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ABSTRACT: 
 
Data acquisition via Mobile Mapping systems generates a huge amount of LiDAR as well as image data. Depending on the final 
application various different visualization schemes are conceivable. This paper presents a multi-layer based visualization method, 
enabling fast data browsing of mobile mapping data. In contrast to systems like Google Street View the proposed visualization does 
not base on 360° panoramas, but on colored point clouds projected on partially translucent images. Those images are rendered as 
overlapping textures, preserving the depth of the recorded data and still enabling fast rendering on any kind of platform. Furthermore 
the proposed visualization allows the user to inspect the mobile mapping data in a panoramic fashion with an immersive depth 
illusion using the parallax scrolling technic. 
 
 
 

1. INTRODUCTION 

Visiting remote locations navigating from panoramic bubble to 
bubble is a very immersive experience. Systems like Google 
Street View (Vincent, 2007) and Bing Maps Streetside have 
successfully implemented this, enabling the user to virtually 
visit almost every place on earth. The advent of highly accurate 
mobile mapping systems recording much more than only 
panorama images, demands a redesign away from bubble based 
images to a visualization making use of entire recorded data. 
 
The first shortcoming of the existing systems is the limitation of 
the possible viewpoints. While the user might pan and zoom 
inside a bubble, it is still impossible to get a different view 
angle other than the images provide. This was first addressed by 
a system called Street Slide (Kopf, 2010). The system 
constructs and dynamically renders a multi-perspective 
panorama. Instead of jumping from bubble to bubble the user 
gets a continuous stream of multiple panoramas stitched 
together. While working nicely within the façade plane, objects 
closer to the point of recording, like cars or trees, are highly 
distorted. Even background objects, like mountains or the sun 
appear on several image strips, making the visualization less 
immersive. 
 
The foundations of the discussed systems are basically images 
with all their advantages and disadvantages. Emerging mobile 
mapping systems however introduce a combination of images 
and highly dense and accurate LiDAR data. Unfortunately 
presenting the entire mobile mapping data consisting of 
terabytes of vertex and image data to many users is very 
demanding and not yet feasible in a bigger scope.  
 
This research though addresses the question of presenting the 
massive mobile mapping data in the fashion of existing systems 
like Street View and thus adding additional value gained from 

the mobile mapping data. First of all this value is represented by 
the dense and georeferenced 3D vertex data.  
 
So how can this kind of data be included into a merely flat 
visualization, or how to include the depth information, provided 
by the vertex data, into this kind of view? In order to address 
this question we analyzed past visualization schemes from the 
time before hardware acceleration made 3D visualizations 
possible on every average personal computer. Taking a closer 
look at 2D jump and run games for instance like Nintendo’s 
Super Mario, shows that those game engines also create an 
illusion of depth. This illusion is created by multiple translucent 
layers rendered in front of each other, what is called parallax 
scrolling. While the games protagonist moves from one side of 
the screen to the other the different layers are shifted differently. 
The further the layer is in the background the less it is shifted to 
either side. This kind of layered 2D visualization is still used in 
applications that does not require full 3D visualizations like 
many games designed for mobile devices, e.g. Angry Birds 
from Figure 1. 
 

 
Figure 1. Depth illusion with layers (angry birds example) 
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The focus of this paper is to derive such a layered visualization 
from the available mobile mapping data, providing a more 
immersive view to the user by adding this particular depth 
illusion. 
 

2. RELATED WORK 

The handling of huge amounts of mobile mapping data has 
recently been addressed by various publications. One of the 
major fields of research is the fusion of the different sensor data.  
First of all the recorded vertex data has to be georeferenced 
which is done by fusing the LiDAR measurements with the 
recorded IMU/GPS track. Afterwards the RGB colors of the 
vertices are determined. Both are simple transformation steps.  
 
Yet, the color determination might raise some problems. 
Depending on the camera and laser scanner orientation the 
problem of objects occluding other objects occur. However, this 
is addressed by (Hammoudi, 2012a) and (Hammoudi, 2012b) 
within the scope of mobile mapping systems by generating 
occlusion masks for each image. Based on these masks the RGB 
color is only extracted from images where the corresponding 
vertex is not occluded. Unfortunately this might lead to a 
situation where no image is found for extracting the color. The 
color of single vertices might be easily interpolated by those of 
the surrounding ones. Simple interpolation though is not 
feasible at bigger uncolored areas. In such cases the missing 
color can be synthetically generated as described in (Stahlhut, 
2005). 
 
