carried out as occupancy grid mapping (Lu et al., 2019), cross-view semantic segmentation (Pan
et al., 2020a), or map-view semantic segmentation (Zhou and Krähenbühl, 2022). They transform
image features from the image coordinates to an orthographic coordinate of the BEV map via
either explicit geometric (Philion and Fidler, 2020) or implicit learned transformations (Zhou and
Krähenbühl, 2022; Xu et al., 2022a; Li et al., 2022c). Compared to images, point cloud data with

57



58 4 Related Work

3D information are more straightforward to generate such BEV maps by compressing information
in the orthogonal direction in approaches such as PIXOR (Yang et al., 2018), PointPillars (Lang
et al., 2019), and VoxelNet (Zhou and Tuzel, 2018).

This work also resorts to BEV maps for a holistic view of the 2D driving space, however with
considering the observability. Because of the sparsity of distant measurements and occlusions,
previous works (Philion and Fidler, 2020; Zhou and Krähenbühl, 2022; Xu et al., 2022a; Li et al.,
2022c) that generate dense BEV maps are unreliable regarding the unobserved areas. For example,
the occupied area of some occluded vehicles might be classified as a drivable area just because the
categorical distribution learned from the historical data implies that the invisible points in the BEV
map are more likely to be a drivable area than a vehicle. Therefore, in order to avoid unaccountable
predictions on unobserved areas, this work proposes to only draw results from observed areas based
on the geometric location of the measured points. In addition to the detection results of the dynamic
objects, the AV is able to capture the real-time situation of the driving environment including the
empty drivable area and other dynamic transportation participants, hence making safer driving
decisions.

4.2 Ego-based Perception Systems

Ego-based perception systems process the data from the sensors mounted on the ego vehicle to
achieve specific perception tasks. Object detection identifies and localizes the objects that are not
registered in the stored navigation maps. Collision avoidance with these objects is essential for
safe driving. The related works for object detection are discussed in Section 4.2.1. As another
driving space interpretation, BEV semantic segmentation identifies the surrounding environment
in a BEV map-view. The literature about this perception task is introduced in Section 4.2.2. To
further improve the performance of the perception system, previous works also attempted to fuse
the information from the previous frames and proved the benefit of temporal modeling of sequential
data. These works are discussed in Section 4.2.3. At last, the works about uncertainty estimation
of the perception results are discussed because knowing what the system does not know is also
important for safe driving.

4.2.1 Object Detection

In general, object detection can be classified into one- and two-stage detectors. The one-stage
detector uses one detection head to generate the final detection results from the learned deep
features. For example, VoxelNet (Zhou and Tuzel, 2018) uses a 3D convolutional neural network
to extract 3D deep features, compresses them along the height to obtain a 2D BEV feature map,
and finally generates classification and regression results of the possible objects at each location in
the feature map. PointPillar (Lang et al., 2019) and CIASSD (Zheng et al., 2021) use the same
strategy; however, with different feature extraction networks. Differently, the two-stage detector
PVRCNN (Shi et al., 2020) uses a Region-of-Interest (RoI) head to generate object proposals in the
first stage. Based on these proposals, the model then summarizes more detailed information about
the proposals to decide if these proposals are really an object and refines the regression parameters
of these objects.

All the above-mentioned models use an anchor-based detection head to generate bounding boxes
for the detected objects. This head assigns each location in the learned BEV deep feature map
with one or multiple anchor bounding boxes of different orientations as the initial object assump-
tions and then performs classification and regression over these assumptions to generate the refined
detection results. To avoid manually configuring the initial parameters for the anchor bounding
boxes, CenterPoint (Yin et al., 2021) extends the 2D image-based object detection model Center-
Net (Duan et al., 2019) to point cloud data and directly predicts the bounding boxes at each feature
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map location without taking anchor bounding boxes as references. Both anchor- and center-based
detection heads may generate multiple bounding boxes for the same ground truth object. There-
fore, they require an additional Non-Maximum Suppression (NMS) module to filter the detection
result so that only one bounding box is kept for each detected object.

Omitting the non-parallelizable NMS module, Carion et al. (2020) built a 3D object detection
model following DETR (Carion et al., 2020). This model initializes some random query points
in the 3D driving space and projects these points into the image space to retrieve image features
for the decoder of the transformer (Vaswani et al., 2017) to learn features for query points. Then
a classification and regression head is used over these learned query features to obtain the final
detection result. PETR (Liu et al., 2022a) uses a similar structure. Instead of projecting the query
points to image-view, it encodes the image features with the embedded 3D positional information
and lets the query points directly interact with the image features via a transformer (Vaswani et al.,
2017) to learn the spatial and context features. Although the DETR-like models are anchor-free
and NMS-free, they converge very slowly. One reason is that the learning target of the query
points is assigned with the Hungarian algorithm, which could lead to unstable assignment and
large distances between the query points and the target objects. To this end, this work uses the
learning-efficient one-stage and center-based detection head.

4.2.2 BEV Semantic Segmentation

BEV semantic segmentation is a combination of the concept of the grid occupancy map (Elfes,
2013) and semantic segmentation (Shelhamer et al., 2014). It generates a dense BEV grid map
with each grid cell assigned a semantic label. Different perception sensors, including cameras and
LiDARs, can be used for generating such maps. VED (Lu et al., 2019) employs a Variational Auto-
Encoder (Kingma and Welling, 2014) (VAE) to encode monocular images into latent space and
then decode the latent features into a BEV map containing the semantic labels. Instead, Philion
and Fidler (2020) "lift" the features of multi-view images to the 3D driving space by sampling
discrete frustum points based on the predicted depth distributions for each pixel and then project
these sampled points along with their learned features into the 3D space using the camera intrinsic
and extrinsic parameters. The projected features are assigned to the closest cell in the BEV grid,
and then fused by max pooling to obtain the BEV feature map for the following CNN operations
so as to generate the final BEV semantic segmentation result. CVT (Zhou and Krähenbühl, 2022)
simplified the projection process from image-view to BEV map-view using cross-view attention.
It initializes a learnable BEV map-view grid with its BEV location embedded in this grid and
lets these map-view points interact with the image features which are made camera-aware by
adding the embedded features of the casting rays of each pixel. BEVFormer (Li et al., 2022c)
uses a similar network structure; however, it extends it to sequential data by aggregating the BEV
features from the previous frame with a self-attention module. Compared to camera-based BEV
semantic segmentation, point cloud data is more straightforward to be projected into map-view
and more efficient because of its sparsity. However, LiDAR-based BEV semantic segmentation
is rarely researched. This work will concentrate on the LiDAR-based models and only take the
camera-based models as comparative baselines.

4.2.3 Temporal modeling of sequential data

In early works, LSTM (Hochreiter and Schmidhuber, 1997) was widely used for processing se-
quential data. However, transformer (Vaswani et al., 2017) has rapidly taken its leading place
because of the significant reduction in training and referencing (generating results for new unseen
samples with the trained model) time by processing the sequential data in parallel. Based on
transformer, DETR (Carion et al., 2020) first introduced the query-based object detection for 2D
images. Since it is anchor-free and needs no post-processing, it has been widely used and was
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extended to 3D object detection (Carion et al., 2020; Liu et al., 2022a,b). More importantly, the
object queries provide great convenience to efficiently interact with features of any modality. For
instance, by integrating the 3D geometry information into the image memory features, PETR (Liu
et al., 2022a) built a simple yet effective framework to let 3D queries directly interact with the 2D
features in image space and obtained superior 3D object detection performance. By propagating
the learned object queries to the next frames and modeling the temporal context for the current
frame, QueryProp (He et al., 2022) improved the efficiency and accuracy for video object detection.
With only images as input, StreamPETR (Wang et al., 2023) achieved on-par 3D object detec-
tion performance to the LiDAR-track benchmark on the NuScenes (Caesar et al., 2020) dataset.
Furthermore, the concept of object query propagation has been applied to object tracking tasks.
MOTR (Zeng et al., 2022) and TrackFormer (Meinhardt et al., 2022) use object queries to achieve
temporal modeling and associate the objects between frames in an end-to-end manner, which is
simple yet effective for tracking. Inspired by these works, this thesis models the temporal infor-
mation of observations from different IAs with the selected potential object queries and shares the
learned queries for the time-aligned cooperative object detection (TA-COOD, Chapter 8) to save
communication bandwidth.

4.2.4 Uncertainty estimation

Uncertainties arise when dealing with inaccurate data and imperfect algorithms, making their es-
timation essential, particularly in safety-critical applications. The uncertainty associated with a
DNN’s output is referred to as predictive uncertainty (Gawlikowski et al., 2023). This uncertainty is
typically characterized by modeling epistemic uncertainty, which captures systematic uncertainty
within the model, and (or) aleatoric uncertainty, which accounts for random noise in observa-
tions (Kendall and Gal, 2017). Additionally, approaches such as the Prior Network (Malinin and
Gales, 2018) quantify predictive uncertainty by modeling distributional uncertainty, which is caused
by mismatches between the training data distribution and new inference data distribution.

To estimate the epistemic uncertainty, Bayesian Neural Networks (BNNs) (MacKay, 1992; Neal,
1995) provide a natural interpretation of the uncertainty by directly inferring distributions over
the network parameters. However, applying BNNs to DNNs is challenging because calculating
the posterior over millions of parameters is intractable. To address this, approximation methods
have been developed, such as Monte-Carlo (MC) Dropout by Gal (2016) and Deep Ensemble by
Lakshminarayanan et al. (2017). Gal (2016) demonstrates that training a dropout-based neural
network can be analogous to optimizing the posterior distribution of the network’s output. How-
ever, multiple forward passes with dropout enabled are required to infer uncertainty, making the
process inefficient and time-consuming. Consequently, this method is not considered in this work.
Similarly, Deep Ensemble involves training multiple models to approximate the distribution of net-
work parameters and also requires several forward passes over each trained model. Due to these
inefficiencies, it is also not adopted in this work.

To capture the aleatoric uncertainty, Direct Modeling is widely used, e.g., by Feng et al. (2019);
Meyer et al. (2019); Miller et al. (2019); Pan et al. (2020b); Feng et al. (2020). Compared to
MC Dropout and Deep Ensemble, Direct Modeling assumes a probability distribution over the
network outputs and directly predicts the parameters for the assumed distribution. Therefore,
uncertainty is obtained over a single forward run and is more efficient. For classification problems,
the conventional deterministic DNNs apply the Softmax function over the output logits to model
the categorical distribution as a multinomial distribution. However, the Softmax outputs are often
overconfident and poorly calibrated (Sensoy et al., 2018; Vasudevan et al., 2019).

Instead, converting the output logits into positive numbers via, e.g., ReLU activation to param-
eterize a Dirichlet distribution quantifies class probabilities and uncertainties better. For example,
the Prior Network (Malinin and Gales, 2018) captures the predictive uncertainty by explicitly mod-
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eling the distributional uncertainty and minimizing the expected Kullback-Leibler (KL) divergence
between the predictions over certain (in-distribution) data and a sharp Dirichlet and between the
predictions over uncertain (out-of-distribution) data and a flat Dirichlet. However, additional out-
of-distribution samples are needed to train such a network to differentiate in- and out-of-distribution
samples. In complex visual problems like object detection and semantic segmentation, obtaining
enough samples to cover the infinite out-of-distribution space is prohibitive.

Differently, the Evidential Neural Network (Sensoy et al., 2018) treats the network output as
beliefs following the Evidence and Dempster-Shafer theory (Dempster, 1968) and then derives the
parameters for the Dirichlet distribution to model the epistemic uncertainty. Compared to BNNs,
this method quantifies the uncertainty of a classification by the collection of evidence leading to
the prediction result, meaning that the epistemic uncertainty of the classification can be easily
quantified by the amount of evidence. Instead of minimizing the discrepancy of the predictive
distributions with pre-defined ground truth distributions, Evidential Neural Network formulates
the loss as the expected value of the basic loss, e.g., cross-entropy, for the Dirichlet distribution.
Therefore, no additional data or ground truth distributions are needed. Hence, this work applies
this method for modeling the categorical distributions of the points in a 2D driving space and
focuses on epistemic uncertainty (a lack of knowledge in the neural network-based model) to give
a probabilistically explainable output of the perception system in IAs, and to use this estimated
uncertainty in the collective perception step for distilling the most important information shared
among the IAs.

4.3 Collective Perception

In recent years, cooperative perception with sharing information among IAs has proven to be
beneficial for improving the perception accuracy and road safety (Chen et al., 2019a; Xu et al.,
2022c; Yuan et al., 2022; Wang et al., 2020a; Yu et al., 2022; Xu et al., 2022a). By exchanging
perceived objects, Günther et al. (2016) proved that sharing information among IAs can significantly
increase the object detection accuracy compared to the ego-based perception. Instead of sharing
detected objects, works by Chen et al. (2019b); Marvasti et al. (2020a); Xu et al. (2022c); Wang
et al. (2020a) compared the performance of sharing and fusing information from different processing
stages, including raw, semi-processed and fully-processed data fusion, all show that semi-processed
data fusion has the best potential to achieve the best performance with limited and controllable
communication resource consumption. However, semi-processed data can be in any format and
processing stages. For instance, F-Cooper (Chen et al., 2019a) who experimented with both voxel
feature fusion and spatial deep feature map fusion, found that voxel feature fusion has better
performance because it keeps more information details. Instead, Xu et al. (2022c) encode the
point clouds into point-pillars (Lang et al., 2019) with fully-connected layers, and then uses dense
convolutions to generate feature maps. These feature maps from different IAs are then fused
with an attention module instead of max-out used in F-Cooper. These learnable encoding and
fusion modules ensure that the most important information is selected and shared to achieve better
performance. To further increase the perception accuracy while spatial misalignment between
the feature maps of IAs exists, SCOPE (Yang et al., 2023) introduced the pyramid LSTM (Lei
et al., 2022) to reason about temporal and spatial information from sequential point clouds. While
these works all share BEV feature maps for fusion, Hu et al. (2022) utilizes the learned criterion
confidence to select the most relevant information and reduce the data size for sharing. Similarly,
FPVRCNN (Yuan et al., 2022) adopts the sparsity of point clouds and learns the most important
object keypoints for sharing to further reduce the bandwidth requirement. They all achieve good
performances on the OPV2V (Xu et al., 2022c) dataset with significantly less data sharing.
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4.3.1 Model efficiency

Except FPVRCNN, all above mentioned collective perception models encode point clouds into
BEV feature maps and process them with dense convolutions or transformers which are very
computationally demanding. Moreover, modeling the temporal context with sequential data like
SCOPE (Yang et al., 2023) might be beneficial to obtain robust temporal features. However, the
computational demand is also increasing dramatically as the data from several IAs in several frames
should be processed. Most of the previous works (Xu et al., 2022c; Wang et al., 2020a; Yin et al.,
2024; Xu et al., 2022b; He et al., 2023) use dense convolutions or transformers to process BEV fea-
ture maps, which consume a lot of GPU memory and it is hard to extend the model to sequential
data on limited computational resources. In contrast, the potential of fully sparse network struc-
tures has rarely been researched. In this work, a fully sparse framework is proposed for collective
perception.

4.3.2 Sensor asynchrony

Previous works for collective perception have sought to minimize bandwidth usage by compressing
the learned deep BEV features (Wang et al., 2020a; Chen et al., 2019a; Xu et al., 2022c) or select-
ing deep keypoint features (Yuan et al., 2022), rectify localization errors through learning-based
techniques (Wang et al., 2020a; Xu et al., 2022b) or analytic algorithms (Yuan et al., 2022; Yuan
and Sester, 2022), and synchronize communication delays with the attention mechanism (Xu et al.,
2023) or explicitly predicting the future features before data fusion (Yu et al., 2023). Nonetheless,
none have considered the asynchronized sensor ticking time. More specifically, previous bench-
marks (Xu et al., 2022c; Yu et al., 2022; Xu et al., 2023; Yu et al., 2023) assume that the sensors
have synchronized global ticking time. In reality, these sensors might have asynchronous ticking
time in each aligned frame, leading to an inhomogeneous observation time of each object in the
scenario and large spatial displacement during data fusion, especially when the CAVs have high
speeds. Therefore, this work explores the sensor asynchrony problem and designs a temporal model
to mitigate its influence on collective perception.

4.3.3 Datasets for collective perception

It is highly expensive and complicated to obtain training data for cooperative object detection. It
requires several vehicles and sensors observing the same scene. This scale leads to highly complex
calibration and post-processing to generate accurate ground truth meta information (e.g., sensor
poses) and annotations. Therefore, the initial attempts for collective perception either use simplified
driving scenarios (Chen et al., 2019b,a) or synthetic data (Xu et al., 2022c; Yuan and Sester, 2021;
Li et al., 2022b). For instance, Chen et al. (2019a) conducted cooperative perception experiments
on a dataset captured from a static parking lot with static sensors. This is the simplest set up
without considering any dynamics of sensors or objects in the scenario. Via simulation, Xu et al.
(2022c) generated a large-scale dataset for collective perception and built a cooperative object
detection benchmark; however, without considering sensor asynchrony.

Recently, the real datasets DAIR-V2X (Yu et al., 2022) and V2V4Real (Xu et al., 2023) were
made accessible. Both are only configured with two agents, DAIR-V2X with one CAV and one
connected infrastructure agent, V2V4Real with two CAVs. Because of the dynamics and asynchrony
of sensors, there might be spatial misalignment between dynamic objects observed by the two
agents. To generate unified ground truth bounding boxes for cooperative object perception, both
DAIR-V2X (Yu et al., 2022) and V2V4Real (Xu et al., 2023) take the ego-vehicle’s annotation as
the ground truth if the annotations from two agents spatially overlap. Only at the blind spot of
the ego-vehicle, the annotations of the cooperative agent are taken. In this way, the final generated
bounding box might contain errors and does not reflect the true location of the encapsulated
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object at the given timestamp. This might also negatively influence the temporal predictability
of sequential models. To better preserve the detailed temporal information and its relation to the
accurate location of the objects in the scenario, this work proposes to generate global time-aligned
ground truth bounding boxes for the time-aligned object detection task.





5 Datasets

This chapter introduces the datasets used for the BEV semantic segmentation and object detection
task. Both simulated and real datasets are utilized to evaluate the proposed frameworks. The BEV
semantic segmentation framework (Chapter 7) is evaluated on the simulated dataset OPV2V and
the real dataset V2Vreal. The Time-Aligned Cooperative Object Detection (TA-COOD) framework
is assessed on the simulated dataset OPV2V , the real dataset DairV2X , and their newly generated
variants, OPV2Vt and DairV2Xt. These variants are enhanced with more fine-grained, point-wise
timestamps for each point in the point clouds, improving temporal precision.

5.1 Simulation Datasets

5.1.1 OPV2V

Figure 5.1: OPV2V dataset: cyan and purple points are the LiDAR data of the ego and cooperative vehicle,
repectivly. Green boxes are the ground-truth annotations of the vehicular participants in the scenario.

