

MULTI-LAYER VISUALIZATION OF MOBILE MAPPING DATA

D. Eggert, M. Sester

Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany -

(eggert, sester)@ikg.uni-hannover.de

KEY WORDS: Visualization, Mobile Mapping, Laser scanning, Point Cloud, Segmentation, Classification, Multi-Layer, Parallax

Scrolling

ABSTRACT:

Data acquisition via Mobile Mapping systems generates a huge amount of LiDAR as well as image data. Depending on the final
application various different visualization schemes are conceivable. This paper presents a multi-layer based visualization method,
enabling fast data browsing of mobile mapping data. In contrast to systems like Google Street View the proposed visualization does
not base on 360° panoramas, but on colored point clouds projected on partially translucent images. Those images are rendered as
overlapping textures, preserving the depth of the recorded data and still enabling fast rendering on any kind of platform. Furthermore
the proposed visualization allows the user to inspect the mobile mapping data in a panoramic fashion with an immersive depth
illusion using the parallax scrolling technic.

1. INTRODUCTION

Visiting remote locations navigating from panoramic bubble to
bubble is a very immersive experience. Systems like Google
Street View (Vincent, 2007) and Bing Maps Streetside have
successfully implemented this, enabling the user to virtually
visit almost every place on earth. The advent of highly accurate
mobile mapping systems recording much more than only
panorama images, demands a redesign away from bubble based
images to a visualization making use of entire recorded data.

The first shortcoming of the existing systems is the limitation of
the possible viewpoints. While the user might pan and zoom
inside a bubble, it is still impossible to get a different view
angle other than the images provide. This was first addressed by
a system called Street Slide (Kopf, 2010). The system
constructs and dynamically renders a multi-perspective
panorama. Instead of jumping from bubble to bubble the user
gets a continuous stream of multiple panoramas stitched
together. While working nicely within the façade plane, objects
closer to the point of recording, like cars or trees, are highly
distorted. Even background objects, like mountains or the sun
appear on several image strips, making the visualization less
immersive.

The foundations of the discussed systems are basically images
with all their advantages and disadvantages. Emerging mobile
mapping systems however introduce a combination of images
and highly dense and accurate LiDAR data. Unfortunately
presenting the entire mobile mapping data consisting of
terabytes of vertex and image data to many users is very
demanding and not yet feasible in a bigger scope.

This research though addresses the question of presenting the
massive mobile mapping data in the fashion of existing systems
like Street View and thus adding additional value gained from

the mobile mapping data. First of all this value is represented by
the dense and georeferenced 3D vertex data.

So how can this kind of data be included into a merely flat
visualization, or how to include the depth information, provided
by the vertex data, into this kind of view? In order to address
this question we analyzed past visualization schemes from the
time before hardware acceleration made 3D visualizations
possible on every average personal computer. Taking a closer
look at 2D jump and run games for instance like Nintendo’s
Super Mario, shows that those game engines also create an
illusion of depth. This illusion is created by multiple translucent
layers rendered in front of each other, what is called parallax
scrolling. While the games protagonist moves from one side of
the screen to the other the different layers are shifted differently.
The further the layer is in the background the less it is shifted to
either side. This kind of layered 2D visualization is still used in
applications that does not require full 3D visualizations like
many games designed for mobile devices, e.g. Angry Birds
from Figure 1.

Figure 1. Depth illusion with layers (angry birds example)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-73-2013 73

The focus of this paper is to derive such a layered visualization
from the available mobile mapping data, providing a more
immersive view to the user by adding this particular depth
illusion.

2. RELATED WORK

The handling of huge amounts of mobile mapping data has
recently been addressed by various publications. One of the
major fields of research is the fusion of the different sensor data.
First of all the recorded vertex data has to be georeferenced
which is done by fusing the LiDAR measurements with the
recorded IMU/GPS track. Afterwards the RGB colors of the
vertices are determined. Both are simple transformation steps.

Yet, the color determination might raise some problems.
Depending on the camera and laser scanner orientation the
problem of objects occluding other objects occur. However, this
is addressed by (Hammoudi, 2012a) and (Hammoudi, 2012b)
within the scope of mobile mapping systems by generating
occlusion masks for each image. Based on these masks the RGB
color is only extracted from images where the corresponding
vertex is not occluded. Unfortunately this might lead to a
situation where no image is found for extracting the color. The
color of single vertices might be easily interpolated by those of
the surrounding ones. Simple interpolation though is not
feasible at bigger uncolored areas. In such cases the missing
color can be synthetically generated as described in (Stahlhut,
2005).

Extracting the color of neighboring vertices from different
images generates another problem. Even though captured by the
very same camera subsequent images are subject to vary in
brightness and contrast. Images from different camera and
different angles even increase this deviation. This results in
visible color transitions of neighboring vertices. (El-Hakim,
1998) solves this by a global least square adjustment of the
image brightness.