Extracting the color of neighboring vertices from different 
images generates another problem. Even though captured by the 
very same camera subsequent images are subject to vary in 
brightness and contrast. Images from different camera and 
different angles even increase this deviation. This results in 
visible color transitions of neighboring vertices. (El-Hakim, 
1998) solves this by a global least square adjustment of the 
image brightness. 
 
Having a naturally colored point cloud, the creation of texture 
representations of vertices remains to be addressed. (Wahl, 
2005) presents an approach of identifying planes within point 
clouds and creating texture representations of those detected 
planes. The position and orientation of the identified planes 
however might be arbitrary, while in our case the identified 
planes or layers have to be more or less parallel to the vehicles 
track. Rendering multiple transparent textures is also not a 
trivial task. Rendering scenes is usually done object by object. 
In order to get the scene correctly rendered, the order of the 
rendered objects has to be taken into account. Basically the 
background objects have to be rendered first and subsequently 
all closer objects. In this scope closer means closer towards the 
virtual camera, being the core of the problem. The order in 
which the different objects are rendered depends on the camera 
and is subject to change anytime the camera position changes. 
(Shade, 1998) firstly mentioned this problem as “layered depth 
images”, while (Everitt, 2001) firstly addressed it in the scope 
of modern graphic pipelines as “order-independent transparency 
rendering”. Multiple approaches regarding this problem had 
been proposed. (Bavoil, 2008) for instance introduced an 
algorithm called dual depth peeling, while (Everitt, 2006) 
proposing an algorithm which partially removes already 
rendered pixels based on previously generated depth layers 
database. The problem of order-independent transparency 
rendering however is only relevant in case the generated multi-
layered model will be rendered as a 3D scene. Rendering the 
model in a pure 2D fashion overcomes the problem entirely. 

3. MOBILE MAPPING SYSTEM 

The used mobile mapping system is the Riegl VMX-250. It 
consists of 2 VQ-250 laser scanners providing 360° profiles at a 
measurement rate of 300,000 measurements per second each. In 
addition to the IMU/GNSS equipment the system includes 2 
Riegl VMX-250-CS6 as well as 2 Nikon D700 cameras. The 
image resolution ranges from 5MP for the CS6 cameras and 
12MP for the Nikons. As shown in Figure 2 the entire system is 
mounted on the rooftop of the acquisition vehicle. 
 

 
Figure 2. Riegl VMX-250 mobile mapping system 

4. PREPROCESSING 

The data acquired by the mobile mapping system includes the 
LiDAR measurements from the laser scanners, the vehicles 
track from the IMU/GNSS sensor and finally the pictures 
captured by the 4 cameras. All data is accurately time stamped 
and can be fused based on the individual timestamp of each 
record. Integrating all three data types results in a georeferenced 
colored point cloud. 
 
4.1 Tiling 

Considering the measurement rate of 600,000 points per second 
the resulting point cloud is very dense and demands a high 
memory capacity. In order to face these demands the point 
cloud is divided into equally sized tiles. A tile size of 25x25 m² 
was found to be the best trade-off between number of tiles and 
number of points per tile.  
 

 
Figure 3. Tiled point cloud dataset and vehicle track 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-73-2013 74



 

 

The resulting tiles usually contain a maximum number of 2 
million points per tile. Figure 3 shows a tiled dataset acquired in 
the urban area of Hanover, Germany. While the translucent blue 
squares represent the recorded point cloud tiles the red line 
shows the track driven during the data acquisition. 
 
Having now a manageable tiled datastructure, all subsequent 
processing steps are based on individual or multiple tiles. The 
further workflow includes vertex normal calculation and various 
segmentation and classification steps. The classification builds 
the foundation for identifying occluding objects and the 
corresponding occlusion masks. Furthermore the layer 
identification described in section 5.1 can find relevant layers 
based on the classified points, e.g. include only vertices 
belonging to a façade or building. Finally the classification can 
be used to create a different colored layer representation, e.g. 
object based colored. 