OPV2V dataset (Xu et al., 2022c) is a synthetic dataset generated by the simulator CARLA (Doso-
vitskiy et al., 2017). It serves as a prominent benchmark specifically curated for collective percep-
tion tasks. It comprises 44 scenes and 6765 training frames, along with 16 scenes and 2170 frames
designated for testing purposes. These scenes encompass diverse driving scenarios, spanning urban
environments, rural areas, and highways across nine simulated cities. It contains image and point
cloud data as well as the ground truth bounding boxes for object detection. Besides, it also provides
the semantic labels for the BEV semantic segmentation task. In Figure 5.1, the point cloud data
from a sample frame with two vehicles, simulated using a 64-beam LiDAR, is illustrated. The pur-
ple points are the LiDAR observations of the ego vehicle, and the cyan points are the scans of the
cooperative vehicle. Green boxes are the ground-truth bounding boxes of the vehicular objects that
should be detected. Adhering to the official evaluation configuration of OPV2V , the parameters
are configured as follows: the communication range R is set to 70 meters, the maximum number
of cooperative vehicles Cnbr is set to 7, and the detection range is [−140,140]m, [−40,40]m, and
[−3.0,1.0]m along the x-, y-, and z-axes, respectively.

5.1.2 OPV2Vt

The OPV2V dataset is simulated frame by frame without accounting for the asynchronous timing
of sensor ticks within each frame, leading to unrealistic data points that are assumed to be observed
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(a) OPV2Vt

(b) OPV2Vt zoom-in view

Figure 5.2: OPV2Vt dataset: The points scanned in one frame are observed at different timestamps (blue to
red scaled colors). The objects observed by two sensors are captured at different times, resulting in unaligned
ground truth bounding boxes (yellow boxes). The bounding boxes at the last time point of this frame are
taken as the final ground truth for the time-aligned cooperative object detection (green boxes).

at the same time. In contrast, real mechanical LiDAR sensors scan the environment by rotating
mirrors to alter the laser beams’ direction. This process captures measurement points sequentially
in continuous time, leading to a rolling shutter effect when the sensor is mounted on a moving
vehicle. For a given target object, this effect can cause significant time offsets (0 to 0.1s) between
measurements taken by the ego vehicle and those taken by a cooperative vehicle. Such time offsets
may result in considerable displacement (more than 1m) of the measured target object, posing
challenges in the data fusion process necessary for collective perception.

In the context of this thesis, a more realistic dataset with considering asynchronous sensors is
generated by simulation with CARLA. Unlike the OPV2V dataset, this newly generated dataset
incorporates more precise temporal information, and is thus referred to as OPV2Vt. To be coherent
with the existing simulation dataset OPV2V , the new simulation is conducted by replaying the
scenarios of OPV2V. First, each frame of OPV2V is interpolated to ten sub-frames by interpolating
the poses of objects and sensors in each frame. This partitioning into ten sub-frames is suitable as
it maintains a manageable simulation budget while ensuring diverse observation times for objects.
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Mathematically, the interpolation is achieved with Equation (5.1) and Equation (5.2). For ex-
ample, the step from the 0-th frame at t0 to the 1-th frame at t1 is interpolated into ten sub-frames
with

si = i · (st1 − st0)/10 (5.1)

ri =


mod(i · (rt1 − rt0 − 2π)/10, 2π), if rt1 − rt0 > π

mod(i · (rt1 − rt0 + 2π)/10, 2π), if rt1 − rt0 < π

mod(i · (rt1 − rt0)/10, 2π), otherwise
(5.2)

where i ∈ {1,2, . . . ,10}, st0 and st1 can be any variable of the location [x,y,z] at time t0 and
t1, respectively. Similarly, rt0 and rt1 represent one of the orientation variables [rroll,rpitch,ryaw].
The interpolated location and orientation elements at the i-th sub-frame are represented with si
and ri. The operation mod(a,b) is a modulo b. The different condition cases in Equation (5.2) for
orientation are to prevent the orientation from flipping to the wrong directions.

Based on the interpolated poses of objects and sensors, all newly-generated sub-frames are re-
played in the CARLA simulator to generate the corresponding data and annotations. As a result,
each sub-frame only generates one-tenth of a full scan, which is as each patch of single-colored
points shown in Figure 5.2a. Each sub-frame patch data is measured at different times. The dark
blue shows the earliest measurement and the dark red the latest. To generate full scans that have
different sensor ticking times, a random sensor ticking time in the range of 0s ≤ ti ≤ 0.05s is
generated for each sensor. Accordingly, several sub-frames (n = ti/0.01) of data at the beginning
of each sensor measurement sequence are discarded. Then each ten consecutive sub-frames of data
are concatenated to obtain the full scan data for each frame. The sub-frame timestamps are as-
signed to each corresponding point in the full scan point clouds. The bounding boxes at the last
sub-frame, namely the scan end, are taken as the global time-aligned ground-truth bounding boxes
for the time-aligned object detection. The detailed data generation process is described with Algo-
rithm 4. For evaluation of object detection, this dataset uses the same detection range as OPV2V
for evaluation.

5.2 Real Datasets

5.2.1 V2Vreal

Figure 5.3: V2Vreal dataset: LiDAR data with 3D bounding box annotations

The V2V4Real (Xu et al., 2023) dataset is collected in Columbus, Ohio, USA, by two CAVs,
each equipped with a Velodyne VLP-32 LiDAR sensor, two mono cameras (front and rear), and
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GPS/IMU integration systems. The dataset covers a driving area of 410 km, including 347 km
of highway road and 63 km of city road. From these driving miles, 67 representative scenarios
are selected, each 10-20 seconds long and sampled at the frequency of 10Hz. In total, it contains
about 10K annotated LiDAR frames. An example frame of LiDAR data with one ego vehicle
(measurement points in purple) and one cooperative vehicle (measurement points in cyan) is shown
in Figure 5.3. The ground-truth bounding boxes are shown with yellow boxes. Compared to
OPV2V , the point clouds captured in this dataset are sparser; distant objects can hardly be
observed. Therefore, the detection range of this dataset for the driving direction, x-axis, is reduced
to [−102.4,102.4]m. For the y-coordinate, it keeps the range [−38.4,38.4]m. Along the z-direction,
the range [−5,3]m is taken because this dataset contains rugged roads on hills with uneven surfaces.

5.2.2 DairV2X

Figure 5.4: DairV2X dataset: LiDAR data with 3D bounding box annotations (green). Magenta points:
point cloud from vehicle. Cyan points: point cloud from infrastructure.

DairV2X (Yu et al., 2022) is a real dataset captured with two IAs, one CAV and one connected
intelligent infrastructure (CI) at 28 intersections. The dataset comprises approximately 11.4K
frames of both LiDAR and camera data, in which 4.8K frames are used for training and 6.6K
frames are used for evaluation of the object detection task. An example frame of LiDAR data is
demonstrated in Figure 5.4. The detection range of this dataset is set to [−100,100]m, [−40,40]m,
and [−3.0,1.0]m along the x-, y-, and z-axes, respectively.

5.2.3 DairV2Xt

DairV2Xt is adapted from the dataset DairV2X (Yu et al., 2022). Since the DairV2X dataset has
kept the timestamps for each point in the point cloud data, this thesis extends this dataset for the
task of time-aligned cooperative object detection; this extended dataset is called DairV2Xt. The
extension is done through two steps: global registration and global bounding box interpolation
for generating globally time-aligned ground-truth bounding boxes. The details of the meta data
generation for DairV2Xt are demonstrated in Algorithm 5.

To utilize the sequential data for modeling the temporal context, the spatial data alignment
between consecutive frames should be accurate. This is not satisfied in the original DairV2X
dataset. Therefore, this work first refines this dataset by sequentially registering each point cloud
scan of the CAV into a unified global reference coordinate Oref (Algorithm 5, line 12), which is
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(a) One frame point cloud data of DairV2Xt

(b) DairV2Xt zoom-in view

Figure 5.5: DairV2Xt dataset: The points scanned in one frame are observed at different timestamps (blue to
red scaled colors). The objects observed by two sensors are captured at different times, resulting in unaligned
ground truth bounding boxes (yellow boxes). The bounding boxes at the last time point of this frame are
taken as the final ground truth for the time-aligned cooperative object detection (green boxes).

the CAV pose at the frame where the CAV is closest to CI. Based on the registration, a global
merged and down-sampled point cloud is obtained. Then, the CI point clouds are registered to
obtain the relative location to Oref (Algorithm 5, line 14-19). With the corrected sensor poses in
each frame, the annotated objects are transformed from the local sensor coordinate to the globally
aligned coordinate Oref . This process ensures that the objects are aligned frame-by-frame with their
respective trajectories in the global coordinate system (Algorithm 5, line 20-32). By interpolation
over the trajectories, the ground-truth bounding boxes that are aligned to the scan end time point
taligned in each frame are generated (Algorithm 5, line 33-37). An example frame of the extended
dataset DairV2Xt is shown in Figure 5.5b. The yellow bounding boxes are the local ground-truth
bounding boxes that are aligned to the local scan data before interpolation. The green bounding
boxes are the globally time-aligned bounding boxes after the interpolation. The detection range of
this dataset at the y- and z-axis is the same as DairV2X.
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Algorithm 4 OPV2Vt Generation
1: Input: OPV2V meta info F
2: ∆t ▷ Time interval between two adjacent frames
3: F = {(vi,si,ti)|i = {1,2, . . . ,Nf}}, ▷ Frame data fi at all timestamps ti
4: v = {vi|i = {1,2, . . . ,Nv}} , ▷ Vehicle info in the i-th frame
5: s = {si|i = {1,2, . . . ,Ns}} , ▷ Sensor info in the i-th frame
6: v = (id,x,y,z,h,w,l,θ) ▷ bounding box parameters of the j-th vehicle
7: s = (id,x,y,z,θ) ▷ Sensor parameters of the j-th vehicle
8: Output: Generated dataset D
9: Initialize: G = ∅, D = ∅, δt = ∆t/10

10:
11: for i← 2 to Nf do ▷ Loop over all frames
12: for k ← 1 to 10 do ▷ Interpolate adjacent two frames into 10 subframes
13: v = s = ∅
14: for j ← 1 to Nv do ▷ Interpolate over the parameters of each vehicle
15: if vi−1,j exists then
16: v← v + Interpolate(vi−1,j ,vij ,k)
17: end if
18: end for
19: for j ← 1 to Ns do ▷ Interpolate over the parameters of each sensor
20: if si−1,j exists then
21: s← s+ Interpolate(si−1,j ,sij ,k)
22: end if
23: end for
24: t = ti + k · δt ▷ New timestamp for current subframe
25: G ← G + (v,s,t) ▷ Save data for current subframe
26: end for
27: end for
28: P = ∅
29: for (v,s,t) in G do ▷ Simulation replay over all new subframes
30: p← CarlaPlay(v,s,t) ▷ Generate 1/10 lidar scans for each vehicle in g
31: P ← P + (p,t) ▷ Save scanned point clouds
32: end for
33: P ← Sortt(P) ▷ Sort data in ascending order of t
34: tmax = max(t|(p,t) ∈ P)
35: for j ← 1 to Ns do ▷ Compose full scans with random sensor ticking times
36: τ = RandomInteger(1,5) · δt ▷ Generate random sensor ticking time
37: while τ < tmax do
38: P ← {pj |(pj ,sj) ∈ p,(p,t) ∈ P,τ ≤ t < τ +∆t} ▷ Full scan
39: s = sj where (pj ,sj) ∈ p,(p,t) ∈ P,t = τ ▷ Sensor pose
40: G← v where (v,s,τ +∆t) ∈ G ▷ Ground-truth bounding boxes
41: D ← D + (P,G,s,τ)
42: τ ← τ +∆t
43: end while
44: end for
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Algorithm 5 DairV2Xt Generation
Input: DairV2X dataset F

2: ∆t ▷ Time interval between two adjacent frames
F = {(Pi,Qi,v

P
i ,v

Q
i ,s

P
i ,s

Q
i ,ti)|i ∈ {1,2, . . . ,Nf}}, ▷ Frame data at all times ti

4: P = {xi,yi,zi,ti|i ∈ {1,2, . . . ,NP }}, ▷ CAV Point cloud in each frame
Q = {xi,yi,zi,ti|i ∈ {1,2, . . . ,NQ}}, ▷ Infrastructure Point cloud in each frame

6: v∗ = {vi|i = {1,2, . . . ,Nv}} , ▷ bounding boxes in point cloud ∗
s∗ = (x,y,z,θ) ▷ Sensor parameters for point cloud ∗

8: v = (x,y,z,h,w,l,θ) ▷ bounding box parameters
Output: Generated dataset D

10: Initialize: D = ∅

12: idx← argmini dist(s
P
i ,s

Q
i ) ▷ Index of min. norm-2 distance of sensor positions

Oref ← Pidx ▷ Global reference frame
14: for i← idx to Nf do ▷ Register P for i > idx

(Oref,s
P
i )← Register(Oref,Pi)

16: end for
for i← idx to 1 do ▷ Register P for i < idx

18: (Oref,s
P
i )← Register(Oref,Pi)

end for
20: for i← 1 to Nf do

(·,sQi )← Register(Oref,Qi) ▷ Register Q
22: vP

i ← Transform(vP
i ,s

P
i ) ▷ Transform bounding boxes of P to aligned frame Oref

vQ
i ← Transform(vQ

i ,s
Q
i ) ▷ Transform bounding boxes of Q to aligned frame Oref

24: for (v,Ri) in {(vP
i ,Pi),(v

Q
i ,Qi)} do

u← ∅
26: for v in v do ▷ Timestamping each bounding box

t← RetriveTimestamp(v,Ri)
28: u← u+ (t,v)

end for
30: T ← Track(T ,u) ▷ Track bounding boxes

end for
32: end for

for i← 1 to Nf do
34: t← maxt({t|(x,y,z,t) ∈ Pi}) ▷ Align global timestamp to maximum t in P

v← Interpolate(T ,t) ▷ Get bounding boxes at time t
36: D ← D + (Pi,Qi,s

P
i ,s

Q
i ,v) ▷ Save data for frame i

end for





6 Framework Design

Collective perception requires processing data from multiple IAs. Although it can be implemented
in various ways, certain processing units often share common features. Therefore, conceptualizing
these units as modules with distinct functionalities is beneficial for simplifying the explanation
of methodologies employed in this thesis. From a programming perspective, such modularization
enhances model development and training efficiency, particularly for computationally demanding
collective perception tasks that require processing large volumes of data from multiple IAs. This
section introduces a unified framework, CoSense3D , for collective perception, encompassing both
object detection and semantic segmentation tasks. To this end, a task formalization of the collective
perception framework is first described in Section 6.1. The structural details of the framework are
then outlined in Section 6.2. The deep learning modules within this framework form the core
focus of this thesis. They are integral components used repeatedly in the models discussed in later
chapters. Therefore, these modules are comprehensively detailed in Section 6.3. Based on the
proposed framework, the last section compares object detection experiments that utilize various
gradient calculation schedules for different IAs to identify the most efficient model training approach
that might be used for the models introduced in the later chapters.

6.1 Formalization of Collective Perception
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Figure 6.1: Collective perception formalization in two communication modes. Left: handshaking communi-
cation. Right: broadcasting communication.

In a collective perception scene, as exemplified in Figure 1.1 of Section 1.1, consider N + 1 IAs,
denoted as A = {A1, . . . ,AN}, capable of sharing information with each other. Each IA is equipped
with a LiDAR sensor. Instead of analyzing the collective perception results from the perspective
of all IAs, this thesis focuses on the ego vehicle, A1. This requires only the data fusion process
of the ego vehicle, hence reduces the computational requirement and simplifies the experiment
settings. Specifically, one vehicle is designated as the ego vehicle for each sequence in the dataset,
while all other IAs are treated as cooperative agents that share CPMs with the ego vehicle. These
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Figure 6.2: CoSense3D: Agent-based training framework. Black errors indicate the instruction passing di-
rection, green arrows indicate the data passing direction.

cooperative agents are restricted to those within the communication range R of A1, represented as
Anbr = {Aj |d(Ai,Aj) < R} where d is the distance between two agents.

The IAs are communicating with each other either with handshaking communication or broad-
casting communication as illustrated in Figure 6.1. In handshaking communication, the ego vehicle
first sends its pose Tw

1 , the transformation matrix from ego to the world coordinate system, to the
cooperative IAs. By receiving the request CPM, the cooperative IAs compute the transformation
matrix T 1

2 from the cooperative to the ego coordinate system. Utilizing this matrix, the cooperative
sensory data is projected to the ego coordinate system and subsequently processed to extract deep
features denoted as F 1

2 . These features, encapsulated as the response CPM, are then transmitted
to the ego vehicle (thick green arrows). The ego vehicle then fuses all response data and gener-
ates the final collective perception result with the perception head, e.g., object detection head or
semantic segmentation head as described in Section 3.2.3. In broadcasting communication, both
the ego and the cooperative sensory data are first processed locally to get the deep features F 1

1

and F 2
2 , respectively, in their own coordinate systems. Then the cooperative vehicle broadcasts the

feature F 2
2 together with its pose Tw

2 to the ego vehicle so that a transformation T 1
2 is computed to

transform the received cooperative feature into the ego coordinate system. At last, the data from
the ego vehicle and the cooperative vehicles are fused for the final perception head.

6.2 CoSense3D: a Efficient Framework for Collective Perception

The CoSense3D framework is outlined in Figure 6.2, comprising four main modules: 1. Dataloader ,
2. GUI , 3. Runner , and 4. Central Controller. The Central Controller serves as the core of the
framework, containing four sub-modules (colored in blue):

– 4a. IA Manager : features three key functionalities: 4a(i). Local Data Transformation and
Augmentation, 4a(ii). Pseudo Forward Runner , and 4a(iii). Pseudo Loss Calculator. This
module is responsible for prototyping the properties of each IA. For example, the ego and
cooperative IAs can be configured with distinct data transformations, processing strategies,
and loss calculation requirements.

– 4b. Data Manager facilitates the distribution and aggregation of data among IAs.

– 4c. Task Manager consolidates task specifications from the IAs.

– 4d. Forward Runner executes the forward propagation of the deep learning model based on
the provided specifications.
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In the diagram, black arrows represent instruction flow, while green arrows denote data flow. The
framework can operate with or without visualization in the GUI. Additional information about the
APIs offered by this development tool is available on the project’s main page1. In the following,
the details of these modules are described.

1.Dataloader

The framework standardized the data loading API for collective perception with a predefined
dictionary format to store the meta information in JSON files. With this API, a new dataset can be
easily converted to the CoSense3D format without rewriting the PyTorch Dataloader and copying
the large media files, such as point clouds and images, to a new folder structure. Only the meta
information such as scenarios, frames, timestamps, parameters of sensors, and the annotations are
parsed and saved to the CoSense3D format in JSON files. This standardized Dataloader is able
to load images, point cloud data, 2D annotations for images, 3D local annotations for perception
without IA cooperation, and 3D global annotations for collective perception.

2.GUI

The Graphical User Interface demonstrated with the red box in Figure 6.2 is designed to visualize
the training and test data and check the training and test outcomes by one click. This is helpful for
loading new datasets and developing new models. Before training on a new dataset, it is necessary
to check if the data is converted and loaded correctly. During and after training, visualizing the
model output is also helpful to identify the drawbacks and problems of the model and then refine
or modify the model accordingly.

As shown in Figure 6.2, the GUI sends commands to the runner to start, stop, or step the runner
process. After each runner step, it updates the visualization modules, 3D GLViewer, ImgViewer,
ImgAnno3DViewer, and OutputViewer. As shown in Figure 6.3a, GLViewer is an OpenGL-based
visualizer for 3D data, annotations (green boxes) and predictions (red boxes). ImgViewer shows
image data and the corresponding 2D bounding boxes. ImgAnno3DViewer is used to check if
the transformations and augmentations of images and 3D annotations are correctly loaded and
processed. Each row in ImgViewer and ImgAnno3DViewer shows the images of a single IA. After
training the model, the OutputViewer can be used to visualize the test result. The OutputViewer
can contain multiple Canvas, which can be customized by the user. Figure 6.4 is an example that
shows the BEV segmentation (top) and object detection (bottom) result.