Having a naturally colored point cloud, the creation of texture
representations of vertices remains to be addressed. (Wahl,
2005) presents an approach of identifying planes within point
clouds and creating texture representations of those detected
planes. The position and orientation of the identified planes
however might be arbitrary, while in our case the identified
planes or layers have to be more or less parallel to the vehicles
track. Rendering multiple transparent textures is also not a
trivial task. Rendering scenes is usually done object by object.
In order to get the scene correctly rendered, the order of the
rendered objects has to be taken into account. Basically the
background objects have to be rendered first and subsequently
all closer objects. In this scope closer means closer towards the
virtual camera, being the core of the problem. The order in
which the different objects are rendered depends on the camera
and is subject to change anytime the camera position changes.
(Shade, 1998) firstly mentioned this problem as “layered depth
images”, while (Everitt, 2001) firstly addressed it in the scope
of modern graphic pipelines as “order-independent transparency
rendering”. Multiple approaches regarding this problem had
been proposed. (Bavoil, 2008) for instance introduced an
algorithm called dual depth peeling, while (Everitt, 2006)
proposing an algorithm which partially removes already
rendered pixels based on previously generated depth layers
database. The problem of order-independent transparency
rendering however is only relevant in case the generated multi-
layered model will be rendered as a 3D scene. Rendering the
model in a pure 2D fashion overcomes the problem entirely.

3. MOBILE MAPPING SYSTEM

The used mobile mapping system is the Riegl VMX-250. It
consists of 2 VQ-250 laser scanners providing 360° profiles at a
measurement rate of 300,000 measurements per second each. In
addition to the IMU/GNSS equipment the system includes 2
Riegl VMX-250-CS6 as well as 2 Nikon D700 cameras. The
image resolution ranges from 5MP for the CS6 cameras and
12MP for the Nikons. As shown in Figure 2 the entire system is
mounted on the rooftop of the acquisition vehicle.

Figure 2. Riegl VMX-250 mobile mapping system

4. PREPROCESSING

The data acquired by the mobile mapping system includes the
LiDAR measurements from the laser scanners, the vehicles
track from the IMU/GNSS sensor and finally the pictures
captured by the 4 cameras. All data is accurately time stamped
and can be fused based on the individual timestamp of each
record. Integrating all three data types results in a georeferenced
colored point cloud.

4.1 Tiling

Considering the measurement rate of 600,000 points per second
the resulting point cloud is very dense and demands a high
memory capacity. In order to face these demands the point
cloud is divided into equally sized tiles. A tile size of 25x25 m²
was found to be the best trade-off between number of tiles and
number of points per tile.

Figure 3. Tiled point cloud dataset and vehicle track

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-73-2013 74

The resulting tiles usually contain a maximum number of 2
million points per tile. Figure 3 shows a tiled dataset acquired in
the urban area of Hanover, Germany. While the translucent blue
squares represent the recorded point cloud tiles the red line
shows the track driven during the data acquisition.

Having now a manageable tiled datastructure, all subsequent
processing steps are based on individual or multiple tiles. The
further workflow includes vertex normal calculation and various
segmentation and classification steps. The classification builds
the foundation for identifying occluding objects and the
corresponding occlusion masks. Furthermore the layer
identification described in section 5.1 can find relevant layers
based on the classified points, e.g. include only vertices
belonging to a façade or building. Finally the classification can
be used to create a different colored layer representation, e.g.
object based colored.

4.2 Segmentation and classification

In order to support various visualization modes, e.g. façades
only, the point cloud is segmented and classified into predefined
object types. The segmentation approach is very easy. First the
ground is removed. This is done via region growing all vertices
with an almost vertical normal. As seed region a previous
defined percentage, e.g. 5%, of the vertices with the smallest
height is used. Having the ground removed all remaining
objects can again be segmented by region growing, since they
aren’t connected by the ground. The now separated object point
clouds can be classified, into e.g. buildings, trees, cars, etc. For
a more reliable building classification we included cadastral
data into the algorithm. Figure 4 shows the segmentation and
classification result. While the green colored vertices represent
the ground, red colored vertices belong to buildings and all
remaining vertices are considered potential occluding vertices
and colored blue.

Figure 4. Classified point cloud - ground (green) - building (red)

- occluders (blue)

4.3 Vertex coloring

As mentioned above the building façades are often subject to
occlusion. This problem is addressed by creating occlusion
masks for all images based on the segmented and classified
point cloud. Therefore all vertices not belonging to either street

or building are considered potential occluders and thus
projected into the occlusion masks. Finally the masks are
morphologically closed, creating a more reliable occlusion
mask. Figure 5 illustrates this with a car occluding the building
façade (left) and the resulting occlusion mask (right).

