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ABSTRACT

In this paper we deal with a strategy for a collaborative po-
sitioning of vehicles to improve their ego positioning capabil-
ities. One way to achieve this is the sharing of the vehicle’s
own position and additional measurements to vehicles with
known position in their surrounding area.

Under the assumption that a single vehicle is able to ob-
tain its ego position by on-board sensors (like laser scanners
and GNSS equipment) and in combination with available
landmark maps, the consideration of additional measure-
ments to other vehicles leads to a position improvement es-
pecially in case of sparse landmark maps.

Based on an available landmark map covering built-up ar-
eas and highway-like roads, a set of simulations is carried out
to evaluate the resulting improvement by using relative po-
sition data among nearby vehicles. Different kinds of collab-
orative positioning scenarios are investigated and contrasted
with ego positioning using only the landmark map.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles, Sensors; 1.4.8 [Image Processing and Computer
Vision]: Scene Analysis—Range data, Sensor fusion; 1.5.4
[Pattern Recognition]: Applications— Computer Vision

General Terms

Algorithms, Design, Experimentation, Measurement

Keywords

Collaborative positioning, feature extraction, localization,
autonomous vehicles, landmark based maps

1. INTRODUCTION

The usage of on-board sensors of vehicles such as laser
scanners, cameras and radar sensors, in combination with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGSPATIAL IWCTS’12, November 6, 2012. Redondo Beach, CA,
USA

Copyright (c) 2012 ACM ISBN 978-1-4503-1693-4/12/11 ...$15.00.

feature and landmark maps is straightforward for position-
ing purposes, see e.g., [2, 10]. Since the on-board sensors
typically yield relative measurements to objects along the
road, the link to a global coordinate system has to be estab-
lished by means of the feature and landmark maps.

The usage of feature and landmark maps for positioning
purposes is well-known in robotics [4]. Investigations using
landmarks such as poles of traffic signs and traffic lights for
positioning has been investigated by e.g., [2, 10]. These in-
vestigations revealed that the use of landmarks can lead to
positioning accuracies in the centimetre to decimetre range,
which is way beyond accuracies achievable with standard
GNSS. Such high accuracies are, however, needed for driver
assistance systems or for autonomous driving. Despite the
high potential, in situations where not enough landmarks
are available, the positioning quality deteriorates or even no
positioning is possible. Thus, the potential of collaborative
positioning in order to bridge gaps in landmark availability
will be investigated. Furthermore, collaborative position-
ing of nearby vehicles is worthwhile to increase the position
accuracy of an existing feature and landmark map without
a time-consuming update. Approaches using a vehicle-2-
vehicle communication (to exchange position relevant infor-
mation) for collaborative positioning instead of ego position-
ing can be found in e.g., [8].

The findings in an earlier study [3] were that the position-
ing accuracy using landmarks is very high in areas where
a sufficient density in a suitable configuration is available.
On the contrary, if not enough landmarks are available or if
their geometric configuration is weak, then additional infor-
mation (other vehicles as collaborating sensors) is beneficial
to improve the accuracy. This is true for the following situ-
ation: A) A wvehicle starts in an area with no or only a few
landmarks, so that a (precise) positioning is not possible.
Commumnication with nearby vehicles helps to determine the
initial position. B) Collaborating vehicles, also in the sense
of a cluster of vehicles, have the capability to bridge gaps re-
sulting from areas with only a low number of landmarks. In
addition, convoy-driving can help to preserve their current
(high) positioning accuracy and also to provide this infor-
mation to joining vehicles.

To investigate the improvement of additional position in-
formation provided by nearby vehicles typical road traffic
scenarios are sketched. For all scenarios simulations are per-
formed using extracted features from a real data set and vir-
tually moving vehicles along a given trajectory. The results
are contrasted with the ego positioning using only landmark
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Figure 1: Sampled trajectory (magenta) and ex-
tracted pole-like objects (blue) which represent the
two-dimensional landmark map.

maps on the basis of error ellipses.

2. DATA

The data used in this contribution was acquired by the
Streetmapper mobile mapping system [7]. The data com-
prises a 21.7km long trajectory through densely built-up
regions and highway-like roads in the area of Hannover,
Germany. From the available dense 3D point cloud were
extracted 2658 pole-like objects fully automatically [1]. By
these features a two-dimensional landmark map was built
up which is used throughout the simulations. The accuracy
of position for the extracted objects is in a range of 12cm
[3]. For simulation purposes, the Streetmapper trajectory
was sampled with positions every 10 m which yields in total
2141 vehicle positions for the subsequent simulations.

