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ABSTRACT:

Visualizing big point-clouds, such as those derived from mobile mapping data, is not an easy task. Therefore many approaches
have been proposed, based on either reducing the overall amount of data or the amount of data that is currently displayed to the
user. Furthermore, an entirely free navigation within such a point-cloud is also not always intuitive using the usual input devices.
This work proposes a visualization scheme for massive mobile mapping data inspired by a multiplane camera model also known
as parallax scrolling. This technique, albeit entirely two-dimensional, creates a depth illusion by moving a number of overlapping
partially transparent image layers at various speeds. The generation of such layered models from mobile mapping data greatly reduces
the amount of data up to about 98% depending on the used image resolution. Finally, it is well suited for the panoramic-fashioned
visualization of the environment of a moving car.

1. INTRODUCTION

The visualization of large amounts of data usually yields various
problems. Either the user is overwhelmed by the sheer volume of
information and therefore maybe missing the features important
to him or the hardware displaying the data reaches its limit and is
unable to provide interactive framerates. One way to face these
problems is to reduce the amount of data (or generalize it) to such
an extent that the above constraints are met.

One way of generalization is dimensionality-reduction. In case of
mobile mapping we have to deal with colored three dimensional
point-clouds. Reducing the data about the height property for
example, results in map-like representation as shown in figure 1.

Figure 1: 2D map derived from mobile mapping point-cloud by
eliminating the height property.

While this kind of visualization gives a nice overview of the scene
it also eliminates all uprising structures like facades. In order
keep the facade structures the height property has to be kept as

well. An alternative property to reduce would be the depth prop-
erty. Since this property depends on the point of view (POV),
eliminating the depth results in a limitation of possible POVs.
This fact raises two questions, first which POVs shall be used
and second how does it impact the navigation through the data.

Since the visualization aims for displaying mobile mapping, it
felt natural using the acquisition vehicle’s track as possible POVs.
Restricting the virtual camera to those POVs enables the visual-
ization to handle areas of missing information in a sophisticated
manner as discussed in chapter 5. The impact on the navigation is
noticeable. The scene can only be seen from the given trajectory
points, so the only real navigation option the user has is to move
forward or backward on the trajectory. Furthermore the viewing
direction is also fixed, which means only one street-side can be
watched at a time. While this appears to be a significant limita-
tion it simplifies the navigation through the rather complex data as
well. This simple navigation enables even non experienced users
to easily browse through the mobile mapping data. Which makes
the proposed visualization scheme more comparable to systems
like Google’s Streetview (Vincent, 2007) and Microsoft’s Street-
slide (Kopf et al., 2010) as to systems visualizing a complete 3D
city model.

Finally, in order to regain at least a sense or an illusion of depth
the concept of parallax scrolling comes into play. Instead of en-
tirely eliminating the depth property it is only clustered into dis-
crete values, resulting in various depth layers. Rendering those
layers on top of each other, as shown in figure 2 gives an illusion
of depth which improves the quality of visualization compared to
an entirely flat one, as shown in figure 1.

Figure 2: Resulting parallax scrolling visualization with color-
labeled depth layers.
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2. RELATED WORK

Over the years the processing and visualization of large point-
clouds have been addressed by various publications.

In general most approaches can be classified into two categories.
First the point-clouds can be generalized into simpler models
with a lower level of detail (LOD). This reduces the amount of
data significantly, but might remove relevant features from the
data. One example from this category was published by (Wahl et
al., 2005), where planes within a point-cloud are identified and
points belonging to those planes are projected onto texture rep-
resentations. This is based on the idea of exchanging geometry
information with texture information which increases the render-
ing speed. This is also often referred to as image-based repre-
sentations for reducing the geometric complexity. (Jeschke et
al., 2005) gives good overview of such approaches. In contrast
to purely point based data in case of mobile mapping, impostors
based methods like in (Wimmer et al., 2001) usually use 3D mesh
models as their input data. The creation of such meshes are out
of the scope of this work and thus using impostors is not a viable
option, while the general idea will be applied in the presented
work.

The second category simply reduces the data, in case of point-
clouds the number of points, that is displayed at a time, e.g. by
skipping points or regions that are currently not visible on screen.
In case the points become visible they are loaded into memory,
while the points and regions becoming invisible are dropped from
the memory. Those approaches are usually referred to as out-of-
core methods. In the end methods fusing both approaches (gener-
alized models and out-of-core techniques) do also exist, render-
ing far away objects with a low LOD, while increasing the LOD
in case the objects are getting closer. (Richter and Döllner, 2010)
and (Gobetti and Marton, 2004) discuss two varieties of such ap-
proaches.

Since this work uses the concept of parallax scrolling which is
based on image-based rendering, it belongs to the first domain of
generalization of point-clouds.