 
4.2 Segmentation and classification 

In order to support various visualization modes, e.g. façades 
only, the point cloud is segmented and classified into predefined 
object types. The segmentation approach is very easy. First the 
ground is removed. This is done via region growing all vertices 
with an almost vertical normal. As seed region a previous 
defined percentage, e.g. 5%, of the vertices with the smallest 
height is used. Having the ground removed all remaining 
objects can again be segmented by region growing, since they 
aren’t connected by the ground. The now separated object point 
clouds can be classified, into e.g. buildings, trees, cars, etc. For 
a more reliable building classification we included cadastral 
data into the algorithm. Figure 4 shows the segmentation and 
classification result. While the green colored vertices represent 
the ground, red colored vertices belong to buildings and all 
remaining vertices are considered potential occluding vertices 
and colored blue. 
 

 
Figure 4. Classified point cloud - ground (green) - building (red) 

- occluders (blue) 

4.3 Vertex coloring 

As mentioned above the building façades are often subject to 
occlusion. This problem is addressed by creating occlusion 
masks for all images based on the segmented and classified 
point cloud. Therefore all vertices not belonging to either street 

or building are considered potential occluders and thus 
projected into the occlusion masks. Finally the masks are 
morphologically closed, creating a more reliable occlusion 
mask. Figure 5 illustrates this with a car occluding the building 
façade (left) and the resulting occlusion mask (right). 
 

 
Figure 5. Car occluding a building façade (left) and 

corresponding occlusion mask (right) 

Utilizing the generated occlusion masks all vertices are colored 
based on the RGB pixel color of the vertex projected into the 
image. 
 

5. MULTI-LAYER GENERATION 

After the preprocessing the desired point cloud visualization can 
be generated. The range of possible visualization scheme range 
from plain map-like representations to full three dimensional 
point cloud rendering. The visualization described in the 
following will render transparent vertical layers as ordinary 
textured rectangles. 
 
5.1 Layer Identification 

The first step in generating the desired layer textures is to 
identify the vertical main layers within the point cloud. For a 
proper visualization only layers almost parallel to the vehicles 
track shall be considered. In order to identify those layers 
algorithms like RANSAC described in (Fischler, 1981) or 
Hough-Transformation (Hough, 1962) can be applied to a 2D 
representation of the vertices like shown in Figure 6. As 
mentioned earlier, relevant layers might also be identified in the 
classified point cloud by searching for façades in the vertices 
classified as building. Moreover layers can be derived from 
various classes assigned in the classification step. Layer and 
class correspondence might be:  
 

• layer 1: cars, pedestrians, street furniture, … 
• layer 2: building/facades 
• layer 3: background  
• horizontal layer: ground 

 
Finally the layers might also be manually defined as a semi-
automatic approach. 
 
Figure 6 shows three identified layers (red) which satisfy the 
parallel (in respect to the track) condition. Once the layers have 
been identified for the area of interest, e.g. a single tile or a 
particular track segment, the texture representations will be 
generated. 
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Figure 6. Track (green) and identified layers (red) 

5.2 Texture generation 

For each layer a series of textured rectangles is generated. 
Therefore all relevant vertices will projected on the plane 
representing the layer. However, first the size of the resulting 
layer rectangle has to be defined. In this case size does not 
define the resolution of the final texture image, but rather the 
extension of the covered area in meters. This might be a fixed 
value, or dynamically derived from the track or the identified 
layers. We used a fixed size 𝑠 of 20 meters. Based on this value 
the track is then generalized into segments of length 𝑠. At this 
point the track segments as well as the layer represent two 
opposite borders of the area of relevant vertices. In order to 
close the desired polygon buffer the angle bisectors of the 
previous and subsequent buffers are used. At the start as well at 
the end of the track perpendicular lines are used. Figure 7 
visualizes the resulting buffer (green) outlined by the track 
(black), the layer (red) and the angle bisectors. Finally all 
vertices within this buffer are projected onto the layer plane. 
Texture pixels not covered by projected vertex pixels are set 
transparent. This way all texture images are generated, while the 
layers closer to the track have to be generated first, since the 
buffer of the layers further away include the closer ones. 
Furthermore a vertex already projected onto a texture will not 
be projected onto another layer, even though it might be 
contained in the corresponding buffer. 
 