3.Runner

In this framework, three types of Runners are available: TrainRunner , TestRunner , and Vis-
Runner. Users have the option to launch these Runners with or without a GUI. These Runners
are specifically utilized for training, testing, and visualizing input data, respectively. They are re-
sponsible for dispatching data and orders to the Central Controller, which subsequently processes
the orders in conjunction with the provided frame data. In return, the Runners read the processed
data, e.g., the detected object, for visualization in the GUI.

4.Central Controller

As illustrated in Figure 6.2, the Central Controller is the core module of the CoSense3D frame-
work. It streamlines the data processing pipeline by delegating data loading, processing, sharing,
and fusion tasks among three dedicated manager modules: the IA Manager , Data Manager , and
Task Manager. This modular approach allows users to focus solely on defining the data processing
strategies for each IA. For example, the ego and cooperative IAs can be configured with different

1https://github.com/YuanYunshuang/CoSense3D

https://github.com/YuanYunshuang/CoSense3D
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(a) GLViewer

(b) ImgViewer

(c) ImgAnno3DViewer

Figure 6.3: CoSense3D GUI.
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Figure 6.4: CoSense3D GUI OutputViwer.
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coordinate transformation strategies or set to calculate gradients selectively for specific modules
during training. This process of defining the functional features of IAs is referred to as prototyping.
Once the agents are prototyped, the Central Controller orchestrates data processing, utilizing the
automated capabilities of the Data Manager and Task Manager to ensure efficient handling and
integration of information.

More specifically, the Central Controller communicates with the order-dispatcher (Runner) and
the IAs through its IA Manager. The Data Manager handles data gathering and distribution be-
tween the Central Controller and the IAs. Similarly, the Task Manager collects task descriptions
(referred to as pseudo tasks) generated by the IAs, batches these tasks, and dispatches them to the
Forward Runner , which houses all shared deep learning modules. To facilitate customized work-
flows for collective perception, the framework provides a standardized IA prototyping API. This
API enables users to define tailored workflows, including the data augmentations, IA coordinate
transformations, CPM sharing strategies, neural network modules as well as the forwarding order
and gradient computation strategies of these modules.

Based on the predefined IA prototypes, the Central Controller operates in a standardized pipeline,
as illustrated in Figure 6.5.

– Step 0: The Central Controller receives an order and frame data from the Runner.

– Step 1: The IA Manager updates the IAs using the meta information in the frame data and
the predefined IA prototypes.

– Step 2: The Data Manager distributes the input data for the current frame to the updated
IAs.

– Step 3: Upon receiving the input data, the IAs preprocess the data, generate tasks, and
return them to the Central Controller.

Gradient computation for back-propagation is memory-intensive, as it requires storing intermediate
results. To optimize efficiency, gradient calculations can be selectively omitted for certain parts of
the data without deteriorating training results.

– Steps 4 and 5: The Task Manager consolidates tasks from all IAs and organizes them into
two processing blocks for the Forward Runner : one block includes tasks requiring gradient
computation, and the other excludes them to conserve GPU memory (for details on enabling
or disabling gradient computation, see Section 6.4.1).

Finally, the Forward Runner processes these tasks in parallel, and the resulting outputs are dis-
tributed back to the respective IAs.

6.3 Standardized Modules of CoSense3D

6.3.1 Overview

The main data processing modules, including the deep learning modules, are defined in the Forward
Runner. As illustrated in Figure 6.5, the Forward Runner executes forward running instructions
which are summarized from the instructions of each IA. These instructions are sequentially executed
over the shared neural network modules. The execution pipeline of these forwarding instructions
is visualized in Figure 6.6. The data flow with gradient calculation is illustrated with a yellow
background and solid lines, and the flow without gradients is with a white background and dashed
lines. The point cloud data from different IAs are first augmented by the Aug. module which
normally contains a free space augmentation and a geometric augmentation which are introduced
in Section 6.3.2. The augmented point clouds are then encoded by a backbone network to 3D
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Figure 6.6: Overview of the pipeline for shared modules

spatial features of different resolutions. After the backbone network, some optional modules can
be attached. In this work, three optional modules, Neck , RoI and Temporal Fusion, are used to
construct the proposed models. Details about these modules are discussed in Section 6.3.3. The
outcome of the backbone and/or the optional modules are the final CPM features for sharing with
the ego-vehicle, in which these features are then fused by the Spatial Fusion module. According
to the requirements, the fused features can then be used for the final collective perception task,
including the BEV Semantic segmentation (BEV Semseg, Chapter 7) and Time-Aligned Cooperative
Object Detection (TA-COOD, Chapter 8). The Target Assigner is the module for generating the
ground truth learning target for the corresponding heads.

6.3.2 Data Augmentation

In deep learning, data augmentation is a technique used in data preprocessing to increase the
diversity of data available for training models without actually collecting new data. For point-
cloud data, geometric augmentation, such as rotation, scaling, translation, and flipping, are often
used. In this thesis, a new technique for point-cloud preprocessing is introduced by augmenting
the point clouds with free space points that lie on the LiDAR scanning rays. Since it augments the
point clouds with more points, it is referred to as free space augmentation. In the following, the
details of these two augmentation techniques are introduced.

Free space augmentation (FSA)

In a point cloud, the free space – traversed space by the ray that is not occupied by any obstacles
– is often neglected. However, this information is also a result of the measurement and is critical
for identifying the occupancy and visibility of the driving space. Therefore, the point cloud data
can be augmented by sampling points from the LiDAR ray paths. This augmentation is called
free space augmentation and the sampled points are called free space points, notated as fsi, where
i ∈ N. As exemplified in Figure 6.7, a LiDAR (orange cylinder) casts a ray (red line) that hits the
surface of the ground at point fs0 and only records this reflected point into the point cloud. Over
the ray path, free space points fsi are sampled in the limited distance dfs from the hit point fs0
with a large step sfs. In order to constrain the computational overhead, only the driving-critical
region of a limited height, i.e., z ≤ hfs, over the ground (blue area) is employed for sampling.
Finally, these points are down-sampled again by voxel down-sampling with a given voxel size of vfs
to obtain evenly and sparsely distributed free space points. These augmented free space points are
then added to the original point cloud by setting their intensity value i = −1 as the indicator.

Geometric augmentation

Geometric augmentation involves applying geometric transformations to input data. In this work,
point clouds are augmented using random rotations along the z-axis and random flips along the



80 6 Framework Design

Figure 6.7: Sampling free space points. The red point is the origin of the LiDAR coordinate system, z-axis
indicates the vertical direction in the driving space, x-axis indicates the horizontal direction. fs0 is the
intersection point of the LiDAR ray (red dashed line) and the ground. fs1,fs2, and fs3 are the sampled free
space points belonging to the ray path.

x- and y-axes. These transformations enable the training process to encounter targets in a wider
range of orientations, enhancing model robustness. Additionally, the point clouds are randomly
rescaled to vary the sizes of target objects, further diversifying the training data. The rotation
angle and scaling factor are denoted as raug and saug, respectively.

6.3.3 Optional modules

Neck

In general, certain frameworks may require the transformation of 3D backbone features into a
format compatible with subsequent modules. The Neck module facilitates this transformation by
acting as an intermediary between the Backbone and the Region of Interest (RoI) module, serving
as a neck connecting these two components. In this work, three types of Neck modules are used,
namely Height Compression (HC), Dilation Conv (DConv) and Map shrinker (Mshrink). The
height Compression module contains several layers of convolutions with stride one over the x- and
y-axis and stride larger than one over the z-axis so the features along the vertical z-axis can be
compressed to one channel. The outcome of this module is a 2D feature map. The convolution
layers employed in this module can be either dense or sparse, depending on the format of the input
features. Dilation Conv is used to expand the 2D coordinate coverage of the input sparse features.
It normally contains several expandable sparse convolution layers. The Map shrinker is used to
shrink the 2D feature maps to the required size, and it contains several 2D dense convolution layers.

RoI head

To increase the efficiency of the whole model, RoI heads can be used during the Local Data
Process to select data in the interesting regions for further processing. It contains one or several
sub-heads, which can be a classification head (Hcls

roi) that generates a ranking score for the input
feature points or a detection head (Hdet

roi ) that selects the object proposals for the processing in the
next steps. These sub-heads can either be learned by back-propagating the loss or by the gradients
back-propagated from the modules in the next steps.

Temporal Fusion

In case the input point clouds are sequential data, the Temporal Fusion module aims to fuse the
information from previous frames so that the fused features also contain the temporal context. In
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this work, this module is designed before the data sharing process because the sequential data is
normally very heavy in size. Fusing the temporal information locally at the IA can significantly
reduce the CPM size. Inspired by StreamPETR (Wang et al., 2023), this thesis introduces a
Temporal Fusion module for the object detection task, which will be discussed in Chapter 8.

6.3.4 Spatial Fusion

The Spatial Fusion module contains three steps: pose alignment, feature alignment, and feature
fusion. Pose alignment aims to correct the relative pose errors between the ego and the cooperative
agents. Then, the features from different IAs can be spatially aligned using the corrected relative
poses. Once the features are aligned to the correct coordinate system, they can be fused using a
specific fusion method, such as Maxout or Attention as introduced in Section 3.2.2. In this work,
sparse fusion methods are introduced in Chapter 7 and Chapter 8.

6.3.5 Object detection head

The object detection head contains a classification and a regression sub-head. Given a feature point
q = {x,y,F}, where x,y are the coordinates of the point and F ∈ Rdfeat is the feature vector that
describes this point, the classification head uses linear layers to map the input features dimension
dfeat to the output dimension dcls, which equals the number of classes. Similarly, the regression
head projects the input features into the dimension dreg, which corresponds to the bounding box
encoding dimension. This dimension represents the number of target parameters necessary for
describing the bounding box. The activation in the last linear layers is either omitted to generate
regression values without range constraints or retained to generate values in the preferred range.
For example, employing the sigmoid function, the output range is then [0,1].

For the input 2D feature map F ∈ RW×H×C that contains feature points that are arranged in
grid format, the object detection head performs its classification and regression over each location
in the 2D grid for Nanchor times. Nanchor is the number of the anchors used for each location.
Directly regressing the parameters of the ground-truth bounding boxes might lead to unstable
training process of DNNs because these parameters might contain very large values. Therefore,
the regression targets are normally normalized and encoded based on some reference values. One
kind of reference values is from the predefined anchor bounding boxes as described in eqs. (3.19)
to (3.22) to encode the target values. Therefore, the output dimension of the regression head is
dreg = 7. The above described detection head is notated as Dense Anchor-Based detection head,
and denseAdet or HdAdet in short.

For the sparse input features, this work proposes a refined center-based object detection head
that tends to optimize the orientation of the detected bounding boxes. It is notated as Sparse
Center-Based detection head, and sparseCdet or HsCdet in short. As described in Section 3.2.3,
the original version of the center-based object detection head encodes the object orientation into
[sin r, cos r]. On the one hand, this encoding ensures that the target values of the orientation
are in the range of [−1,1], benefiting the stability of the learning process. On the other hand, it
encodes the orientation angles into a continuous 2D space and avoids the sign flipping problem of
the orientation where r = −π and r = π represent the same direction. However, the encoding using
Equation (3.25) tends to generate worse orientation results than the direct distance encoding with
Equation (3.22), because the latter one is linear and easier to learn. By combining the advantages
of both encodings, this work proposes a novel encoding method called CompassRose encoding
as it performs regressions with respect to the four orientation angles ra = [0,0.5π,π,1.5π] which
correspond to the four directions in the compass rose as shown in Figure 6.8.

The left part of Figure 6.8 shows a cosine wave with the 0π angle marked with a vertical dashed
line. In the conventional way, the center-based detection head encodes this angle with sine and
cosine. Taken the cosine part as an example, the unique anchor angle at ra = 0π needs to go
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Figure 6.8: Compass rose encoding for orientation of bounding box

downhill and uphill to reach a target angle at rg = 0.8π. This non-monotonic feature introduces
difficulty for the regression tasks. To tackle this problem, CompassRose encoding introduces the
compass rose angles so that each target angle rg can be regressed from the nearest compass angle.
The pathway to the goal angle is monotonic. As shown in Figure 6.8, these compass rose angles
are marked with small circles, and the yellow ones are in one period of the cosine wave. For the
sine encoding part, the same strategy is used. The final angle encoding result is described with
Equation (6.1) which is a vector with eight target elements which are the sine and cosine distance
to the four encoded compass rose angles. To select the best regression result, the scores for the
four angles are also generated by the model. They are activated by the softmax function so that
the scores lie in the range [0,1]. The target scores are calculated with Equation (6.2) which is one
minus the normalized distance of the compass angle to the ground truth angle. The operation
arccos, instead of ra − rg, is used to control the angle difference to lie in the range [1,π]. Based on
these scores, the regressed angle with respect to the greatest score is selected as the final result.
For the location and the dimension of the bounding boxes, Equations (3.23) and (3.24) are used.

Bdir = [cos rg − cos ra, sin rg − sin ra] (6.1)

Bscr = [s0,s0.5π,sπ,s1.5π] = 1− arccos (cos ra · cos rg + sin ra · sin rg)/π (6.2)

6.3.6 BEV Semseg head

Similarly to the classification sub-head of object detection, the BEV Semseg head also uses linear
layers to project the input features of dimension dfeat to the output dimension of dcls. However,
the learning target is different. Object detection targets are generated with respect to either the
IoU between the anchors and the ground truth bounding boxes or to the ground truth bounding
box centers. The BEV Semseg head learns according to the ground truth semantic map, which
contains the ground truth semantic labels for each input feature point. In this work, three classes
are learned, namely road, vehicle, and background.

Conventionally, the classification scores are generated by applying the softmax function to the
logits generated by the classification head. They train this head with the focal loss. This type of
classification head is named as BEV Semseg Focal Head and mathematically notated as H(fcl)

bev . In
addition to the classification scores, this work proposes to estimate the uncertainty of the generated
scores with the evidential loss introduced in Section 3.2.4. The BEV classification head with this
configuration is notated as H(edl)

bev . The H(fcl)
bev and the H(edl)

bev head both generate classification results
with respect to the discrete feature points. These points are with fixed resolution once the network
is trained. Moreover, in the distant area of the ego-vehicle’s view, the points are very sparse which
leads to poor coverage over the object and the road surfaces. To this end, this work utilizes a
Gaussian distribution to construct the BEV semantic maps, from which one can retrieve semantic
labels for any point in the continuous driving space. This head, notated as H(gev)

bev , is one of the
core contributions of this work. More details are discussed in Chapter 7.
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Figure 6.9: Anchor assignment to fore- and background class. GT box in green, anchor box in yellow.

6.3.7 Target assigner

Target assigner is a module that generates learning targets for the task heads, including the RoI
classification head Hcls

roi, the RoI detection head Hdet
roi , the dense anchor-based object detection head

HdAdet, the sparse center-based object detection head HsCdet, as well as different versions of BEV
Semseg head, H(fcl)

bev , H(edl)
bev and H(gev)

bev . These heads may share the same target assignment strategy.
In the following, three types of assigners used in this work are explained.

Bounding Box Anchor Assigner

Given the predefined anchors at each grid location of the feature maps, the classification head
determines if an anchor at a specific location is a foreground anchor that is aligned to one ground-
truth bounding box, while the regression head aims to generate regression values that transform the
anchor bounding box into the final detection bounding box that is well aligned to the ground-truth
bounding box. To train the classification head, the Assigner should assign each anchor a label
that defines whether it is fore- or background. This is achieved by calculating IoUs between these
anchors and ground-truth bounding boxes.

As shown in Figure 6.9, the ground-truth bounding box is illustrated in green with solid lines,
and the orange bounding box is an anchor. The IoU between these two bounding boxes would be
very small when the ground-truth bounding box has a very different orientation than the anchor.
To remove this sensitivity of IoUs to the orientation angles, the IoUs between the anchor and the
axis-parallel ground-truth bounding box (green dashed box) are used for the fore- and background
label assignment. Based on the calculated IoUs, two IoU thresholds thrpos and thrneg are used to
select positive/foreground and negative/background samples. The assignments are expressed with

label =


1, if IoU > thrpos

0, if IoU < thrneg

−1, otherwise
(6.3)

where 1 indicates the positive class, 0 the negative class and −1 the samples that are ignored
during training. For the regression head, the anchor assigner generates the regression targets with
eqs. (3.19) to (3.22) for each positive anchor box. During training, the loss is only calculated over
the positive samples.
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Figure 6.10: Bounding box Center Assigner. Box with dished lines represents the ground-truth bounding box,
white point is the center of this box and the orange points that lies in the red circle is assigned as positive
(foreground) object sample.

Bounding Box Center Assigner

The Center Assigner generates classification labels with respect to the center of the feature points.
Therefore, it is anchor-free. As illustrated in Figure 6.10, the classification labels are generated
based on the distance between the center of the feature point (orange point) and the center (white
point) of the ground truth bounding box (dashed box). Points in the red area are assigned positive
labels, points outside the red circle are assigned negative labels. Mathematically, it is described by

label =

{
1, if dctr(Ca,Cg) < max(dxy,dmin)

0, otherwise
(6.4)

where dctr is the Euclidean distance between the feature point Ca = [xa,ya] and the center point
Cg = [xg,yg] of the ground truth bounding box, dxy is half of the diagonal length of the ground
truth bounding box and dmin is a constant value that ensures the feature points Ca in range dmin of
the center Cg are assigned as positive samples. As shown on the right of Figure 6.10, there might
be no anchor points within the range dxy when the bounding box size is very small. In this case,
dmin ensures that at least one anchor point Ca is assigned to this ground-truth bounding box. The
regression targets of this assigner are generated following Equations (3.23), (3.24), (6.1) and (6.2).

BEV Map Assigner

The BEV map Assigner generates target labels for the BEV Semseg heads. Conventionally, these
labels are retrieved from a rasterized ground truth label map which has the same resolution as the
model output. Each output point takes the label at the corresponding location in the map as its
ground truth target. In this method, all output points are taken as learning samples. Since this
method assigns the target labels according to the discrete ground truth label map, it is hence called
discrete BEV Assigner. It is used for the H(fcl)

bev and the H(edl)
bev head.

Differently, the H(gev)
bev head uses a random sampling strategy to generate learning targets that

are scattered in the continuous driving space, therefore called continuous BEV Assigner. Given an
input point cloud with Npcd points, Ntgt = ntgt · Npcd 2D random sample points are generated.
More specifically, each point in the point cloud is regarded as a Gaussian distribution center, ntgt
samples with the offset x,y ∼ N (0,σtgt) to the Gaussian center are generated. In this way, a pre-
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Figure 6.11: Random sampling of continuous BEV Assigner. Left: global cell-based down-sampling, right:
buffer-based sampling around vehicle (yellow).

defined number ntgt of target points are generated from the center points to control the density.
Note that the generated target points only cover the observed areas as they are random points
generated by adding noise (random shifts) to the observation points in the original point cloud.