Fig. 1 shows the trajectory (magenta) and the extracted
pole-like objects (blue) which are not equally distributed
along the trajectory. For the built-up regions and especially
in the area of inner-city junctions a sufficient number of poles
are available. This leads to the expectation of positioning
accuracies in centimetre range. Along the highway-like roads
the number of poles is obviously smaller. Here positioning
accuracies in decimetre range or even no positioning are ex-
pected, cf. [1, 3].

3. PROPOSED APPROACH FOR COLLAB-
ORATIVE POSITIONING

The general positioning approach is based on the match-
ing of poles [1]. For each position of a vehicle the visible
poles are selected according to the field of view (fov) which
is defined by the on-board sensors. The corresponding mea-
surement model is outlined with its basic equations in the
following and Fig. 2 illustrates the situation. We start with
the assumption of measurement errors for range and angle
as well as inaccurate pole positions.
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Figure 2: Sketch of the measurement model. The
vehicle (pl, green square) observes poles (blue) ac-
cording to its fov indicated by the blue lines. The
fov is partiality occluded by the ahead driving vehi-
cle (p2, cyan square) indicated by the cyan lines.

The observations are measured distances r; and angles 6;
towards ¢ poles (z;,y;) in the fov. The unknowns are given
by the vehicle position (xp,yp) and orientation 6,. Measure-
ment residuals are denoted by v and they have to be mini-
mized. Thus, the set of observation equations are (cf. Fig. 2)

Ti 4o, = \/(xi — )" + (i — vp)” )
0; + ve, zp) — Op. (2)

Eq. 1-2 represent the standard polar measurement model
which is also well known in robotics [9]. To account for the
measurement errors of the extracted pole position (z;,0,¥:,0)
by means of the method described in [1], the positions are
introduced in a Gauss-Markov model as observed unknowns

atan2 (y; — yp, Ti —

Ti0 +Vz; 0 =T and  Yio + vy 0 = Yi- 3)

In addition to [1], direct measurements of the vehicle ego
position (for instance by the on-board GNSS equipment) are
introduced which allows two extra observation equations

Tp,0 + Vzp o = Tp and  ypo + Vyp.0 = Yp- (4)

The major modification of the so far outlined observation
equation system is the consideration of ahead and oncoming
vehicles. Therefore, again measured distances and angles
towards ahead and oncoming vehicles and their known po-
sitions are available as additional observations. Since the
same on-board sensors are used for the observation of poles
and the other vehicles, the observation equations are identi-
cal to the outlined ones in Eq. 1-3. In total this leads for m
observed poles to 3+2-m unknowns and 2+44-m observation
equations plus 2 - [ unknowns and 4 - [ observation equations
per [ ahead and oncoming vehicles.

This modification requires the consideration of occlusions
resulting from ahead and oncoming vehicles during the se-
lection of poles in the fov (cf. Fig. 2).

The stochastic model is given by the uncertainties of the
observations o, g and o, o, for the observed poles and
the ahead and oncoming vehicles as well as 0y, 0p, for the
own vehicle position. These standard deviations form the
cofactor matrix Q of observations. By using the law of
propagation of uncertainties, the resulting cofactor matrix
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Figure 3: On-board GNSS position for ahead and
oncoming vehicles and no additional information for
selected vehicle position (cyan) versus only land-
mark based positioning (red). Note that all error
ellipses in this and other figures are scaled by a fac-
tor of 100.

Qs of the unknowns and thus the vehicle’s position accu-
racy is given by Q.. = (A" - Q' -A)fl. Here, A is the
design matrix which contains the partial derivatives of the
observation equations (Eq. 1-4) for the unknowns and thus
provides information of the observation geometry.

4. SIMULATIONS

The simulations are carried out with the introduced mea-
surement model in the previous section. Since the emphasis
is to show the benefit of a collaborative positioning instead
of using only ego positioning we do not present a variation
of on-board sensor configurations, instead is referred to [1].

The on-board sensor providing range and angle measure-
ments was assumed to be available in front of the car, point-
ing in the driving direction. The opening angle was set to
85 ° and the measurement range was set to 100 m, according
to the specifications of an existing automotive grade laser
scanner [6]. Ahead and oncoming vehicles are considered in
a range of up to 25 m. The selected accuracies in the simula-
tions are o, = 0.05m, 09 = 1° and o, = oy = 0.10m for the
observed poles. Optional measurements of the ego position
of the vehicles by means of on-board GNSS equipment were
assumed with an accuracy of op, = 0, = 2.50m, which is
a reasonable assumption in case of augmented GNSS using
e.g., WAAS, EGNOS.