Figure 5. Car occluding a building façade (left) and

corresponding occlusion mask (right)

Utilizing the generated occlusion masks all vertices are colored
based on the RGB pixel color of the vertex projected into the
image.

5. MULTI-LAYER GENERATION

After the preprocessing the desired point cloud visualization can
be generated. The range of possible visualization scheme range
from plain map-like representations to full three dimensional
point cloud rendering. The visualization described in the
following will render transparent vertical layers as ordinary
textured rectangles.

5.1 Layer Identification

The first step in generating the desired layer textures is to
identify the vertical main layers within the point cloud. For a
proper visualization only layers almost parallel to the vehicles
track shall be considered. In order to identify those layers
algorithms like RANSAC described in (Fischler, 1981) or
Hough-Transformation (Hough, 1962) can be applied to a 2D
representation of the vertices like shown in Figure 6. As
mentioned earlier, relevant layers might also be identified in the
classified point cloud by searching for façades in the vertices
classified as building. Moreover layers can be derived from
various classes assigned in the classification step. Layer and
class correspondence might be:

• layer 1: cars, pedestrians, street furniture, …
• layer 2: building/facades
• layer 3: background
• horizontal layer: ground

Finally the layers might also be manually defined as a semi-
automatic approach.

Figure 6 shows three identified layers (red) which satisfy the
parallel (in respect to the track) condition. Once the layers have
been identified for the area of interest, e.g. a single tile or a
particular track segment, the texture representations will be
generated.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-73-2013 75

Figure 6. Track (green) and identified layers (red)

5.2 Texture generation

For each layer a series of textured rectangles is generated.
Therefore all relevant vertices will projected on the plane
representing the layer. However, first the size of the resulting
layer rectangle has to be defined. In this case size does not
define the resolution of the final texture image, but rather the
extension of the covered area in meters. This might be a fixed
value, or dynamically derived from the track or the identified
layers. We used a fixed size 𝑠 of 20 meters. Based on this value
the track is then generalized into segments of length 𝑠. At this
point the track segments as well as the layer represent two
opposite borders of the area of relevant vertices. In order to
close the desired polygon buffer the angle bisectors of the
previous and subsequent buffers are used. At the start as well at
the end of the track perpendicular lines are used. Figure 7
visualizes the resulting buffer (green) outlined by the track
(black), the layer (red) and the angle bisectors. Finally all
vertices within this buffer are projected onto the layer plane.
Texture pixels not covered by projected vertex pixels are set
transparent. This way all texture images are generated, while the
layers closer to the track have to be generated first, since the
buffer of the layers further away include the closer ones.
Furthermore a vertex already projected onto a texture will not
be projected onto another layer, even though it might be
contained in the corresponding buffer.

Depending on the number of projected vertices and the texture
resolution the resulting texture images might be very sparse. In
order to get a denser image the color in between the projected
vertex pixels is interpolated. Therefore the pixels are
triangulated using a Delaunay triangulation. Finally the color of
each pixel within a triangle is interpolated according the known
color of the pixels building the triangle. However this will fill
the entire convex hull of the projected vertex pixels. Since the
model is built of multiple overlapping transparent textures,
filling the complete convex hull will produce unnatural shaped
objects and hide contents of background layers. Figure 8 (top)
illustrates this problem. In order to maintain the object’s shape
and leave most of the texture transparent to see the background
layers a triangle size threshold is introduced. The color of
triangles exceeding this threshold will not be interpolated and

therefore left transparent. Our implementation skipped all
triangles which real world bounding box edges exceed 0.2
meters. This creates genuine object outlines, especially in the
non-façade layers, like shown in Figure 8 (bottom).

Figure 7. Buffer and texture image generation (top down view)

Figure 8. Color interpolation - entire convex hull (top) - triangle

size treshold (bottom)

5.3 Results

We applied the described procedure to the mobile mapping
dataset shown in Figure 3. A 500m track segment was used. The
track segment covered 45 tiles containing about 31 million
vertices. The desired layers were manually defined at 5, 10 and
20 meters distance from the track. The 500m track consisting of

β
β

α
α

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-73-2013 76

20,000 positions is generalized into 20m long segments, so the
number of track positions is cut down to 26. The resulting
multi-layered model consists of 75 textured quads with an
overall file size of about 7MB at a texture width of 1024 pixels.
The overall file size of the original 45 tiles was about 350MB.
The achieved compression is about 98%. In order to compress
the vertex data even more, the texture width might be lowered
or the track segment size might be raised. Both of course result
in a decreased visualization quality. A panoramic overview of
the generated dataset shows Figure 11.

In contrast Figure 9 and Figure 10 show a generated model
based on only two layers with a track segment length (area
covered by one textured quad) of about 100m.