To prevent memory overflow and excessive computational time during training, the randomly
sampled target points are further down-sampled. Due to varying spatial distributions, distinct
down-sampling strategies are applied for large objects (e.g., roads) and small objects (e.g., vehicles).
For large objects, down-sampling is performed by selecting one point per discretized cell, as shown
on the left of Figure 6.11. The yellow points represent the final sampled points, while gray points
are discarded. For small objects, which have significantly fewer foreground pixel samples, applying
the same cell-based down-sampling in all areas may remove too many critical foreground points.
To address this, all points within the bounding box and its buffer area (yellow and orange regions
in Figure 6.11) are retained, as shown in the right image of Figure 6.11. Only points outside the
buffer area are down-sampled using the cell-based method. The buffer area, with an extent of dbf,
enhances the model’s ability to learn details along the bounding box edges. Consequently, the
sampled points for training are sparse outside the buffer area to save GPU memory, while being
dense inside the buffer area to enable the model to achieve fine-grained classification at bounding
box boundaries.

6.4 Efficiency of CoSense3D

6.4.1 Efficient data processing and training

Developing deep neural networks for collective perception demands substantial computational
power. This requirement involves loading and processing a significantly larger volume of data
compared to conventional single-agent-based perception frameworks. To mitigate this challenge
and optimize training efficiency while minimizing GPU memory usage, employing more efficient
neural networks and training methods can be instrumental. To this end, the CoSense3D framework
is specially designed to optimize the model development efficiency of collective perception from two
perspectives.

Firstly, existing frameworks for autonomous driving perception such as mmdetection3d (MMLab,
2020) and OpenCOOD (Xu et al., 2022c) may encounter a CPU bottleneck and slow down the
training process during preprocessing, data transformation, and augmentation on a lower-end CPU,
particularly evident in collective perception scenarios. In such cases, a single frame of data may
contain dozens of images and point clouds, potentially reaching several hundred if the sequential
data in the temporal dimension is considered. To alleviate this bottleneck without necessitating
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hardware upgrades, CoSense3D involves migrating the transformation and augmentation processes
to the GPU.

Secondly, computing gradients for all incoming data significantly burdens GPU memory, notably
impacting the development of collective perception pipelines, especially with larger models like
transformer-based architectures and resource-intensive image processing backbones. To increase
development efficiency, CoSense3D provides an API for easy definition of data processing pipelines
of IAs, enables flexible control over gradient computation for each IA, optimizing GPU memory
usage and reducing the training time. This agent-oriented framework defines the behavior of each
agent separately, hence termed as agent-based framework and the training processing under this
framework is called agent-based learning.

6.4.2 Experimental analysis of training efficiency

Before the experiments for the collective perception tasks discussed in Chapters 7 and 8, it is
beneficial to analyze the trade-offs between the model performance and the training efficiency so
that more efficient training strategies can be found to accelerate the model developing processes.
To this end, the efficacy of agent-based training on reducing the GPU memory usage and training
time is evaluated by two groups of experiments, conducted with the state-of-the-art models on the
object detection benchmark of the OPV2V dataset. In group one, all models are trained with all
gradients enabled. Group two only enables a limited number Ngrad of IAs for gradient calculation.
As the example with three IAs shown in Figure 6.6, only Ngrad = 1 IA has gradients enabled during
training. The features of the point clouds from IA 1 and 2 are generated by the shared backbone
network with gradient calculation disabled and sent to the IA 0, where all features are then fused
and fed to the task head.

Model selection

For the above mentioned two groups of experiments, the following four representative state-of-
the-art models with different backbones and fusion methods for cooperative object detection are
selected to explore how these methods influence the detection accuracy and the training efficiency
with reduced gradient calculation:

AttnFusion (Xu et al., 2022c) stands out as one of the top-performing models within the
OPV2V benchmark. It uses Voxelnet Zhou and Tuzel (2018) as the backbone network to encode
point cloud data. This backbone contains several layers of dense 3D convolutions, which are highly
GPU memory demanding. The 3D voxel features from the backbone are concatenated at the z-
axis to obtain the final BEV feature map with shape (H,W,C) and shared to the ego vehicle. To
fuse these feature maps, as implied by its name, AttnFusion incorporates an attention fusion (ref.
Section 3.2.2) to consolidate the BEV feature maps from all the neighboring IAs. At last, it uses
an anchor-based detection head to generate the bounding box classification and regression result.

F-Cooper (Chen et al., 2019a) is the earliest model applied to feature-level cooperative per-
ception. It uses the PointPillar backbone to encode the point clouds into 2D BEV feature maps,
and then fuses these maps by a Maxout fusion (ref. Section 3.2.2). Afterwards, an anchor-based
detection head is used to predict the objects in the scenario.

FPVRCNN (Yuan et al., 2022) is a two-stage detector that requires small communication band-
width with adequate performance within the OPV2V benchmark. It first extracts the point cloud
features with the SpConv backbone network and then uses a spatial-semantic feature aggregation
(SSFA) module proposed in CIASSD (Zheng et al., 2021) to enhance the BEV feature encoding
for the first-stage detection. Based on these detections, FPVRCNN samples keypoints within the
detected bounding boxes and aggregates deep features of different resolutions for each keypoint us-
ing the Voxel Set Abstraction (VSA) Module of PVRCNN (Shi et al., 2020); the keypoint features
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Model Ngrad AP@0.7 AP@0.5 AP−@0.7 AP−@0.5

F-Cooper all 82.2 89.9 -13.5 -6.42 IAs (1 ego + 1 coop.) 68.7 83.5

FPVRCNN all 84.0 87.3 +0.9 +0.51 IA (ego) 84.9 87.8

SparseDet all IAs 84.1 91.1 -4.6 -2.01 IA (ego) 79.5 89.1

AttnFusion all IAs 87.6 92.3 -0.5 +0.31 IA (ego) 87.1 92.6
Table 6.1: Average precision of object detection on OPV2V benchmark with different gradient configurations.
AP@iou: average precision at IoU threshold iou. AP−@iou: the AP drop of reduced gradient computation
in comparison to the full gradient computation.

and the proposal bounding boxes are then shared and fused in the second stage to obtain refined
bounding boxes.

SparseDet is a fully sparse and highly efficient model, proposed in this thesis. It uses the
MinkUnet backbone to encode point cloud features. To enhance the connectivity between the
sparse voxels during the convolutions, it additionally augments the original point clouds with free
space points (ref. Section 6.3.2, FSA). In addition, several layers of coordinate-expandable sparse
convolutions (CEC, Section 3.1, sparse convolution) are utilized after the MinkUnet to compress
the features along the vertical axis and dilate the sparse coordinates. In this way, the features for
the final detection can have a better coverage over the centers of visible objects. SparseDet fuses
the sparse features from different IAs using naive fusion as introduced in Section 3.2.2. Different
from the networks mentioned above, this model uses the center-based detection head for object
detection.

Experiment settings

All models are trained on a single Nvidia RTX3090Ti GPU and an Intel Core i7-8700 CPU for 50
epochs. Batch size is set to 2. All models use Adam optimizer with a starting learning rate of 0.002
and weight decay of 10−4. The learning rates reduce at epochs 15 and 30 with the multiplication
factor of 0.1. During training, the input data are augmented with rotation along the z-axis with a
random angle in the range of raug = [−90,90]◦, random flipping along the x- and y-axis, and scaling
with a ratio in the range of saug = [0.95,1.05]. Additionally, the ground truth bounding boxes with
fewer than two points are removed during the training process.

Results and evaluation

The AP values of object detection of the selected models are listed in Table 6.1. In addition to AP
at the IoU threshold of 0.5 and 0.7, AP− in the last two columns of Table 6.1 means the performance
difference of reduced gradient computation in comparison to the full gradient computation. Ngrad
is the number of IAs that require gradient calculation during training. Ngrad = all means all IAs
require gradients. Note that the gradient calculation is always enabled for the ego vehicle as shown
in Figure 6.6 (PCD0). Mathematically, Ngrad ≤ 1, one ego IA and Ngrad − 1 cooperative IAs are
enabled for gradient calculation.

Different from the other three models, Ngrad of F-Cooper is set to 2 in the second group of exper-
iments. This adjustment was made as Ngrad = 1 in this case exhibited notably poor performance.
In general, F-Cooper performs worse than the other models and is very sensitive to the number of
gradient-enabled IAs. This is caused by the Maxout operation, which takes out the maximum val-
ues across different IA features, including the gradient-disabled features. Therefore, this operation
discards some of the BEV features coming from a gradient-enabled IA and keeps the non-gradient
features. In this way, the downstream modules after Maxout are not able to back-propagate all
gradients back to the upstream modules that encode point clouds into BEV features.
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Figure 6.12: Relation between object detection performance and GPU memory usage (left) as well as training
time (right) with different gradient configurations.

In comparison, SparseDet has significantly smaller performance drops than F-Cooper when using
ego-agent-based training. However, its performance is worse than FPVRCNN and AttnFusion. This
is because it uses naive fusion (ref. Section 3.2.2) to merge the sparse BEV features from all IAs,
which is similar to Maxout that requires no gradient calculation.

Differently, both FPVRCNN and AttnFusion use gradient-enabled modules for fusing the features
coming from all IAs. FPVRCNN merges all keypoint features with a RoI grid pooling layer while
AttnFusion fuses BEV maps from different IAs by an attention module that attends the features
along all IAs. The performance drops of these two models with only the gradient calculation for
the ego agent are not noticeable. In some cases, the performance is even enhanced. For example,
the APs at the IoU threshold of 0.5 for FPVRCNN and AttnFusion with ego-agent-based training
both surpass that with all-agent-based training by a small margin.

From the experimental result shown in Table 6.1, one can conclude that agent-based training
may deteriorate the detection performance if the model uses a non-learnable module (Section 3.2.2)
that partially drops the upstream features from gradient-enabled IAs. However, if a more effective
learnable fusion module is used to merge all upstream features without dropping gradient-enabled
features, a more efficient agent-based training strategy (Section 6.4.1) can be used to accelerate the
training and the model development process without a noticeable performance drop.

Quantitatively, the detection AP versus the memory usage and training time is illustrated in
Figure 6.12. Yellow markers show the results of training with all gradients enabled, and green
markers the results of agent-based training. The results of different models are illustrated with
different shapes of markers. It is readily evident that agent-based training can significantly reduce
the GPU memory usage and the training time, especially for larger models. For example, AttnFu-
sion consumes about 16.7 G GPU memory with gradients enabled for all CAVs, while agent-based
training only uses 7.3 G, and thus reduces about 56% of GPU memory usage.

The reduced load of gradient calculation directly impacts the training time. This can be identified
by the similar patterns of the yellow and the green markers between the left and the right plot in
figure 6.12. The reduction ratio in GPU memory usage closely mirrors that of the training time
except for F-Cooper. The memory usage of F-Cooper is nearly halved, whereas the training time
remains nearly unchanged. This result testifies again to the conclusion drawn from the failure case
of F-Cooper, as previously discussed, which is caused by the Maxout operation. The memory usage
is reduced because the gradients for non-learnable CAVs are not cached during the forward run.
However, for all configurations of Ngrad, F-Cooper only back-propagates m ≤ h · w · d gradients
to the upstream modules before Maxout, where m is the number of features with gradients back-
propagated and h, w, d are the height, width, and depth of the BEV feature map of a single IA,
respectively. Increasing Ngrad for F-Cooper only makes m closer to the maximum value h · w · d.
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In contrast, gradients of the learnable fusion method such as attention fusion used by AttnFusion
are fully propagated back to the learnable IAs. Mathematically, m = Ngrad · h · w · d gradients are
back-propagated, where m is linearly related to the number of gradient-enabled IAs. Therefore,
decreasing Ngrad of AttnFusion can linearly reduce the gradient calculation, hence reducing the
training time. This effect can hardly be observed by F-Cooper because it only reduces a very small
portion of gradients of a single BEV feature map. Similarly, SparseDet only reduces the training
time by less than one hour because of the random sampling of the naive fusion module. In addition,
the memory reduction of SparseDet by agent-based learning is noticeably less than that of the other
three models because it is a fully-sparse model that is already very efficient with respect to the
increasing number of IAs.

As a summary, agent-based training can significantly reduce the memory usage and training time
without noticeable performance drops if an appropriate fusion method without dropping learnable
features is used. In this case, the memory usage and training time of dense models is roughly
positively proportional to the number of the learnable IA Ngrad. However, for sparse models, this
relationship is non-linear and related to the actual size of the sparse tensors.





7 Gaussian-based Evidential BEV Semantic Segmentation
(GevBEV)

BEV Semantic Segmentation provides a comprehensive BEV map representation of the 2D dynamic
driving space. Previous studies generate the dense BEV semantic map without accounting for
whether certain regions are directly observed. Due to occlusions and the sparsity of point cloud
measurements, especially in distant areas, these predictions can be unreliable as they often involve
extrapolation in unobserved regions. To address these challenges, this section introduces a novel
framework that takes the occlusions and point cloud sparsity into consideration and leverages the
uncertainty estimation to quantify the reliability of the predictions. Unlike previous methods based
on discretized BEV maps, this framework employs evidential deep learning, utilizing Gaussian and
Dirichlet distributions to generate BEV semantic segmentation maps in a continuous driving space.
This framework is referred to as GevBEV. The Gaussian distribution enables parameter-sampling
for the Dirichlet distribution in the continuous driving space. The Dirichlet distribution contributes
to the uncertainty estimation. This methodology for modeling the GevBEV maps is defined in
Section 7.1. The overall framework for this purpose is introduced in Section 7.2, including the
backbone network for extracting the point cloud features, the fusion method, and the semantic
segmentation head that predicts parameters for Gaussian distributions. Based on this framework,
extensive experiments are conducted. The experimental details and evaluation metrics are given
in Section 7.3 and Section 7.4, respectively. Finally, the experimental results are discussed in
Section 7.5.

7.1 Definition of GevBEV

Given a point cloud, a neural network is used to extract the point cloud features in the format of
a sparse feature map F ∈ RNc×dfeat that contains Nc sparse map grid center points c = {ci = (xi,
yi,fi)|i ∈ {1,2, . . . ,Nc}}, each with a feature vector fi of dimension dfeat and the coordinate xi,yi.
Figure 7.1 illustrates an example feature map with Nc = 3 grid center points (pink cells). This
thesis proposes Gaussian-based Evidential BEV Semantic Segmentation, GevBEV in short, that
assigns each grid center point a Gaussian distribution (colored rings in Figure 7.1). The probability
masses of each center point ci represent the possibility that the surrounding space belongs to the
same class as ci. To learn such distributions, two regression heads composed of linear layers are
employed to predict the parameters of the Gaussian distribution, one head Hevi for generating
the classification evidence of the center points and one Hvar for the variance of the Gaussian
distributions. More specifically, these two heads project the input feature dimension dfeat into the
dimension devi = 2 (fore- and background evidence) and dvar = 4 (variances along x- and y-axis for
both fore- and background), respectively. Both heads are activated with ReLU to obtain positive
values. Note that this configuration is designed for a binary classification problem, namely for
the fore- and background classification. As illustrated on the right side of Figure 7.1, this thesis
uses separated binary classifications for each of the two semantic classes: road surface and vehicle.
More specifically, one binary classification with two sub-heads (Hevi,Hvar) for the road surface
(foreground) and the non-road surface (background) classification, one for vehicle (foreground) and
non-vehicle (background) classification. For simplicity, the definition of one binary classification
between the fore- and background class is introduced in the following.
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Figure 7.1: Left: Gaussian-based Evidential BEV Semantic Segmentation. Red to cyan rings represent
Gaussian density from high to low. Right: BEV maps of the binary classification for vehicle and road,
respectively.

The outputs of the heads Hevi,Hvar are noted as

oevi = [ofg
evi,o

bg
evi], (7.1)

ovar = [ofg
σx,o

fg
σy,o

bg
σx,o

bg
σy], (7.2)

where fg indicates the foreground and bg the background. oevi is regarded as the evidence of the
grid center point to be foreground or background. ovar are the regressed variances of the point in
x- and y-axis. To ensure that each point is contributing, a small initial variance σ0 is added to the
predictions, resulting in the variances σ2

x,y = ovar + σ2
0. For any new given target point xj (yellow

cells in Figure 7.1) in the neighborhood of the center point ci in the BEV space, the probability
density ϕ(xj)i of this new point belonging to a specific class is drawn by Eq (7.5),

Σi =

[
σ2
x,0

0,σ2
y

]
, (7.3)

mji = (xj − ci)
TΣ−1

i (xj − ci), (7.4)

ϕ(xj)i =
exp (−0.5 ·mji)√

2πd|Σi|
, (7.5)

where Σi is the covariance of the center point ci for foreground or background distribution, mji is
the squared Mahalanobis distance of point xj to the center point ci, and d = 2 is the dimension of
the distribution.

The overall Dirichlet evidence e(xj) for point xj is the sum of the normalized and weighted
probability mass drawn from all the neighboring center points nbr(j) that are in the maximum
distribution range ν. It reads as
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∑

i∈nbr(j)

ϕ(xj)i
ϕ(ci)

· ok
evi,

= −1

2

∑
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evi,

(7.6)
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where ϕ(ci) is the probability density at the center point, and k ∈ {fg,bg}. Hereafter, Equation (7.6)
is derived as following
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2
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= −1

2
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= exp(log ϕ(xj)i − log ϕ(ci)),

= −1

2
mji,

(7.7)

where the squared Mahalanobis distance of the center point ci to itself is mi = 0. Following Sensoy
et al. (2018), the expected probability pj,k – point xj belonging to class k – and the uncertainty uj
of this classification result are

p̂j,k =
αj,k

Sj
=

ek(xj) + 1∑
k∈{fg,bg}(ek(xj) + 1)

, (7.8)

uj =
K

Sj
, (7.9)

where αj,k is the concentration parameter of class k for k = 1,...,K, and Sj the strength of the
Dirichlet distribution of point xj .

7.2 Architecture of the Framework GevBEV

7.2.1 Overview
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Figure 7.2: Overall model architecture of BEV Semseg

Adapting the framework introduced in the last chapter (Figure 6.6), the modules used in each pro-
cessing stage of GevBEV are illustrated in Figure 7.2. The input point clouds are first augmented
with free space points and geometric transformation (ref. Section 6.3.2). Then the MinkUnet back-
bone network (ref. Section 3.2.1) is utilized to extract the point cloud multi-resolution 3D spatial
features, including P̃ sem for BEV semantic segmentation and P̃ det for object detection. These 3D
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Figure 7.3: Comparison of three BEV semantic segmentation heads: the GevBEV Head (proposed in this
work), the EviBEV Head (a modified version without the Gaussian distribution), and the BEV Head (a
simplified version without both Gaussian and Dirichlet distributions).

features are fed to the Neck which contains two modules; the Height Compression (HC) module
compresses the 3D spatial features along the z-axis to obtain the BEV feature maps and the Di-
lated Convolution (DConv) module is used to expand the spatial coverage of the BEV features and
increase the connectivity between the discrete observed feature points. The RoI module is used for
selecting the most important BEV points for sharing. More details about this head can be found in
Section 7.2.3. By receiving the shared BEV points features from cooperative IAs, the ego-IA fuses
these features using the Spatial Fusion module as described in Section 7.2.2. Based on these fused
features, the BEV Semseg head generates the final BEV semantic segmentation maps using the
method defined in Section 7.1. The confidences generated in the BEV Semseg head can be utilized
as an indicator for verifying the overall confidence of the objects predicted in the object detection
head (Figure 7.10). Therefore, an additional object detection head is used in this pipeline as shown
with the orange boxes in Figure 7.2.