For the selected vehicle whose position should be deter-
mined two scenarios can be distinguished in terms of the
ahead and oncoming vehicles:

1. The ego position of ahead and oncoming vehicles is
determined by means of on-board GNSS equipment.

2. The ego position of ahead and oncoming vehicles is
determined by means of landmark based approaches
as proposed in [1].

For both outlined scenarios, two distinct situations are pos-
sible for the selected vehicle. Either, no additional position
information is available, or the vehicle has an a priori in-
formation from GNSS equipment regarding its position and
corresponding accuracy.
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Figure 4: On-board GNSS position for ahead and
oncoming vehicles and GNSS based ego position for
selected vehicle position (cyan) versus only land-
mark based positioning (red).

All above outlined scenarios are compared with the un-
modified landmark based positioning [1] without consider-
ation of additional ego position information or ahead and
oncoming vehicles. The comparison is done on basis of error
ellipses which are scaled by a factor of 100.

4.1 Vehicles with GNSS based ego position

Fig. 3 shows the results for the first scenario where no
further information is available for the selected vehicle. The
error ellipses of the unmodified landmark based positioning
(red) correspond for most of the vehicle positions to the er-
ror ellipses of the collaborative positioning approach (cyan).
For most of the vehicle positions the additional informa-
tion provided by the ahead and oncoming traffic does not
increase the position accuracy because of the inaccurate ad-
ditional information in comparison to the landmark map.
However, a position accuracy improvement can be noted for
a small number of vehicle positions. These improvements
result from the additionally available observations and more
over from an improved observation geometry.

Fig. 4 also shows the results for the first scenario but in ad-
dition the vehicle’s own position is also observed by means
of GNSS equipment. In general, the same findings as for
the simulation without further information about the vehi-
cles own position can be reported. For the small number
of vehicle positions a further improvement of the position
accuracy can be noted.

It is noteworthy that for vehicle positions with weak con-
stellation in the landmark map, additional information for
either ahead and oncoming vehicles or even the vehicle itself
lead to an improvement of the vehicle’s position accuracy.

4.2 Vehicles with landmark based position

Fig. 5 shows the results for the second scenario where no
further information is available for the selected vehicle. The
error ellipses of the unmodified landmark based positioning
are drawn in red. One can clearly see the improvement of the
position accuracy for the collaborative positioning approach
(cyan). The reason for that can be found in the position
accuracy of the ahead and oncoming traffic which is in the
range of the accuracy of the landmark map or even better.
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Figure 5: Landmark based positioning for ahead
and oncoming vehicles and no additional informa-
tion for selected vehicle position (cyan) versus only
landmark based positioning (red).
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Figure 6: Landmark based positioning for ahead
and oncoming vehicles and GNSS based ego posi-
tion for selected vehicle position (cyan) versus only
landmark based positioning (red).

If the selected vehicle has GNSS available in addition, this
will lead to no further significant improvement of the posi-
tion accuracy. The reason can be found in the different
accuracy levels of the landmark map, the ahead and oncom-
ing vehicles in comparison with the GNSS position accuracy.
Hence, this low GNSS accuracy does not affect the position
accuracy of the vehicle obtained by the landmark map.

The same conclusion can be drawn from Fig. 6. The re-
sults are obtained for the second scenario and in addition the
vehicle’s own position is also observed by means of GNSS
equipment. Red error ellipses indicate the unmodified land-
mark based positioning and the cyan ones stand for the col-
laborative positioning approach.

5. CONCLUSIONS AND OUTLOOK

The collaborative positioning leads to an improvement of
the ego positioning by means of landmarks. In particular,
the inclusion of additional position information is beneficial

in case of small numbers of landmarks and geometrically
weak landmark constellations. Thereby, the observation ge-
ometry can be strengthened.

In the current simulation, the ego position of one vehicle
was determined based on the information in its local en-
vironment, i.e., the goal was a precise positioning of one
object. In the future, the integrated positioning of all ob-
jects will be investigated, where all the vehicles and their
mutual observations can be considered similar to a geodetic
network, which leads to a network adjustment task [5]. Also
the application of state-space filtering will be investigated to
account for the vehicle’s motion model. The investigations
will be extended to a larger test area which will be acquired
with a mobile mapping system of the institute. Facades will
be integrated as additional features to improve the landmark
maps. Validations of the collaborative positioning by ahead
and oncoming vehicles will be carried out under real world
conditions either with vehicles or small-scale robots.
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