Depending on the number of projected vertices and the texture 
resolution the resulting texture images might be very sparse. In 
order to get a denser image the color in between the projected 
vertex pixels is interpolated. Therefore the pixels are 
triangulated using a Delaunay triangulation. Finally the color of 
each pixel within a triangle is interpolated according the known 
color of the pixels building the triangle. However this will fill 
the entire convex hull of the projected vertex pixels. Since the 
model is built of multiple overlapping transparent textures, 
filling the complete convex hull will produce unnatural shaped 
objects and hide contents of background layers. Figure 8 (top) 
illustrates this problem. In order to maintain the object’s shape 
and leave most of the texture transparent to see the background 
layers a triangle size threshold is introduced. The color of 
triangles exceeding this threshold will not be interpolated and 

therefore left transparent. Our implementation skipped all 
triangles which real world bounding box edges exceed 0.2 
meters. This creates genuine object outlines, especially in the 
non-façade layers, like shown in Figure 8 (bottom). 
 

 
Figure 7. Buffer and texture image generation (top down view) 

 

 
Figure 8. Color interpolation - entire convex hull (top) - triangle 

size treshold (bottom) 

 
5.3 Results 

We applied the described procedure to the mobile mapping 
dataset shown in Figure 3. A 500m track segment was used. The 
track segment covered 45 tiles containing about 31 million 
vertices. The desired layers were manually defined at 5, 10 and 
20 meters distance from the track. The 500m track consisting of 

β
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α
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20,000 positions is generalized into 20m long segments, so the 
number of track positions is cut down to 26. The resulting 
multi-layered model consists of 75 textured quads with an 
overall file size of about 7MB at a texture width of 1024 pixels. 
The overall file size of the original 45 tiles was about 350MB. 
The achieved compression is about 98%. In order to compress 
the vertex data even more, the texture width might be lowered 
or the track segment size might be raised. Both of course result 
in a decreased visualization quality. A panoramic overview of 
the generated dataset shows Figure 11. 
 
In contrast Figure 9 and Figure 10 show a generated model 
based on only two layers with a track segment length (area 
covered by one textured quad) of about 100m. 
 
The runtime performance of the proposed layered model 
generation process is also considerably high. A Java 
implementation generating 75 textured quads from the 31 
million vertices of the 500m long track segment took merely 4 
minutes on an average workstation. Still the most time 
consuming part represents the color interpolation within the 
created Delaunay triangulation, which, of course, highly 
depends on the chosen texture resolution. The higher the 
resolution, the more pixel colors have to be interpolated, leading 
to increased memory and runtime requirements. 
 
Either way the generated models can be rendered at maximum 
frame rates even on older graphics hardware or mobile and web-
based platforms. In order to render the model as a three 
dimensional scene the order-independent transparency problem 
(see end of section 2) has to be addressed. Therefore all textures 
are sorted according their distance to the track, which is also 
used as the virtual camera position. This guarantees a correctly 
rendered transparency without reordering the textures at each 
change of the camera’s position. 

 

 
Figure 9. 2 layer model - front view 

 
Figure 10. 2 layer model - tilted view 

6.  CONCLUSION AND FUTURE WORK 

This paper proposes a multi-layer visualization approach for 
dense mobile mapping data. The generation of the layered 
model includes preprocessing steps like the tiled datastructure, 
vertex coloring, the generation of vertex normals as well as 
point cloud segmentation and classification. The actual model 
generation includes the identification of vertical layers within 
the point cloud where different approaches were proposed as 
well as a polygon buffer based vertex to texture projection. 
 
The resulting multi-layer model can be considered a highly 
compressed representation of the original mobile mapping point 
cloud. With a compression rate of about 98 percent the 
generated model is best suitable for fast data browsing as well 
as preview visualizations of the recorded mobile mapping data. 
Furthermore this also enables less powerful machines along 
with web-based visualization clients to render the resulting 
model. Furthermore the layer model might be rendered as a 3D 
scene as shown in the example images, or as a pure 2D 
visualization in the fashion of the previously mentioned parallax 
scrolling jump and run game engines. 
 
The future work includes the integration of the color adaption 
and the generation of synthetic texture parts of highly occluded 
façade areas in order to create even more realistic vertex and 
therefore texture colors. Extending the coloring beyond 
photorealistic colors towards non-photorealistic schemes is also 
subject of our further research. Finally the layer identification 
will be extended towards methods proposed in section 5.1. 
 

Figure 11. Multi-layer visualization – top view (top) – panoramic front view (bottom) 
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