7.2.2 Spatial fusion

As illustrated in Figure 7.2, F i is the center feature map of the i-th IA. The number of center
points in the feature map is notated as N i

c. Given the ego center feature map F 0 ∈ RN0
c×dfeat and

the center point feature maps CPMfeat = {F i|F i ∈ RN i
c×dfeat ,1 ≤ i < N} received from the N − 1

cooperative IAs, the Spatial Fusion module merges all center feature maps F = {F i|F i ∈ RN i
c×dfeat ,

0 ≤ i < N} with the attention fusion module which is introduced in Section 3.2.2. Then the fused
features are fed to the BEV Semseg head to generate the final BEV semantic segmentation result.

7.2.3 Heads

In addition to the proposed novel GevBEV Semseg head for GevBEV , two additional heads,
EviBEV and the conventional BEV head, are also used in the experiments for comparison. They
are illustrated in Figure 7.3. During training, the input BEV features P sem are randomly down-
sampled to half of their original amount in order to accelerate the training process. During the
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Figure 7.4: An example of the information shared between CAVs. The ego CAV and its request mask with
high uncertainty areas indicated in red color, and the cooperative CAV and its response mask with low
uncertainty indicated in green color. In the uncertainty maps, light color indicates low uncertainty and black
color indicates no measurements.

inference stage, all input features are used. In the GevBEV head option, a regression head is used
to generate the evidence and the variance values for the Dirichlet Generator as described in the
left sub-figure of Figure 7.3. Using Equation (7.6), the Dirichlet Generator takes the evidences and
variances of all center points as input and generates the parameters for the Dirichlet distributions of
the new sample points in the continuous driving space. The predicted distributions and the ground
truth semantic labels are then used for calculating the evidential loss Ledl (ref. Section 3.2.4). For
comparison purposes, the EviBEV and BEV head are defined by gradually removing essential parts
of the GevBEV head. EviBEV head removes the Gaussian-based variances and directly regresses
the evidences as the final parameters of the Dirichlet distribution. It uses the same loss function
as the GevBEV head. Differently, the BEV head option uses the softmax activation function to
directly generate classification confidences that relate to the multinomial distribution Multi(p).
Correspondingly, the focal loss Lfcl is used for this head.

As described in Section 7.1, two separate Semseg heads are used for classifying the road surface
and vehicle objects. The Hroad head distinguishes between the road surface (foreground) and non-
road surface (background). The Hobj head distinguishes between the class vehicle (foreground) and
non-vehicle (background). Note that each head can be one of the three implementations: GevBEV
head that contains two sub-heads Hevi,Hvar, the EviBEV head that only contains the evidence
regression sub-head Hevi, and the conventional BEV head with the Hcls sub-head for generating
parameters of a multi-nominal distribution.
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Figure 7.5: Areas considered for selecting information for CPMs. Grey area (CPMall): overall area in the
perception range (e.g., [−50,50]m). Green area (CPMroad): drivable road area.

7.2.4 CPM selection

When the communication bandwidth is very limited or the channels are very busy, an uncertainty-
based information selection strategy is introduced to reduce the consumption of communication
bandwidth. Instead of simply sharing all the information among IAs, the most important infor-
mation is distilled by a EviBEV Head in the RoI module that generates the uncertainty map
(Equations (7.8) and (7.9)) as a weight map for CPM selection. Note that GevBEV is not used for
this purpose because in this stage, only the discretized predictions oevi and ovar should be selected.
The GevBEV Head, which is used to generate more fine-grained final results, is used after the data
sharing and fusion.

As the example with two CAVs shown in Figure 7.4, the red ego CAV first generates a request
binary mask (red Req. mask1 ) by thresholding its uncertainty map (Unc. map1 ) with unc. > uego
and only sends the request for the perception information in the areas where there are high uncer-
tainty (red area of Req. mask1 ). Then, the green cooperative CAV responds with its own masked
feature or evidence map (green Resp. mask3 ). This response mask contains the complementary
areas where the ego CAV has high uncertainty and the cooperative CAV has low uncertainty for
the BEV semantic segmentation. It is generated by thresholding the uncertainty map of the co-
operative CAV with the threshold ucoop (Coop. mask3 ) and intersecting with the received request
mask (Req. mask1 ) from the ego CAV.

Afterwards, this resulting response mask is used to select the information for the CPM commu-
nicated from the cooperative CAV to the ego CAV by only selecting the evidences in the response-
masked areas. Because the evidence only contains the two values for fore- and background class at
each point, it consumes very few communication resources.

Figure 7.5 shows two different area-based sharing strategies that take either the whole area in
the perception range (grey) of the ego vehicle or the drivable road area (green) into consideration
for the information selection. The first option for sharing feature maps is then notated as CPMall.
The second option is introduced because the CAVs pay more attention to the situation on the road
surface; only sharing information in this area can further reduce the CPM size. In real applications,
the road geometric information can be retrieved from prior information, such as maps. The co-
perception benchmark, such as OPV2V (Xu et al., 2022c), also provides a HD map acquired
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beforehand. As a proof-of-concept study, the scene in each frame is registered into the HD map
to further eliminate non-surface areas in the masked areas. This sharing strategy is notated as
CPMroad when the extra HD map is already provided to the CAVs. For simplicity of the CPM
size evaluation, the uncertainty threshold is fixed to ucoop = 1.0 for the cooperative CAVs and the
threshold uego for the ego CAV in the experiments is varied to evaluate its effectiveness.

7.3 Experiments

7.3.1 State-of-the-art models for comparison

To evaluate the effectiveness of the proposed model GevBEV , it is compared to the state-of-
the-art co-perception models on the co-perception benchmarks OPV2V and V2V4Real in both
simulated and real driving scenarios. In addition to the aforementioned FCooper (Chen et al.,
2019a), AttnFuse (Xu et al., 2022c), the following models that provide open source implementations
are also used for comparison.

– V2VNet (Wang et al., 2020a) utilizes a spatially aware graph neural network to aggregate
the feature maps received from all the nearby CAVs.

– DiscoNet (Li et al., 2021) proposes a distilled collaboration graph model for multi-agent
perception. A teacher-student framework is leveraged to facilitate collaboration among the
agents, and a matrix-valued edge weight is used to guide inter-agent attention to more infor-
mative regions.

– V2XViT (Xu et al., 2022b) proposed heterogeneous multi-agent self-attention to update
feature maps of different types of agents and multi-scale window attention to fuse the features
of all perception agents.

– CoBEVT (Xu et al., 2022a) builds a transformer-based framework to fuse feature maps for
co-perception. It proposes a fused axial attention module to capture sparsely local and global
spatial interactions across multi-views and agents.

Although the above-mentioned models, except CoBEVT, are originally developed based on point-
cloud data, their BEV feature map processing and fusion strategies can be shared with the camera-
based pipelines. More specifically, the image features are projected to the BEV feature map using
the Cross-View Transformer (Zhou and Krähenbühl, 2022) (CVT) following CoBEVT. Then these
feature maps are processed using different models for comparison purposes.

Unlike GevBEV , none of these models listed above provide uncertainty estimation for the BEV
Semseg results and select the essential information communicated to the ego CAV. Hence, those
models are only compared with GevBEV on the BEV Semseg performance. They are not further
compared with GevBEV in terms of CPM size for the V2V communication in the co-perception
application.

7.3.2 Ablation studies

A series of ablation studies is conducted to analyze the efficacy of the proposed modules of GevBEV.

– BEV is the proposed model with the point-based spatial Gaussian and the evidential loss
Ledl removed, turning the GevBEV model from a probabilistic model into a deterministic
model. It uses cross-entropy to train the corresponding heads to classify points of the BEV
maps. This model is treated as the baseline model.

– EviBEV only has the point-based spatial Gaussian removed. It still uses Ledl to train the
distribution head.



98 7 Gaussian-based Evidential BEV Semantic Segmentation (GevBEV)

– GevBEV– uses the same model architecture and loss function as GevBEV but is trained
without free space augmentation (Section 6.3.2).

7.3.3 Implementation details

In all experiments, the input voxel size is set to 0.2m to balance between computational overhead
and performance. The free space points (ref. Section 6.3.2 and Figure 6.7) are sampled with the
maximum height of z ≤ hfs = −1.5m, the limited distance dfs = 7.5m, and the sampling step
of sfs = 1.5m on OPV2V. However, dfs is set to 9m for the V2V4Real dataset because it has a
longer detection range in x-direction (longitudinal direction). During the geometric augmentation,
the point cloud coordinates are scaled randomly with the ratio in the range of [0.95,1.05] to make
the model learning from more diverse object sizes. Then a normally distributed N (0,0.2)m noise
is added to the point clouds to increase the model robustness against small measurement errors.

The whole network is trained from scratch for 50 epochs with weight decay of 0.01 using the
Adam optimizer Kingma and Ba (2015) parameterized with β = [0.95,0.999] and γ = 0.1. A
multi-step learning-rate scheduler is used with a starting learning rate of lr = 10−3 and two times
reduction at epoch 20 and 45, respectively. The learning rate decreases at each reduction by a
factor of 0.1.

The BEV learning target sample points are generated with continuous BEV map Assigner as
described in Section 6.3.7. For the static BEV Semseg head, each center point generates ntgt = 10
samples so that they are able to cover all observed areas with a similar density (distant areas
are sparse, requires more sample points). For the dynamic BEV Semseg head, ntgt = 1 point
is generated as all points inside the object and its buffer region are all kept (ref. Figure 6.11),
they are dense enough for learning the details of the object edges. The resolution of the cells for
down-sampling of the static head is set to 0.4m, and Ntgt is set to 3000. For the dynamic head,
the width of the buffering area is set to dbf = 4m. From the background, Ntgt = 50 ·ngt points are
sampled as negative samples, where ngt is the number of the ground truth bounding boxes. For
these sampled target points, the evidences are drawn by Equation (7.6) in a maximum distribution
range of ν = 2m. These parameters are all set empirically so that the generated samples are
sufficient enough to learn in the continuous space with an affordable computational budget.

7.4 Evaluation Metrics

7.4.1 IoU

The conventional IoU metric for semantic segmentation (Section 3.4.2) does not consider the un-
certainty for evaluation. It only calculates one IoU as the overall performance metric. Considering
the uncertainty, this thesis modifies this metric by calculating IoUs under different uncertainty
thresholds uthr. The modified version is described with Algorithm 6. For a given uncertainty
threshold uthr, the IoU is computed over the pixels that have uncertainties under the threshold
uthr (Algorithm 6, Line 1). As the example illustrated in Figure 7.6, at the uncertainty threshold
uthr = 0.5, only the purple pixels are considered for the IoU calculation. As a result, the bottom
right pixel (colored with yellow zigzag lines) is not contained in xfg, hence ignored during the
evaluation. When the threshold is uthr = 1, the modified metric equals the original version as all
pixels are considered for the IoU calculation. Note that different thresholds are used for generating
the calibration plot (Section 3.4.3).

Although the proposed model GevBEV can generate BEV maps of any resolution, only the
predicted BEV maps of resolution 0.4m are evaluated so that it can be compared to other models
that only generate the BEV maps of this resolution. Besides, the GevBEV model only generates
the results over the observed areas that are covered by the point cloud. The IoUs calculated only
on these areas are notated as IoUobs. This is in line with the concept that the prediction is reliable
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Algorithm 6 Uncertainty-based BEV Semseg IoU

Ensure: p = {(pfgi ,pbgi )|i ∈ 0,1, . . . ,N}: predicted confidence map. u = {(ui|yi ∈ {0,1},i ∈
0,1, . . . ,N}: uncertainty map. y = {(yi|yi ∈ {0,1},i ∈ 0,1, . . . ,N}: ground-truth labels. N : the
number of pixels in the sample BEV map.

1: xfg = {xi|pfgi > pbgi ,ui < uthr,i ∈ {0,1, . . . ,N}}
2: yfg = {yi|yi = 1,i ∈ {0,1, . . . ,N}}
3: IoU = |xfg ∩ yfg|/|xfg ∪ yfg|
4: return IoU

0.3 0.3 0.1 0.1

0.8 0.4 0.2 0.1

0.9 0.9 0.4 0.4

1.0 0.9 0.9 0.8

0.7 0.7 0.9 0.9

0.2 0.6 0.8 0.9

0.1 0.1 0.6 0.6

0.0 0.1 0.1 0.2

0 0 0 0

0 0 0 0

1 1 1 0

1 1 0 0

0 0 0 0

0 0 0 0

1 1 1 0

1 1 0 0

0 0 0 0

0 0 0 0

1 1 1 0

1 1 0 0

Foreground Confidence Background Confidence

Ground Truth Intersection Union

0.3 0.2 0.1 0.0

0.3 0.6 0.2 0.1

0.1 0.2 0.4 0.6

0.0 0.1 0.1 0.6

Uncertainty

Figure 7.6: An example of BEV semantic segmentation result for IoU calculation under uncertainty.

only when it is conducted over the observed areas. However, in order to compare the proposed
models with the state-of-the-art models, the IoU (IoUall) over all pixels in the perception range,
including the non-observed areas, is also calculated for GevBEV with all points in non-observable
areas classified as background. Mathematically, a point xi is observable if ∃j ∈ {j| ∥ xi−xj ∥2< ν},
meaning a point is observable if it is in the range ν = 2m of any Gaussian distributed center points.
ν is the maximum distance of the Gaussian distribution tile that is considered for generating the
evidence of the Dirichlet distribution.

7.4.2 Calibration plot

The proposed GevBEV generates uncertainty values for the classification of each point, namely
one uncertainty value for both fore- and background class. However, the unbalanced number of
fore- and background samples will lead to a biased evaluation. For example, the classification of a
point can have a high uncertainty due to the lack of evidence from its neighbors, while it may end
up with high classification accuracy because its neighbors belong to a dominant class. To avoid
this biased evaluation, each sample is weighted by the ratio of the total number of samples in that
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particular class. Consequently, the average classification accuracy ac for each uncertainty interval
of the calibration plot described in Section 3.4.3 is replaced by the weighted ac:

wac = ac · N
fg

N
(7.10)

where Nfg is the number of foreground pixels and N is the total number of sample pixels. Similarly,
the Calibration Error (CE, Equation (3.27)) is also calculated with weighted accuracy wac instead
of ac.

7.4.3 Notations

To avoid confusion in the evaluation, some notations should be defined. In all experiments, the
classification results of the two heads Hroad and Hobj are evaluated. The proposed GevBEV only
operates on the features of the sparse center points (Figure 7.1, pink cells), and generates clas-
sification results only for the observed areas, including the center points and the points in their
neighborhood (Figure 7.1, yellow cells). This thesis proposes to evaluate only on the observed areas
because only these areas reflect the model performance. This evaluation configuration is notated
as IoU sparse. However, the state-of-the-art models operate on dense feature maps and generate the
perception result in all areas of the perception range (gray area in Figure 7.5), including unobserved
areas (Figure 7.1, white cells). More specifically, all pixels on the dense semantic segmentation map
in this range are taken into account in the IoU calculation. This IoU result is notated as IoUdense.
In order to be able to compare the proposed methods with these models, all pixels in the unobserved
area (Figure 7.1, white cells) are regarded as the background class for both Hroad and Hobj head.

In addition, two CPM selection strategies are introduced in Section 7.2.4. The superscript all is
used for the results (IoU and CPM size) of the strategy that selects the CPM information over all
areas in the perception range, and the superscript road for the selection over the road area.

7.5 Results

7.5.1 Qualitative analysis

BEV semantic segmentation maps

With the proposed probabilistic model, the BEV Semseg maps of an example driving scenario
generated by GevBEV are visualized in Figure 7.7. From left to right, the three subfigures in the
first row show the results of uncertainty, classification confidence, and the ground truth of the road
surface. In the uncertainty map, a lighter color indicates lower uncertainty, whereas black areas are
regarded as non-observable. Correspondingly, the confidence map shows the confidence score for
the road surface (green) and the non-road surface (blue). The bottom subfigure shows the detailed
detection results of both road surface and objects overlaid in one figure. Only points classified as
roads with uncertainty under the threshold of 0.7 are highlighted in light color in the bottom layer
to show the situation of the drivable area. The predicted and corresponding ground truth bounding
boxes are plotted in red and green, respectively. Moreover, the bounding boxes are filled with the
vehicle confidences drawn from the Dirichlet distribution of the object head, where magenta points
are associated with high confidence, while cyan the opposite.

As shown in Figure 7.7, the BEV maps generated by GevBEV give a holistic report of the
observation status in all areas of the perception range. The following three observation statuses
can be described as:

1. area observed with high-certain perception results, e.g., area where the road and vehicle
classification uncertainty is smaller than 0.5.
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Figure 7.7: Results of the GevBEV. The first row show the semantic segmentation result. The bottom sub-
figure shows more detailed detection results in a larger extent. Specifically, the original input point cloud
is denoted by blue points, road points are highlighted by a light color if their uncertainties are under the
threshold of 0.7, and the objects are shown in bounding boxes with red color indicating the detection, and
with green color the corresponding ground truth, respectively. The thick bar in the front of the bounding boxes
denotes the driving direction. Moreover, the bounding boxes are filled with the point confidences generated
by dynamic (object) head of GevBEV, where magenta points are associated with high confidence, while cyan
indicates the opposite.

2. area observed but with insufficient perception certainty, e.g., area where the road or vehicle
classification uncertainty larger less than 0.5.

3. area not observed, e.g., area where uncertainty is 1.

This observation report provides a reliable information source to support IAs for decision-making.
It is more reliable because it can be sourced back to the original measurement points. For example,
the IA can usually generate safe driving based on status 1. However, due to occlusions and long
detection distance, the ego CAV is not certain about the area marked with a dashed line red
rectangle (status 2 or 3). If the ego CAV needs to drive into this uncertain area, it should either
request the missing information from other CAVs or slow down waiting for the clearance of the
uncertain area. Moreover, the BEV dynamic (object) head generates evidence of areas that could
be occupied by vehicles, indicated by the confidence values. Therefore, they are reliable and
explainable clues for validating the bounding-box detection. For example, as shown in the bottom
sub-figure, most predicted boxes are well aligned with the ground truth except those two marked
with red ellipses. The vehicle in ellipse 1 is only partially observed; there is no enough evidence to
support this detection. Similarly, there is almost no evidence for false positive detection in ellipse
2. Therefore, this detection can be simply removed.
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Figure 7.8: The comparison of classification confidences between GevBEV and CoBEVT on the OPV2V
dataset.
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Figure 7.9: The comparison of classification confidences between GevBEV and CoBEVT on the V2VReal
dataset.
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Figure 7.10: Object point distribution. The dashed line bounding boxes denote the detection, and the solid
line bounding boxes denote the corresponding ground truth. The thick bar of each bounding box denotes the
driving direction. The statistics under each sub-figure denote the average evidence and [JIoU, IoU].