The runtime performance of the proposed layered model
generation process is also considerably high. A Java
implementation generating 75 textured quads from the 31
million vertices of the 500m long track segment took merely 4
minutes on an average workstation. Still the most time
consuming part represents the color interpolation within the
created Delaunay triangulation, which, of course, highly
depends on the chosen texture resolution. The higher the
resolution, the more pixel colors have to be interpolated, leading
to increased memory and runtime requirements.

Either way the generated models can be rendered at maximum
frame rates even on older graphics hardware or mobile and web-
based platforms. In order to render the model as a three
dimensional scene the order-independent transparency problem
(see end of section 2) has to be addressed. Therefore all textures
are sorted according their distance to the track, which is also
used as the virtual camera position. This guarantees a correctly
rendered transparency without reordering the textures at each
change of the camera’s position.

Figure 9. 2 layer model - front view

Figure 10. 2 layer model - tilted view

6. CONCLUSION AND FUTURE WORK

This paper proposes a multi-layer visualization approach for
dense mobile mapping data. The generation of the layered
model includes preprocessing steps like the tiled datastructure,
vertex coloring, the generation of vertex normals as well as
point cloud segmentation and classification. The actual model
generation includes the identification of vertical layers within
the point cloud where different approaches were proposed as
well as a polygon buffer based vertex to texture projection.

The resulting multi-layer model can be considered a highly
compressed representation of the original mobile mapping point
cloud. With a compression rate of about 98 percent the
generated model is best suitable for fast data browsing as well
as preview visualizations of the recorded mobile mapping data.
Furthermore this also enables less powerful machines along
with web-based visualization clients to render the resulting
model. Furthermore the layer model might be rendered as a 3D
scene as shown in the example images, or as a pure 2D
visualization in the fashion of the previously mentioned parallax
scrolling jump and run game engines.

The future work includes the integration of the color adaption
and the generation of synthetic texture parts of highly occluded
façade areas in order to create even more realistic vertex and
therefore texture colors. Extending the coloring beyond
photorealistic colors towards non-photorealistic schemes is also
subject of our further research. Finally the layer identification
will be extended towards methods proposed in section 5.1.

Figure 11. Multi-layer visualization – top view (top) – panoramic front view (bottom)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-73-2013 77

7. REFERENCES

Bavoil, L., Myers, K., 2008. Order independent transparency
with dual depth peeling, NVIDIA OpenGL SDK.

El-Hakim, S. F., Brenner, C., Roth, G., 1998. A multi-sensor
approach to creating accurate virtual environments, ISPRS
journal of photogrammetry and remote sensing, 53(6), 379-391.

Everitt, C. W., 2001. Interactive order-independent
transparency. White paper, nVIDIA, 2(6), 7.

Everitt, C. W., Bastos, R. M., Kilgard, M. J., 2006. Order-
independent transparency rendering system and method - U.S.
Patent No. 6,989,840, Washington, DC: U.S. Patent and
Trademark Office.

Fischler, M. A., Bolles, R. C., 1981. Random sample consensus:
a paradigm for model fitting with applications to image analysis
and automated cartography, Communications of the ACM,
24(6), 381-395.

Hammoudi, K., Dornaika, F., Soheilian, B., Vallet, B.,
McDonald, J., Paparoditis, N., 2012a. Recovering Occlusion-
Free Textured 3D Maps of Urban Facades by a Synergistic Use
of Terrestrial Images, 3D Point Clouds and Area-Based
Information, Procedia Engineering, 41, 971-980.

Hammoudi, K., Dornaika, F., Soheilian, B., Vallet, B.,
McDonald, J., Paparoditis, N., 2012b. Recovering quasi-real
occlusion-free textures for facade models by exploiting fusion of
image and laser street data and image inpainting, In Image
Analysis for Multimedia Interactive Services (WIAMIS), 2012
13th International Workshop on (pp. 1-4). IEEE.

Hough, P. V., 1962. Method and Means for Recognizing
complex Patterns - U.S. Patent No. 3,069,654, Washington, DC:
U.S. Patent and Trademark Office.

Kopf, J., Chen, B., Szeliski, R., Cohen, M., 2010. Street slide:
browsing street level imagery, ACM Transactions on Graphics
(TOG), 29(4), 96.

Shade, J., Gortler, S., He, L. W., Szeliski, R., 1998. Layered
depth images, In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques (pp. 231-242).
ACM.

Stahlhut, O., 2005. Extending natural textures with multi-scale
synthesis, Graphical models, 67(6), 496-517.

Vincent, L., 2007. Taking online maps down to street level,
Computer, 40(12), 118-120.

Wahl, R., Guthe, M., Klein, R., 2005. Identifying planes in
point-clouds for efficient hybrid rendering, In The 13th Pacific
Conference on Computer Graphics and Applications (pp. 1-8).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013
ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-73-2013 78