Comparison to baseline

Figures 7.8 and 7.9 illustrate the classification confidences, with the color scale transitioning from
dark to light, representing confidence values from 0 to 1. In the right column of fig. 7.8 and in the
bottom row of Figure 7.9, the red color indicates that the proposed GevBEV retains information
on unobserved areas. In the absence of observations, GevBEV exhibits a tendency to produce
more refined details for both the road and vehicle edges. Notably in Figure 7.9, CoBEVT, the best
performing model among the selected comparative models, tends to generate more false positive
predictions, and in some cases, vehicles even appear merged together (Figure 7.9, middle row blue
box). This is because it only learns from discrete pixel samples, which are not accurate enough to
learn the fine-grained details. In contrast, GevBEV accurately separates all vehicles (Figure 7.9,
bottom row blue box), thanks to its precise edge description learned from the samples generated
in the continuous space.
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Evidence of object point distribution

The average evidence score of the detected bounding boxes can be used to show the relations
between the quality of the detection and the distribution of observation points of the corresponding
object. Inspired by Wang et al. (2020b), the generated uncertainty is also leveraged to calculate
the JIoU in addition to the normal IoU over the detection areas. JIoU is a probability version
of IoU that better evaluates the probabilistic features of object detection. Slightly different from
JIoU in the work of Wang et al. (2020b) that defines JIoU as the IoU between the probability mass
covered by the detection and the ground truth bounding boxes, this work defines it as the IoU
between the sum of the evidences in the detected bounding boxes and the sum of all the evidence
masses describing this object. In addition to JIoU, the average evidence score for a single detected
bounding box is also calculated. It is the mean of the drawn confidences of points inside the
bounding boxes. A low average evidence score indicates that the predicted box is not fully filled
with strong evidence due to inadequate observation. In this case, the geometry of the detected
bounding boxes might not be accurate. A low JIoU indicates that the evidences of the detected
object do not concentrate in the inside area of the detected bounding box; some evidence masses
scatter outside the bounding box.

The example in Figure 7.10 shows that the average evidence score is very closely related to the
quality of the detection. As shown in the last row, poorer detections tend to have less evidence
inside the predicted bounding boxes. Moreover, JIoU reveals the alignment of the prediction and
ground truth bounding boxes over the evidence masses. For objects without enough clues from the
measurements, it is hard to define a perfect deterministic ground truth, even by manual labeling.
In such cases, a reliable model should not be overconfident but be able to generate a possible
result with a fair judgment of its result based on uncertainty. More specifically, both the detection
and ground truth bounding boxes may have imperfect alignment with the evidence masses of the
GevBEV map. This leads to a smaller probabilistic union between these two boxes; hence a higher
JIoU is derived. Compared to IoU, this is more reasonable as JIoU decouples the imperfectness
of the model and the measurement. For example, the detected bounding box in the lower left
subfigure has a low IoU but a relatively high JIoU because there are too little evidences due to
the lack of the observation points, e.g., measurement imperfectness. In contrast, compared to the
ground truth, the detection in the lower right subfigure has enough evidence but has both low JIoU
and IoU, indicating that the inferior detection is not due to the insufficient measurement (e.g., too
few points observed) but to the model’s limited performance.

7.5.2 Quantitative Analysis

Comparison with state-of-the-art models

The GevBEV model is compared with the state-of-the-art models for the cooperative BEV
semantic segmentation task on the simulated OPV2V dataset (Xu et al., 2022c) and the real
dataset V2V4Real (Xu et al., 2023). Table 7.1 lists the results for segmenting roads and dynamic
objects. It can be seen that the models (the CVT-based backbone for learning BEV feature maps
from 2D images) designed for camera data are inferior to LiDAR data. This is because LiDAR
data provide more accurate 3D information, which is essential for projection to a BEV map for the
perception task. GevBEV outperforms all the other models, including models that are conducted
on the same LiDAR data as GevBEV for a fair comparison. Compared to the CoBEVT model
that came second in the OPV2V benchmark, the proposed GevBEV model with distribution heads
improves IoU by 22.4% for segmenting dynamic objects and 4.6% for segmenting road surfaces. In
the V2V4Real benchmark, it improves the IoU by 16.4% compared to V2XViT. These improvements
indicate that the point-based spatial Gaussian effectively provides smoother information about each
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Model Modality OPV2V IoUdense ↑ V2V4Real IoUdense ↑
Camera LiDAR Road Object Object

AttFuse (Xu et al., 2022c) ✓ 60.5 51.9 -
V2VNet(Wang et al., 2020a) ✓ 60.2 53.5 -
DiscoNet (Li et al., 2021) ✓ 60.7 52.9 -
CoBEVT (Xu et al., 2022a) ✓ 63.0 60.4 -
Fcooper (Chen et al., 2019a) ✓ 70.3 52.1 25.9
AttFuse (Xu et al., 2022c) ✓ 75.3 52.0 25.5
V2XViT (Xu et al., 2022b) ✓ 75.0 50.4 29.9
CoBEVT (Xu et al., 2022a) ✓ 75.9 52.3 29.6
GevBEV (proposed) ✓ 79.5 74.7 46.3

Table 7.1: Comparison with the state-of-the-art models on OPV2V and V2V4real dataset. Best values are
highlighted in boldface and the second best values are underlined.
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Figure 7.11: OPV2V road segmentation result (IoUdense) with localization noise.

surface point’s neighborhood, leading to more accurate results on both benchmarks. In addition,
the proposed target sampling method for training in the continuous driving space is more robust
against errors in ground truth. This leads to a remarkable improvement on the real V2V4Real
dataset, which contains inaccurate labels in a real-world driving scenario.

However, real-world driving scenarios pose more challenges for the co-perception task by in-
evitably introducing localization errors, as indicated by the large performance gap on object seg-
mentation between OPV2V (74.7%) and V2V4Real (46.3%), Also, the V2V4Real dataset only
provides the communication between two connected vehicles, fewer than that of the simulated
OPV2V dataset. Hence, the perception performance on V2V4Real is much worse than that tested
on OPV2V.
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Figure 7.12: OPV2V object segmentation result (IoUdense) with localization noise.
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Figure 7.13: V2V4Real object segmentation result (IoUdense) with localization noise.

Sensitivity to localization noise

In the previous experiments with the simulated data, perfect localization information is assumed.
In order to evaluate the influence of localization noise on the BEV Semseg results, localization errors
are generated by normal distributions with a standard deviation ranging from 0 to 0.5 meters for
position and from 0 to 1 degree for orientation. Figure 7.11 demonstrates that all models experience
slight performance declines in road surface classification as location and rotation errors increase.
Still, the proposed GevBEV model outperforms CoBEVT, maintaining the best performance with
a margin of approximately 4% across all error configurations. Without learning in continuous
space with the Gaussian distributions, BEV and EviBEV perform worse than both CoBEVT and
GevBEV. In contrast to the road surface, object classification results exhibit a higher sensitivity to
localization errors due to their smaller size. In this setting, GevBEV still outperforms the CoBEVT
runner-up model on the OPV2V and V2V4Real datasets, as depicted in fig. 7.12 and fig. 7.13. This
indicates that the proposed approach is more robust than CoBEVT in dealing with localization
noise.
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Ablation study

Table 7.2 shows the performance of the ablation models. In general, the baseline model BEV
without the point-based spatial Gaussian (G.s.) and the evidential loss Ledl is inferior to the
other models. This indicates that this conventional deterministic model trained by optimizing the
cross-entropy is not as good as the probabilistic models. In contrast, by modeling each point with
a spatial continuous Gaussian distribution, it is able to close the gaps caused by the sparsity of
point clouds and generate smoother BEV maps. EviBEV with the point-based spatial Gaussian
performs better than the baseline for the metric IoUdense and IoU sparse. However, its performance
for objects (vehicle) classification is slightly degraded.

Model
Modules OPV2V V2V4Real OPV2V V2V4Real

IoUdense ↑ IoUdense ↑ IoU sparse ↑ IoU sparse ↑
G.s. Ledl FSA Road Object Object Road Object Object

CoBEVT 75.9 74.7 29.6 - - -
BEV ✓ 72.5 74.1 45.1 76.1 75.8 46.1
EviBEV ✓ ✓ 75.0 75.3 44.5 78.3 76.3 45.3
GevBEV− ✓ ✓ 59.7 73.1 46.0 62.5 73.2 46.7
GevBEV ✓ ✓ ✓ 79.5 74.7 46.3 83.1 76.1 46.9

Table 7.2: Ablation study of the proposed modules. All IoU results are measured in percent. Best values are
highlighted in boldface. G.s.: point-based spatial Gaussian, Ledl: evidential loss, FSA: free space augmenta-
tion.

Moreover, BEV and EviBEV perform worse than CoBEVT (Xu et al., 2022a) on IoUdense for
road semantic segmentation. This is because BEV and EviBEV uses a fully sparse convolutional
network, which does not operate in unobserved areas. In order to facilitate a comparison with
dense convolution models, certain road surfaces in the proposed sparse BEV Semseg models are
considered inadequately observed and thus treated as false predictions when calculating IoUdense.
Unlike GevBEV , both the BEV and EviBEV models have additional areas designated as unobserved
due to the absence of Gaussian tails. Consequently, this leads to lower IoU values. However, it is
worth mentioning that the object classification of the ablation models significantly outperforms the
runner-up model, CoBEVT. This can be attributed to two factors. Firstly, the proposed models
carefully control the network to expand coordinates in a specific range and only make predictions
over the observable areas. The coordinate expansion module can cover most of the object areas
so that these areas will be given a prediction rather than being treated as unobserved. Secondly,
thanks to the benefits of dynamic sampling from continuous driving space during training, the
proposed models show a tendency to be cautious when making positive predictions for vehicle
points. This cautious approach facilitates the process of learning the edge details of the vehicles
more effectively, enhancing the overall object classification performance.

From the comparison between GevBEV − and GevBEV , the improved IoUs, especially for roads,
indicate that free space augmentation (FSA) provides an explicit cue to the unoccupied space along
the ray paths and improves the detection performance. In addition, this module plays an important
role in mitigating the problem introduced by the sparsity of point clouds and greatly improves
prediction performance. Overall, GevBEV outperforms the ablation models in all measurements,
confirming the efficacy of each proposed module.
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OPV2V Road OPV2V Object V2V4Real Object

Figure 7.14: Calibration plots by different models. The perfect calibration line is indicated by the diagonal
dashed line.

Model OPV2V V2V4real Average ↓Road↓ Object ↓ Object↓

BEV 0.095 0.072 0.076 0.081
EviBEV 0.031 0.010 0.030 0.023
CoBEVT 0.044 0.075 0.056 0.058
GevBEV 0.044 0.066 0.040 0.050

Table 7.3: Average Calibration Error. Best values are highlighted in boldface and the second best values are
underlined.

Desired confidence level with calibration plot

The calibration plot (Figure 7.14) and the average calibration error (Table 7.3) between this
plot and the perfect uncertainty-accuracy line (dashed black line) are used to analyze the quality
of the predictive uncertainty generated by the baseline models CoBEVT and BEV , the EviBEV
model with Ledl loss, and the complete probabilistic model GevBEV. Since the baseline model only
generates Softmax scores for each class, these scores are converted into entropy to quantify the
uncertainty so that they can be compared with the other two models with the evidential uncertainty
based on a Dirichlet distribution. As revealed in fig. 7.14, GevBEV and EviBEV demonstrate better
confidence plots relative to the perfect calibration line (indicated by the diagonal dashed line) than
the baseline model BEV and CoBEVT for both road and object classification. The two baseline
models seem to underestimate the uncertainty compared to the other two models, which confirms
the concerns that the deterministic model, without particularly accounting for uncertainties, may
end up generating less trustworthy scores for making driving decisions. The results, on the other
hand, show that assuming a Dirichlet distribution of the point class of the BEV map can provide
more reliable probabilistic features for the map and, therefore, is safer to be used in IA perception
systems.

Interestingly, the uncertainty quality of GevBEV is worse than that of EviBEV , especially for
object classification. This might be caused by the saturation of the summation of the evidences
contributed by the neighboring center points. This saturation weakens the model’s ability to
represent the uncertainty. One conjecture of this result is that some vehicles are only partially
observed due to occlusion. The expandable convolution is limited to expanding the coordinates
to cover the whole body of the vehicles. Therefore, only the distribution tiles of these expanded
center points can cover the rest of the vehicle body. Points only covered by these distribution tiles
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Figure 7.15: Comparison of different CPM sharing strategies (CPMall and CPMroad, ref. Section 7.2.4)
for co-perception. The first row shows the results of the road head (greenish) and the second the objects head
(orangish).

usually have high uncertainties. However, most of them are classified as foreground because of the
large predictive foreground evidence of the center point. This leads to a high true positive rate
with high uncertainty and introduces bias in the uncertainty estimation. Despite the uncertainty of
GevBEV being slightly more conservative than that of EviBEV , still, as shown by the higher IoUs
in table 7.2, the learned spatial Gaussian distribution generates smoother BEV maps and draws
classification distribution of any points in the continuous BEV 2D space.

7.5.3 Uncertainty-based information selection for collective perception

In general, the uncertainties generated by GevBEV indicate how certain the model is about its
predictive classification results. Higher uncertainty reveals a lower observation level, and more
useful information is required to be shared by other IAs. Therefore, uncertainty can be used as a
metric for information selection to share CPMs among IAs. To implement this selection process,
different uncertainty thresholds are tested and evaluated. A lower uncertainty threshold can be
used when communication channels are busy. In this way, only the more reliable perception results
that have low uncertainty are selected and shared.

The CPM sizes before and after the uncertainty-based information selection with different un-
certainty thresholds, as well as the corresponding classification results IoU sparse and IoUdense, are
plotted in Figure 7.15. The first row shows the results of the static head for the road surface class
and the second the dynamic head for the object class. As discussed in Section 7.2.4, experiments
with two CPM sharing strategies are conducted, one for sharing the masked evidence maps of
all perception areas (all , plotted with circles) and one only for the road areas constrained by an
existing HD map (road , plotted with triangles). The dashed lines are the baselines for sharing
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CPMs without information selection, which are shown as horizontal lines over different uncertainty
thresholds.

The plots in the first column show that the CPM sizes have evidently been reduced after the
information selection at all uncertainty thresholds compared to the corresponding baselines. For
example, when all perception areas (light green circles) are considered for sharing, the CPM size for
the road head dropped by approximately 87% from 388 KB to 52 KB at the uncertainty threshold
of 0.5. Consequently, IoUdense and IoU sparse only dropped by about 2%. In the same configuration,
the CPM sizes for the object head dropped ca. 93%, from 395KB to 27KB, while the IoUs dropped
ca. 4%. By only considering the road areas for sharing (solid lines with triangle markers), CPM
sizes can be further reduced to about 16KB for the road head and 6KB for the objects head at the
uncertainty threshold of 0.5 with only an IoU drop within 0.5%. According to the V2V commu-
nication protocol (Arena and Pau, 2019), without considering other communication overhead, the
data throughput rate can achieve 27Mbps. Therefore, the time delay for sending the CPMs of both
heads has dropped from ca. 28ms to 0.8ms by the data selection based on our GevBEV maps from
road areas. These significantly reduced time delays are critical for real-time V2V communication.

7.5.4 Summary

This chapter proposes a novel method GevBEV to generate BEV semantic segmentation maps from
sparse and discrete BEV points. GevBEV leverages spatial Gaussian distributions to interpolate
neighboring spaces and Dirichlet distributions to estimate uncertainties. These distributions not
only establish the statistical properties of the segmentation results but also ensure their reliability
in a back-traceable manner. Specifically, any segmentation result for an informative point (uncer-
tainty below 1) in the continuous driving space is supported by evidence from the original observed
LiDAR points. Experimental evaluations on the OPV2V and V2V4Real benchmarks demonstrate
that GevBEV significantly outperforms state-of-the-art models. By integrating the Dirichlet dis-
tribution and evidential learning, GevBEV achieves more reliable classification scores, producing
better-calibrated uncertainty estimates. Furthermore, these uncertainties facilitate effective CPM
selection, reducing the average CPM size by approximately 90%.



8 Time-Aligned Cooperative Object Detection Using Fully Sparse
Neural Network

Despite the significant successes of cooperative object detection in previous studies, most ap-
proaches rely on dense convolutions or transformers to process sparse point-cloud data, leaving
the potential of sparse operations largely unexplored. Furthermore, prior studies often assume
synchronized sensors across all IAs, overlooking the challenges that asynchronous sensors can pose
to the data fusion process. To address these issues, this chapter introduces SparseAlign (Yuan
et al., 2025), an efficient and fully sparse framework for Time-Aligned Cooperative Object Detec-
tion (TA-COOD) that explicitly accounts for sensor asynchrony. First, the definition of TA-COOD
is outlined in Section 8.1. Next, the overall structure of SparseAlign is presented in Section 8.2,
including a novel 3D backbone network, SUNet , and three alignment modules for temporal, pose,
and spatial alignment, respectively. Finally, the experiments and their results are discussed in
Section 8.4.

8.1 Definition of TA-COOD
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Figure 8.1: TA-COOD with two CAVs. Dashed boxes: Ground truth bounding box of ego- and coop-CAV
observations. Solid box: time-aligned Ground Truth bounding box.

In a cooperative perception scene, assume that a set of IAs A = {Ai|0 ≤ i ≤ N} are inter-
connected, where A0 is the ego IA. Each IA has its own sensor ticking time ti. All sensors are
scanning at the frequency f . An example with two CAVs is shown in Figure 8.1. The LiDAR of
the ego IA A0 (green) and the cooperative IA A1 (red) scan counterclockwise. They have a ticking
frequency of f = 10Hz and the ticking time offset of, say, δt = t0 − t1 = 0.05s. The scanning
time of each observation point is shown in gradient colors. As shown in the middle-bottom area
of Figure 8.1, the observations of the ego- and the coop-vehicle in this area have a time difference
of 0.11s ≤ tego − tcoop ≤ 0.15s, because the cooperative IA scans this area in the time range of
0s ≤ t ≤ 0.02s and the ego IA scans in the time range of 0.13s ≤ t ≤ 0.15s. At a speed of 60km/h,
this time offset can lead to the target object shift of more than 1.8m, introducing difficulties for the
data fusion of the IAs. Instead of taking the annotation from one IA (e.g.,the red bounding box
observed by the ego IA at tego), a ground-truth bounding box is generated at the globally aligned
time taligned by interpolating between the annotations of the individual CAVs. To accurately model
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Figure 8.2: Overview of of the SparseAlign pipeline for TA-COOD, including the sparse SUNet as backbone
network and three alignment modules for temporal (TempALign), pose (PoseAlign) and spatial (SpatialAlign)
data alignment.

the movement of the detected object, 3D TA-COOD is introduced, which aims to take point-wise
timestamped point clouds as input and predicts the bounding box at globally aligned time taligned,
which is the scan end of the reference vehicle in each frame. The detection results are evaluated
from the perspective of the ego vehicle, which serves as the reference vehicle. In the example shown
in Figure 8.1, the global time is aligned to taligned = 0.15 s, corresponding to the scan end of the
ego vehicle.

8.2 Architecture of the Framework SparseAlign

8.2.1 Overview

As illustrated in Figure 8.2, a fully sparse and highly efficient pipeline SparseAlign is built to pro-
cess sequential point-cloud data from multiple agents for TA-COOD. All agents share an identical
pipeline structure and module weights. Each agent first processes its own input point cloud lo-
cally using feature extraction modules, and then selectively shares key feature points with others.
Considering the cooperative perception system as a whole, the input at time ti is the point cloud
PCti of the ego agent and all point clouds PCtj of the cooperative agents. Note that tj <= ti
when communication latency exists. All point clouds are processed locally at each IA by a novel
3D Sparse UNet (SUNet) backbone network to extract the point cloud features. The Region of
Interest (RoI ) module then selects the most interesting features as the object queries for further
processing. For simplicity, object queries are defined as Q∗ = {(F ∗

i ,x
∗
i ,y

∗
i )|i ∈ {1, . . . ,N∗}, where ∗

represents the query set name, F is the feature, and x,y are the coordinates of the corresponding
i-th query. With selected queries, the TempAlign Module (TAM ) can efficiently align the query
features with the globally aligned timestamp t so that errors introduced by communication delay
and sensor asynchrony can be compensated. The updated query features and the detections from
the Local Query Detection head (LQDet) are then shared as CPMs. The PoseAlign Module PAM
then uses the detected bounding boxes to correct the relative poses between the cooperative and the
ego agent and the SpatialAlign Module SAM fuses the received cooperative features into the ego
coordinate system based on the corrected transformation T e

c from cooperative to ego coordinates.

8.2.2 Sparse UNet (SUNet)

Cooperative perception is a computationally demanding task as it requires processing data from
multiple IAs. To improve efficiency and reduce GPU memory consumption, fully sparse 3D con-
volutions are used to construct the 3D backbone to extract the point cloud features. However,
building a fully sparse backbone network that can compete with the dense ones is non-trivial. For
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Figure 8.3: Issues of sparse convolutional backbone networks. a) Center Feature Missing (CFM). b,c) Isolated
Convolution Field (ICF) caused by ring disconnectivity and occlusion.
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Figure 8.4: The architecture of the proposed 3D backbone network SUNet (Sparse UNet).

the object detection task, there are two issues. The first unavoidable issue is Center Feature Miss-
ing (Fan et al.) (CFM, shown in Figure 8.3 a)). Due to the range-view of on-board LiDARs, there
are usually no scan points in the vehicles’ center area. However, compared to the edge points, the
center points have a better ability to represent the whole object. Lacking center points for learning,
the sparse frameworks perform worse than the dense ones that directly learn the features for center
points. The second issue is the poor connectivity between points scanned by different laser beams.
As shown in Figure 8.3 b), this disconnectivity issue in distant areas may lead to isolated voxel
blobs; the receptive field only enlarges to the blob scale as the convolutional layers go deeper. The
isolated voxel blobs never exchange information with each other, limiting the backbone’s capabil-
ity of capturing global features. This issue is named as Isolated Convolution Field (ICF). It also
happens to the occlusion areas as shown in Figure 8.3 c): although the occluded vehicle has very
few scan points (red), it is expected to be detected based on the neighboring vehicles and the clues
in the previous frames. However, ICF introduces difficulties for these isolated points to aggregate
information from neighbors and the global environment.

To overcome the above problems, a sparse UNet backbone network SUNet (Figure 8.4) is built
with the Coordinate-Expandable sparse Convolution (CEC, ref. Section 3.1, sparse convolution),
which is implemented in the MinkowskiEngine (Choy et al., 2019) library. Specifically, SUNet is
a sparse 3D version of UNet (Ronneberger et al., 2015) similar to MinkUnet (Choy et al., 2019)
as it naturally combines local and global features in the up-sampling process of the UNet. To
overcome the ICF issue, 3D CECs in the sparse convolution (SConv) block 3 and 4 are employed.
The expanded coordinates after these CEC layers are then contracted in the transposed sparse
convolution (TConv) block 3 and 2. On the one hand, the output coordinates of the TConv blocks
p4 and p2 can match the coordinates in stride x2 and x4 for the concatenation. On the other hand,
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it learns better global features without voxel number soaring in the subsequent layers and maintains
efficiency. Against CFM, 2D CECs are employed on the 2D BEV sparse features (Figure 8.4: Coor.
Expand.) to expand the coordinates to ensure their coverage over the object centers.

8.2.3 Temporal alignment (TAM)

The TempAlign Module (TAM , Figure 8.5) aims to learn the temporal context relative to the
previous frames to achieve two goals: to improve object detection performance by looking for clues
in the history and to compensate for the object displacement errors introduced by asynchronous
scanning time (Figure 6.6, right). Technically, the TAM is inspired by Wang et al. (2023). It mainly
contains a memory queue, a Motion-Temporal Awareness (MTA) module and a Hybrid Attention
module.

Memory queue: stores Kq = 256 object queries for each of the T previous frames. For each
selected object query Qi, the predicted object center xi,yi, the context embedding Fi, the velocity vi,
the pose matrix Ei and the query timestamp τi of the corresponding IA are stored. The timestamp
τi is retrieved following Equation (8.1), where xi,yi are the x and y coordinate of the query point,
P i
x, P i

y and P i
t are respectively the x,y coordinates and the timestamp of the j-th point P j in the

point cloud.
τi = P j

t , j = argmin | atan2(xi,yi)− atan2(P j
y ,P

j
x)| (8.1)

MTA: is used to inject additional information of each query into the query features F . As shown
in Figure 8.6, the timestamp τ of each query, the pose E and the velocity v of the corresponding ego
vehicle are aligned as a vector and embedded in the feature M emb. With the Motion-aware Layer
Normalization (MLN, Wang et al. (2023)), this feature is then injected into the embedded query
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position P emb, the query context features F of previous frames, and the initial query target features
tgt at the current frame, to obtain the motion-aware embeddings. Additionally, the embedded time
is added to the motion-aware query position embedding (Pmo) to make it also time-aware (Pmo,τ ).
The final output of the MTA module is then the motion-time-aware position embedding Pmo,τ and
the updated query features, either Fmo or tgtmo. As shown on the left of Figure 8.6, all query
features, Qcur from tj and tj−1 and Qhis from tj−2 ≤ t ≤ tj−T , are updated by the MTA module.
In addition, a target query feature tgt, in the same feature shape (dimension) as Qcur, is initialized
with zeros and updated with the MTA module to obtain the motion-aware feature tgtmo.

Hybrid Attention: takes the target feature tgtmo as the query input Q (Figure 8.6, gray
rectangle), the concatenation of the updated query features Qcur and Qhis as the input key K and
value V , to complete the attention process. Note that the position embedding Pmo,τ of each query
is also added to the corresponding features to ensure that the queries are spatially aware of their
locations. The output of the attention is notated as Qt. It has learned the temporal context from
the sequential data and is able to make predictions for the future state. These predicted bounding
boxes are synchronized with the same timestamp. Therefore, the subsequent module PoseAlign
(PAM ) only needs to deal with object displacement caused by localization errors.

8.2.4 Pose alignment (PAM)

The pose alignment module (PAM) is designed to correct the relative pose between the ego and
the cooperative agents. Given the detected bounding boxes Bi and Bj , respectively, from the
perspective of the agent Ai and Aj in the same scene, a human can easily find the correspondences
between Bi and Bj based on the geometric relationships. Practically, this thesis models the features
of these geometric relationships by embedding the neighborhood geometry of each bounding box
into deep features and then matching these features of Bi and Bj with the Hungarian algorithm.
For each bounding box b in a bounding box set B, the nearest k = 8 neighbors are selected to
embed its neighborhood features. As shown in Figure 8.7, 1.Graph Feature, the orientation angles
of the bounding box are α and β for b and its neighbor, respectively. The relative orientation is
featured with νa = [sin(β − α); cos(β − α)]1. Similarly, the relative edge direction is embedded
as ϵa = [sin(θ − α); cos(θ − α)]. In addition, the dimension νdim = [l,w,h] of the neighboring
bounding box, and the Euclidean distance between b and its neighbors ϵd = d, are also embedded
into the feature. Note that ϵd,ϵa,νa are all relative features between two bounding boxes that are
pose-agnostic, leading to robust pose alignment without dependence on the magnitude of initial
pose errors. These features are then concatenated and embedded into high-dimensional features by
a linear layer with ReLU activation (R5 → Rdemb):

fnbr = linear([ϵd; ϵa; νa; νdim]) (8.2)

1[·; ·]: concatenation
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Assembling the features relative to all neighbors, the neighborhood feature Fnbr ∈ Rk×demb is
summarized by a multi-head self-attention module attn followed by a linear layer operating on the
mean and max of the attn outcome, resulting in the feature Fnbr ∈ Rdemb :

Fnbr = attn(Fnbr) (8.3)
Fnbr = linear([mean(Fnbr);max(Fnbr)]) (8.4)

By calculating the Euclidean distance between the learned neighborhood feature Fnbr of the bound-
ing box in Bi and Bj , the cost matrix is constructed for the linear sum assignment to find the best
Match (fig. 8.7, 2.Match) between these two bounding box sets. However, an object in Bi does not
always have a projection in Bj and vice versa. Thus, the wrong Matches that have large distances
are rejected. Based on the 2.Match result, the relative pose transformation between Ai and Aj can
be recovered, completing the 3.Align step. Additionally, pose graph optimization is used to refine
alignment by leveraging loop closure among multiple cooperative agent poses following Lu et al.
(2023).

8.2.5 Spatial alignment (SAM)

The spatial alignment module (SAM) aims to merge and fuse the features of different IAs. To
align the cooperative query features Qc with the ego query features Qe, there are two issues to
be resolved. First, the features F c are learned in the cooperative coordinate system and must
be adapted to the ego coordinate system. This is achieved by a multilayer perceptron (mlp) as
described in Equation (8.5) where FR ∈ RN×9 are the rotation parameters obtained by flattening
and repeating the rotation matrix R ∈ R3×3.

F c = mlp([F c;FR]) (8.5)

Second, the cooperative query coordinate can not be perfectly aligned to the discretized grid in the
ego coordinate system, as shown by the yellow point in Figure 8.8, SAM. Thus, the cooperative
query points are merged into the nearest grid points of the ego coordinate system. The locations
of the fused output object query points Qts are shown with gray points. For each point in Qts, the
features of its k = 8 nearest neighbors (Figure 8.8, black arrows) in query set Q∪ = Qc

⋃
Qe are

fused into features F ts. Mathematically, it reads as

Fij = mlp([Q∪
j ; linear([x

ts
i − x∪j ,y

ts
i − y∪j ])]) (8.6)

F ts
i = {Fij |j ∈ {1, . . . ,k}} (8.7)

F ts
i = maxj(F

ts
i ) +meanj(F

ts
i ) (8.8)

where i is the query index of Qts and j is the neighbor index of the i-th query.
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8.2.6 Detection heads

To train SparseAlign, three center-based object detection heads are attached to each of the RoI ,
TAM and SAM modules to learn the temporal and spatial alignment features of object queries.
These heads are notated as RoIDet , LQDet and GQDet , respectively. They share the same target-
encoding method. The Focal Loss is used for object classification; all points inside the ground-
truth bounding boxes are positive, and those outside are negative. Smooth L1 loss is used for the
bounding-box regression. The dimensions of the bounding box l,w,h are regressed directly and
the target location of the bounding box is encoded with the coordinate offsets between the feature
points and the ground-truth bounding boxes. For the orientation of the bounding boxes, the novel
CompassRose encoding (See Figure 6.8) with respect to the four anchor angles ra = [0,0.5π,π,1.5π]
is utilized.

8.3 Experiments

8.3.1 Comparative models

Similar to the efficiency experiments conducted in Chapter 6, the state-of-the-art models, F-
Cooper (Chen et al., 2019a), AttnFusion (Xu et al., 2022c) and FPVRCNN (Yuan et al., 2022)
are used as baseline models to conduct comparative experiments with SparseAlign. To make a fair
comparison of the TA-COOD task, the three alignment modules, TAM , PAM , SAM , are attached
to each comparative model to build the temporal interaction. They are notated as [MODEL]+SA.
For F-Cooper and AttnFusion, intermediate BEV features at the corresponding resolution are taken
for the RoI selection. For FPVRCNN, the keypoints generated by the Voxel-Set-Abstraction (Shi
et al., 2020) module are used for this purpose. Since the original implementation of the model
AttnFusion (Xu et al., 2022c) uses the memory demanding dense 3D convolutions, making it not
possible to process streaming LiDAR data on a single GPU, the dense 3D convolutions in this
model are replaced with sparse 3D convolutions. Besides, all comparative models use the anchor-
based detection head as RoIDet , following their original implementations. The baseline method
StreamLTS (Yuan and Sester, 2024), which is specifically designed for TA-COOD, is included for
comparison.

In addition, the proposed model is also compared with previous works on the COOD task to
validate the performance gain on the benchmarks. For this task, the reported performances are
directly used for comparison, without reimplementation.

8.3.2 Training

Datasets

The proposed method SparseAlign is evaluated on the OPV2Vt and DairV2Xt datasets for TA-
COOD (Yuan and Sester, 2024). Besides, it is also tested on the OPV2V (Xu et al., 2022c) and
DairV2X (Yu et al., 2022) for the COOD task, in order to compare with more state-of-the-art
models that are implemented on these two datasets.

Implementation details

All models are trained on a single GTX-4090 for 50 epochs with the Adam optimizer and batch
size four. The learning rate is set to 2e − 4 with a warm-up stage of 4000 iterations. The input
point clouds are augmented with random flipping along the x- and y-axis, and rotation with a
random angle in range [−90◦,90◦]. For models incorporating the TempAlign module, Free Space
Augmentation Yuan et al. (2023) (FSA, Section 6.3.2) is also used to enhance temporal context
learning. Besides, four sequential frames of data are loaded during training and losses are calculated
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(a) OPV2Vt

(b) DairV2Xt

Figure 8.9: TA-COOD result of StreamLTS. Yellow bounding boxes: ego-view annotation. Green bounding
boxes: time-aligned annotation. Red bounding boxes: time-aligned detection.

solely for the last frame. To reduce GPU memory consumption, gradient calculations are only
enabled for data from one ego agent and one cooperative agent. To ensure that the model generalizes
well to the significant time latency introduced by communication, data from cooperative vehicles
are loaded with a random latency ranging from 0 to 200 ms relative to the ego vehicle.

8.4 Results

8.4.1 Qualitative results

The TA-COOD result of SparseAlign is shown in Figure 8.9. The yellow bounding boxes are the
ground truth bounding boxes at different observation times, and the green bounding boxes are the
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Table 8.1: TA-COOD Average Precision on OPV2Vt and DairV2Xt. AP0.5: AP at IoU threshold 0.5;
AP0.7: AP at IoU threshold 0.7.

Method OPV2Vt DairV2Xt
AP0.5↑ AP0.7↑ AP0.5↑ AP0.7↑

Fcooper (Chen et al., 2019a)+SA 0.763 0.553 0.597 0.282
FPVRCNN (Yuan et al., 2022)+SA 0.640 0.474 0.598 0.307
OPV2V (Xu et al., 2022c)+SA 0.881 0.787 0.702 0.366
StreamLTS (Yuan and Sester, 2024) 0.853 0.721 0.640 0.404
StreamLTS (Yuan and Sester, 2024)+SA 0.850 0.790 0.757 0.497
SparseAlign (full) 0.893 0.818 0.796 0.548

globally time-aligned ground truth. As shown in the dashed red box in the middle of Figure 8.9a,
the objects in this area are observed by both CAVs at different times. The top right CAV scans
this area (blue points) about 0.05s earlier than the bottom left CAV (yellow points). The global
bounding boxes are aligned to the last time point in this frame (the same as the timestamps of
the red points); they moved a little forward in comparison to the yellow bounding boxes. This
can also be observed in Figure 8.9b. The red bounding boxes are the predictions generated by
SparseAlign. The result on the OPV2Vt and DairV2Xt datasets shows that the predictions have
better matches to the globally time-aligned ground truth bounding boxes (green) than any locally
annotated bounding boxes (yellow). This reveals that SparseAlign has successfully captured the
time relationships between the object observations from different IAs and correctly predicted the
bounding boxes at the aligned future timestamp.

8.4.2 Comparison to SOTA models

The framework SparseAlign is applied both for TA-COOD and COOD to show its general appli-
cability and performance gain compared to the state-of-the-art models.

Average Precision (AP) of TA-COOD

As shown in Table 8.1, the proposed framework SparseAlign achieves the highest AP on both
datasets. Especially at the IoU threshold of 0.7, the AP of SparseAlign has increased 30.7%
on OPV2Vt and 6.4% on DairV2Xt compared to the second-best framework AttnFusion. The
SparseAlign also outperforms StreamLTS by a great margin. By applying our three alignment
modules (StreamLTS+SA), the performance of StreamLTS is also improved. In addition, the
proposed framework SparseAlign is also compared to Fcooper , FPVRCNN and OPV2V method by
attaching the three alignment modules to them to achieve TA-COOD. All show worse performance
than the full SparseAlign because of worse 3D backbone or RoI selection.

Among all comparative methods, Fcooper has the worst performance as it uses a simpler backbone
network that only consists of a PointPillar encoder and several 2D convolution layers, to encode the
point cloud features. More importantly, its Maxout operation for fusing the features from different
IAs is not learnable, hence not able to handle the spatial misalignment of the object queries caused
by different observation times. In comparison, all other methods, with enhanced backbone encoding
and the learnable module for multi-IA feature fusion, have much better performance. Because of the
high reliability on the accuracy of the first stage detection, FPVRCNN might ignore some potential
object points for the next processing steps, hence achieve worse performance than OPV2V and
StreamLTS.
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Table 8.2: COOD Average Precision on OPV2V dataset. BW: bandwidth; AP0.5: AP at IoU threshold 0.5;
AP0.7: AP at IoU threshold 0.7.

Method BW(Mb) ↓ AP0.5 ↑ AP0.7↑
Fcooper (Chen et al., 2019a) 72.08 0.887 0.790
V2VNet (Wang et al., 2020a) 72.08 0.917 0.822
FPVRCNN (Yuan et al., 2022) 0.24 0.873 0.820
OPV2V (Xu et al., 2022c) 126.8 0.905 0.815
CoAlign (Lu et al., 2023) 72.08 0.902 0.833
CoBEVT (Xu et al., 2022a) 72.08 0.913 0.861
V2VAM (Li et al., 2023) 72.08 0.916 0.850
V2VFormer++L+C (Yin et al., 2024) 72.08 0.935 0.895
SparseAlign < 1.3 0.930 0.892

Table 8.3: COOD Average Precision on DairV2X dataset. BW: bandwidth; AP0.5: AP at IoU threshold
0.5; AP0.7: AP at IoU threshold 0.7.

Method BW(Mb) ↓ AP0.5 ↑ AP0.7↑
Fcooper (Chen et al., 2019a) 48.8 0.734 0.559
V2VNet (Wang et al., 2020a) 48.8 0.664 0.402
FPVRCNN (Yuan et al., 2022) 0.24 0.665 0.505
V2XViT(Xu et al., 2022b) 48.8 0.704 0.531
DiscoNet(Xu et al., 2022a) 48.8 0.736 0.583
OPV2V (Xu et al., 2022c) 97.6 0.733 0.553
CoAlign (Lu et al., 2023) 48.8 0.746 0.604
DI-V2X (Xiang et al., 2024) 48.8 0.788 0.662
SparseAlign < 1.3 0.845 0.685

Average Precision (AP) of COOD

To assess the overall efficacy of the SparseAlign design, the proposed model is compared with
state-of-the-art models on standardized benchmarks. Table 8.2 presents the COOD results on the
OPV2V dataset. All methods use only LiDAR data, except for V2VFormer++ (denoted by L+C),
which incorporates both LiDAR and camera data. Compared to the state-of-the-art, the proposed
SparseAlign achieves the best performance in LiDAR-based COOD, approaching the results of
V2VFormer++, which benefits from the LiDAR-Camera fusion. Table 8.3 shows the results on the
DairV2X dataset. Here, SparseAlign approach outperforms all other methods by a large margin,
achieving a 2.3% improvement in AP at the IoU threshold of 0.7 and a 5.7% improvement at the
IoU threshold of 0.5. This is mainly due to the enhanced temporal and global reasoning ability of
the model for detecting distant and large objects. Compared to other methods that rely on dense
BEV feature maps, SparseAlign consumes the least communication bandwidth (BW) of less than
1.3MB (without compression) thanks to efficient query-based operations.

8.4.3 Training efficiency

Less memory consumption and training time is crucial for faster model development on limited
computing resources. To investigate the training efficiency of SparseAlign, it is compared to other
models with the peak memory usage because it is crucial for determining the devices the model
can be trained on and the training batch size on limited GPU resources. In addition, the epochal
training time of all comparative models on the same device is tested. The results of AP against
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Figure 8.10: Comparison of memory usage peak and epochal training time.

Table 8.4: Ablation study on feature learning modules: 2D and 3D CEC layers, TempAlign Module (TAM),
and Dilation Convolution layers (Dil.)

CEC CEC TAM Dil. OPV2V DairV2X
2D 3D AP0.5 AP0.7 AP0.5 AP0.7

2 0.890 0.827 0.707 0.637
1 0.924 0.885 0.773 0.638

✓ 1 0.940 0.901 0.796 0.662
✓ ✓ 1 0.950 0.914 0.813 0.682
✓ ✓ ✓ 1 0.951 0.929 0.845 0.685

these two measures are demonstrated in fig. 8.10. As shown in the left two sub-plots, SparseAlign
(squares) requires less training memory resource than the dense models (Fcooper, OPV2V) and
has the best overall TA-COOD performance. The model OPV2V (baseline model proposed in the
dataset release of OPV2V (Xu et al., 2022c)) has a comparable detection performance; however,
its GPU memory demand is much higher than SparseAlign. Regarding the epochal training time,
SparseAlign seems less efficient. However, thanks to the low memory usage, SparseAlign can reduce
the training time by increasing the batch size.

8.4.4 Ablation study

The ablation study is conducted on the configurations of the 3D backbone and TAM. The results are
shown in Table 8.4. By changing the dilation size of the first convolution layer in each block of SUNet
from one to two, the performance is deteriorated (Table 8.4, row1 vs. row2), revealing that dilation
convolution, in this case, does not effectively increase the receptive field of the convolution and
mitigate the ICF issue, but hurts the local feature learning. Instead, the performance is improving
gradually by replacing some of the standard sparse convolutional layers with CEC layers. At last,
the TAM further enhanced the APs by looking for clues in the historical frames.

In Table 8.5, CompassRose direction encoding is compared with three conventional methods: di-
rectly regress the ground-truth angle (gt-angle), second-style Yan et al. (2018) directional encoding
(second), and the sine-cosine encoding (sin_cos). For simplicity, the module configurations in the
second row of Table 8.4 is used for the comparison. The results show that CompassRose has the
best performance.

8.4.5 Communication latency and sensor asynchrony

Table 8.6 and Table 8.7 show the results of TA-COOD on the OPV2Vt and the DairV2Xt dataset.
The proposed SparseAlign demonstrates a significant performance improvement over the baseline
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Table 8.5: Comparison study on target encoding of bounding box angle: ground-truth angle (gt-angle), second-
style (second), sine-cosine (sin_cos) and compass rose (compass).

Dir. OPV2V DairV2X
Enc. AP0.5 AP0.7 AP0.5 AP0.7

gt-angle 0.871 0.768 0.620 0.427
second 0.908 0.874 0.743 0.590
sin_cos 0.915 0.881 0.748 0.603
compass 0.924 0.885 0.773 0.638

Table 8.6: OPV2Vt: Average Precision of TA-COOD with communication latency. SA no TA, PT, TL,
FSA: SparseAlign without TempAlign, Point-wise Timestamps, Train Latency and Free Space Augmentation,
respectively.

Latency 0ms 100ms 200ms
AP threshold 0.5 0.7 0.5 0.7 0.5 0.7
SteamLTS 0.853 0.721 0.816 0.680 0.787 0.647
SA no TA 0.890 0.802 0.856 0.471 0.631 0.209
SA no PT 0.835 0.615 0.831 0.625 0.815 0.581
SA no TL 0.885 0.843 0.862 0.619 0.723 0.279
SA no FSA 0.881 0.816 0.875 0.795 0.857 0.762

Full SA 0.893 0.818 0.885 0.795 0.867 0.765

method, StreamLTS (Yuan and Sester, 2024), with regard to the communication latency and sensor
asynchrony. Specifically, the AP at an IoU threshold of 0.7 increased by 9.7% on the OPV2Vt
dataset and by 14.4% on the DairV2Xt dataset. As the communication latency increases to 200
ms, the AP at IoU 0.5 of SparseAlign only dropped 2.6%, while the baseline method StreamLTS
has lost 6.6% of its accuracy. This reveals that SparseAlign is more robust against communication
latency. To investigate modules or configurations that are making an effect on this robustness, an
ablation study is conducted by removing the TAM , Point-wise Timestamps (TP), Training Latency
(TL, communication latency during training) and Free Space Augmentation (FSA), respectively.

Without the TAM, the performance noticeably declines as latency increases, despite achieving
comparable results to the full SpareAlign model at 0 ms latency. A similar effect is observed when
the full SA model is trained without exposure to data with communication latency (SA without
TL). Remarkably, without TL, the model outperforms the full SpareAlign model in terms of AP at
an IoU threshold of 0.7 on the OPV2Vt dataset (0.843 against 0.818). This is because the model
focuses more on predicting bounding boxes within the same frame, where only minimal latency is
introduced by asynchronous sensors.

Without PT, the model performs much worse than the full SpareAlign, showing the importance of
fine-grained point-wise timestamps in the point clouds for the model to compensate for the errors
introduced by sensor asynchrony and to capture the accurate temporal context for prediction.
Finally, the ablation study on the FSA module also shows a positive influence on the model’s
performance. For example, AP at the IoU threshold of 0.7 increased by 4% on DairV2Xt by
utilizing the FSA module. This improvement can also be observed in Figure 8.11. The free
space points (blue) also contain the timestamps calculated according to their angles in the polar
coordinate system. This enhances the temporal context for learning, especially in distant areas
where the scanned observation points are very sparse.
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Table 8.7: DairV2Xt: Average Precision of TA-COOD with communication latency. SA no TA, PT, TL,
FSA: SparseAlign without TempAlign, Point-wise Timestamps, Train Latency and Free Space Augmentation,
respectively.

Latency 0ms 100ms 200ms
AP threshold 0.5 0.7 0.5 0.7 0.5 0.7
SteamLTS 0.642 0.404 0.613 0.379 0.590 0.364
SA no TA 0.720 0.457 0.672 0.393 0.635 0.350
SA no PT 0.760 0.469 0.737 0.459 0.722 0.449
SA no TL 0.793 0.534 0.749 0.474 0.698 0.423
SA no FSA 0.769 0.508 0.755 0.502 0.740 0.496

Full SA 0.796 0.548 0.786 0.543 0.772 0.532

Figure 8.11: SparseAlign performance with and without FSA. The FSA points are in blue. Red texts are
IoUs between the detected (red) and the ground-truth (green) bounding boxes.

8.4.6 Localization errors

Figure 8.12 shows the performance of SpareAlign against different localization errors. Random
localization errors are added to the poses of both ego (Te) and cooperative (Tc) vehicles. The
translation errors xϵ,yϵ along the x- and y-axis and the rotation error rϵ around the z-axis are
all assumed to be normally distributed with N (0,1) · ϵ, where ϵ ∈ [0,1] is the error scaling factor.
Results are reported by gradually increasing ϵ with a step size of 0.2. Note that the translation and
rotation errors exist in the poses of both the ego and the cooperative vehicle, the resulting relative
translation error of the transformation T e

c = inverse(Te) · Tc from cooperative to ego coordinate
system will be amplified as the rotation error increases. The PAM is specially designed to mitigate
the influence of large relative errors between the ego and the cooperative vehicle.

The proposed PAM and the baseline method CoAlign Lu et al. (2023) both significantly reduce
the impact of pose errors on AP performance compared to the configuration lacking any correction
module. However, PAM demonstrates greater robustness against large errors. For instance, on
the OPV2V dataset, the AP for CoAlign decreased by approximately 27% at the error of 1.0m,
1.0m,1.0◦, whereas PAM experienced only a 12% drop. This validates the efficacy of the proposed
method, which relies on the pose-agnostic relative neighborhood geometries to match the detected
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Figure 8.12: AP at IoU threshold of 0.7 with translation errors ranging from 0m to 1m along x- and y-axis,
and rotation errors from 0◦ to 1.0◦ (horizontal axis) for the different datasets.

bounding boxes of the ego and the cooperative IAs. Note that the DairV2X dataset exhibits smaller
changes in AP as localization errors increase, because the pose parameters are not well calibrated.
In contrast, Yuan and Sester (2024) refined the poses of DairV2X for generating the DairV2Xt
dataset, making the better-calibrated DairV2Xt more sensitive to newly introduced errors.

8.4.7 CPM sizes

The proposed SparseAlign significantly reduces communication bandwidth without relying on
computationally intensive dense feature maps, unlike state-of-the-art methods. This efficiency
is achieved by selecting only the top K = 1024 object queries for further processing. In addition to
this intrinsic reduction, the size of the CPMs can be further minimized through score-based selec-
tion. Specifically, the query-based detection scores from the LQDet head are employed to identify
and share only the most critical queries. As Figure 8.13 shows, using a CPM score threshold below
0.5 does not lead to a noticeable degradation in performance across all datasets. Remarkably, at a
threshold score of 0.5, the average size of the CPMs is reduced to less than 400 KB on all datasets.
The final CPM sizes after selection are influenced by the driving scenes. Specifically, scenes with
more vehicles tend to have larger CPM sizes. Consequently, the OPV2V and OPV2Vt datasets,
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Figure 8.13: CPM sizes with different information selection scores. Object query features with detection
scores larger than the threshold (x-axis) are shared as CPMs.

which contain more vehicles in their scenes, result in larger CPM sizes compared to the DairV2X
and DairV2Xt datasets.

8.5 Summary

To address sensor asynchrony, this chapter proposed a new benchmark, Time-Aligned Cooperative
Object Detection (TA-COOD),which processes asynchronized data to detect and predict object
bounding boxes at a given timestamp. To tackle this challenge, an efficient fully sparse framework
SparseAlign is proposed. This framework integrates a novel fully sparse 3D backbone network
SUNet and three alignment modules: temporal, pose, and spatial alignment. SparseAlign signif-
icantly outperforms state-of-the-art methods on the OPV2V and DairV2X datasets for COOD,
as well as on their variants OPV2Vt and DairV2Xt for time-aligned COOD (TA-COOD). This
superior performance stems from its innovative design. The SUNet backbone extracts more robust
features than the baseline MinkUnet used by StreamLTS. The temporal alignment module learns
more accurate temporal context from the pointwise timestamps of the sequential point clouds. The
pose alignment module PAM demonstrates improved robustness to large localization errors com-
pared to the baseline method CoAlign. The spatial alignment module demonstrates resilience to
spatial perturbations caused by transformations between different IA coordinate systems. More-
over, SparseAlign’s fully sparse design enables it to consume less computational resources and
reduces communication bandwidth requirements for data sharing between IAs.





9 Summary and Conclusion

Motivated by the benefits of collective perception in expanding the field-of-view and reducing occlu-
sions for IVs, this work aims to design neural network-based frameworks for collective perception.
Within this scope, object detection and BEV semantic segmentation are chosen as the primary
tasks, as they are essential for autonomous driving systems to avoid collisions and navigate safely
and efficiently. For both tasks, the proposed frameworks only share the most important informa-
tion that is selected by the confidence scores of the classification or the uncertainty learned from
neural networks in order to balance between the information gain and communication resource
consumption. The frameworks developed in this work address three key issues often neglected
in previous studies: data processing efficiency (Chapter 6), the uncertainty estimation for BEV
semantic segmentation results (Chapter 7), and sensor asynchrony (Chapter 8).

Data processing efficiency

As the number of IAs increases, the scale of the data also increases significantly, especially when
sequential data should be processed to model temporal information. To increase the efficiency
and accelerate the model development process, this work designed a highly efficient framework
development tool CoSense3D for collective perception. It modularizes the collective perception
pipeline into four parts: IA Manager manages the working logic of individual IAs, Data Manager
manages the data distribution to and gathering from the IAs, Task Manager summarizes and
batches the tasks that are scheduled by the IA manager. Forward Runner contains all the shared
deep learning models and runs the tasks given by the Task Manager. Over these four modules, the
Central Controller plans the holistic working pipeline by calling these modules to achieve specific
tasks. Based on the clear management of data, task distribution and gathering, and the prototyping
for the behaviour of individual IAs, this work proposed an agent-based training strategy – only
calculate gradients for specific agent – to increase the training efficiency and reduce the GPU
memory consumption without noticeable performance drop with regard to accuracy.

The comparative object detection experiments with full gradient calculation for all IAs versus a
reduced number of IAs for gradient calculation have shown the training efficiency and performance
with the CoSense3D tool. The result shows that reducing the number of CAVs for gradient cal-
culation can significantly save GPU memory and training time without a noticeable performance
drop, if an appropriate fusion module without dropping learnable features is used. On the OPV2V
dataset, the training resources needed have been reduced by more than half for the best-performing
model AttnFusion. In addition, F-Cooper with Maxout fusion and EviBEV with Naive mix-up fu-
sion have shown that non-learnable fusion operations might reduce performance if agent-based
training is used.

Uncertainty estimation for BEV semantic segmentation

Interpreting the driving environment with BEV semantic segmentation is beneficial for au-
tonomous driving systems to build local real-time dynamic maps for route planning. The ac-
curacy and trustworthiness of the semantic segmentation results directly influence the safety of the
planned routes. Although some areas of BEV maps might be occluded, previous works conduct
predictions over these unobserved areas according to the distribution of the historical training data.
These predictions might lead to dangerous driving behaviors because dynamic objects might exist
in the unobserved areas, and the model might even classify these areas as empty drivable road
with high probability. To generate more reliable BEV maps, this work proposes a novel method to
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interpret driving environments with observable probabilistic BEV maps. These maps interpret the
LiDAR sensory data in a back-traceable manner so that each prediction is supported by evidences
provided by the original observation points. More specifically, an evidential-learning-based proba-
bilistic classification framework GevBEV is built to generate statistics for this interpretation. This
model assumes a spatial Gaussian distribution for each voxel of a predefined resolution so that any
point in the continuous driving space can draw itself a Dirichlet distribution of the classification
based on the evidences drawn from the spatial Gaussian distributions of the neighboring voxels.

The proposed GevBEV framework is tested on benchmarks OPV2V and V2V4Real of BEV map
interpretation for cooperative perception in simulated and real-world driving scenarios, respectively.
The experiments show that GevBEV outperforms the baseline of the image-based BEV map by a
large margin. By analyzing the predictive uncertainty, it is proved that evidential classification can
score the classification result in a less overconfident and better-calibrated manner than the deter-
ministic counterpart of the same model. Furthermore, the spatial Gaussian distribution assigned
to each observable point was also proven beneficial in closing the gaps of sparse point clouds with
a controllable range and smoothing the BEV maps. By virtue of this spatial distribution, one can
draw the Dirichlet classification result for any point in the continuous driving space. This proba-
bilistic result can be used to make safer decisions for autonomous driving by its ability to quantify
the uncertainty using the measurement evidences. Besides, the estimated uncertainty can be used
to reduce the CPM data size for collective perception. For example, by selecting the evidences that
have uncertainty lower than 0.5, the CPM average size on both OPV2V and V2VReal datasets can
be reduced by more than 80% with only less than 4% performance drop.

Sensor asynchrony

Sensor asynchrony can lead to large displacement of objects at high speed (e.g., 60km/h leads to
1.6m displacement) and introduce inaccuracy into the data fusion process of collective perception.
Previous works assume the data in one frame are all synchronized and ignore the simple-to-obtain
but informative point-wise timestamps of point clouds. This will lead to inaccurate temporal mod-
eling of dynamic objects. To alleviate this problem, this work utilized point-wise timestamps to
model the temporal features of objects and proposes a new benchmark called Time-Aligned Cooper-
ative Object Detection (TA-COOD) which takes the point clouds and their point-wise timestamps
as input and predicts the bounding boxes at the globally aligned timestamps. To validate the impor-
tance of point-wise timestamps, this work built a query-based fully sparse framework SparseAlign
to model the temporal feature context from the sequential point cloud data so as to predict the
object location at the aligned global time. With this design, the SparseAlign significantly outper-
forms the state-of-the-art models, confirming the efficacy of modeling the precise temporal context
with the point-wise timestamps. Besides, SparseAlign is also more efficient on training resource
consumption than the other models thanks to its fully sparse operations. Through the ablation
study, the proposed 3D backbone network SUNet showed strong ability in extracting more effective
and robust features from the point clouds for further processing. Besides, the ablation study on
the encoding method for BBox angle regression also validated that the proposed Compass Rose
encoding has the best performance in comparison to the encoding used in the previous works.
The ablation study on the time-related module TAM validated the great importance of point-wise
timestamps on capturing the accurate temporal context for predicting the locations of objects at
future timestamps.



10 Outlook

In this work, two frameworks, GevBEV and SparseAlign, were developed and trained for BEV
semantic segmentation and collective object detection, separately. They both utilize fully sparse
operations to enhance model efficiency and share a similar UNet-like point cloud encoding backbone
network, making it straightforward to merge these two frameworks into a single multi-task model.
However, this would increase the model size and GPU memory requirements during the training
process, as more learning heads would result in more learning targets and gradient calculations.
Due to limited training resources, training this unified framework is left for future work.

Aside from sensor asynchrony, communication latency and efficiency, localization errors also
pose a significant challenge for collective perception. This work tested the proposed frameworks by
introducing random localization errors and observed a performance drop of up to approximately
10% on both the BEV semantic segmentation task and the TA-COOD task. In future work,
improved algorithms should be explored to mitigate the impact of localization errors on the overall
perception performance. For example, the predicted bounding boxes in the previous frames may
facilitate more effective inter-agent bounding box matching.

Additionally, this work evaluates collective perception performance with respect to the ego vehi-
cle and a fixed number of cooperative agents in each scenario. To enhance communication efficiency,
future research could investigate the overall perception performance of all vehicles within the sce-
nario by optimizing the sharing topology among agents. This would improve the efficiency of data
exchange. For example, a dynamic communication scenario, where the number and identity of IAs
change as they move, introduces a more complex communication topology. If every IA—not just a
single ego vehicle—aims to optimize its perception, a new algorithm could be developed to jointly
optimize the data-sharing process. Such an algorithm would determine who should share data,
when sharing should occur, and how data should be exchanged, ensuring efficient and effective
communication.

Lastly, it is worth mentioning that collective perception frameworks may also face the conven-
tional challenges associated with deep neural networks. For example, adversarial attacks from co-
operative vehicles could introduce malicious data into the ego vehicle’s system, potentially causing
the collapse of the ego perception system and leading to serious traffic accidents. Another concern
lies in the shared Collective Perception Messages (CPMs), which may exhibit domain gaps due to
variations in perception models and training datasets used by different manufacturers. Although
the CPM format could be standardized, the learned features in the CPM might not be mutually
understandable by different models. Therefore, exploring domain adaptation technologies could be
crucial in addressing this issue.
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