Occlusions are a major problem when it comes to deriving mod-
els from point-cloud data. As the texture images are derived from
the recorded scan-points, they only convey information that was
observed by the corresponding laser. Objects not reflecting the
laser beam (e.g. windows) as well as objects or areas, occluded
by other foreground objects do not appear in the generated im-
ages. Since the images have to be transparent for the parallax
scrolling rendering, the missing areas result in transparent holes.
Those holes can be closed by interpolation, either in the original
point-cloud like shown in (Wang and Oliveira, 2007) or in the re-
sulting image as shown in (Efros and Leung, 1999). But as the
actual origin is not entirely known, interpolation could lead to an
overall wrong model. The restricted virtual camera dictated by
the used visualization scheme allows to deal with those holes in
different manners. Instead of filling them up they can also be hid-
den in more or less the same way they were hidden from the laser
beam.

3. PARALLAX SCROLLING

Parallax Scrolling is a visualization method, which creates a depth
illusion in an animated, two dimensional scene. For this it uses
multiple layers of two dimensional graphics, which are displayed
on top of each other, thus forming a single image for the camera,
which looks down at the top of the stack. In order to simulate a
camera movement, each layer is moved at its own speed, instead

of moving the camera it self. Figure 3 elucidates this by showing
a series of three pictures with layers moving at different speeds.

Figure 3: Sketch of parallax scrolling scene with simulated cam-
era movement from left to right. Upper row: The images that the
camera sees. Lower row: The camera looking at the layers.

3.1 Mathematics Behind Parallax Scrolling

For a general visualization with parallax scrolling one needs a
sequence L of layers li. Let L = 〈l1, l2, . . . , ln〉 be ordered
such that l1 is at the top of the stack, meaning closest to the cam-
era, and ln is at the bottom of the stack, meaning the farthest
away from the camera. Each layer i has, next to its image data, a

two-dimensional position ~pi =

(
xi

yi

)
and a speed vi, as well as

width and height.

In order to display the entire scene, we must render each layer
of the stack beginning at the bottom and ending at the top. This
way the rendered image will only contain pixels, which are not
occluded by other layers.

As mentioned before the camera is always steady, hence to vir-

tually move the Camera by ~∆ =

(
x∆

y∆

)
, we have to shift each

layer’s position in respect to its speed instead. The new positions
~pi

′ are calculated as follows:

~pi
′ = ~pi − vi · ~∆ (1)

3.2 Perspective Parallax Scrolling

Simply rendering various image layers on top of each other re-
sults in an orthogonal projection, which might appear quite un-
natural. In order to create a more appealing perspective correct
parallax scrolling, we need to calculate the layer-speeds vi. Fur-
thermore, we also need to calculate a scaling factor si for each
layer, to simulate the fact that an object looks smaller the bigger
the distance to the observer is.

Let α be the horizontal aperture of the camera. Also let di be
the distance of the i-th layer to the camera. Now we calculate
the distance r at which one length unit in the model matches one
length unit in the image (see figure 4).

r =
1

2
· cot

(α
2

)
(2)

It follows that objects at half that distance appear twice as big
in both dimensions, while objects at double that distance appear
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Figure 4: Sketch of the calculation of r.

half as big in both dimensions. Therefore the scaling factor si is
calculated as follows:

si =
r

di
(3)

The same argument can be used to calculate the speed vi, which
means that vi = si.

In order to finally draw the scene the new corner positions for
each layer have to be calculated. Let ~p be a corner position of
the i-th layer. Also, let ~c be the camera position and z be the
camera zoom factor. The new position of the corner is calculated
as follows:

~p′ = z · (si · ~p− vi · ~c) = z · si · (~p− ~c) (4)

With the known corners the layer image can be scaled and drawn
accordingly.

4. MODEL GENERATION

Visualizing the mobile mapping data using the parallax scrolling
technique requires the data to be ordered in layers. Each layer
represents a distinct depth or depth-range. Considering mobile
mapping relevant layers can be (in ascending distance from the
acquisition vehicle) cars (on the road), parking cars, street furni-
ture (traffic signs, traffic lights, trees, etc.), pedestrians and finally
the building facades.

4.1 Identification of relevant layers

In order to identify those relevant layers mentioned above many
approaches are feasible. This paper discusses two approaches
(geometry-based and semantic-based).

The first method is purely based on the geometry of the point-
cloud input data. First of all the acquisition vehicle’s track is
simplified, while the resulting track segments are used to find
relevant layers. To this end a buffer around each segment is de-
fined and two histograms (one for each street-side) reflecting the
distances of all scan-points within this buffer towards the corre-
sponding track segment are created. Figure 5 shows a typical
distance histogram.

While the maximum peak usually represents the building facade
layer, all minor peaks represent object layers. In order to extract
the position and size of each layer the current maximum peak is
used as the start value, while all neighboring distances, to the left
as well as to the right, will be assigned to this maximum peak
until a value below a given threshold is found and a minimum
number of points had been assigned. After removing all assigned
values from the histogram the process recursively identifies the
remaining layers by again starting at the maximum peak value.
Since the building facade layer is likely to be the most distant rel-
evant layer all values behind the first maximum peak are assigned

Figure 5: Distance histogram of all points on a single street-side
for a given track segment.

Figure 6: Distance histogram with color-encoded relevant layers.

to this layer. Figure 6 shows a possible result, with all identified
relevant layers.

The second, semantic-based approach is based on segmenting
and classifying the point-cloud. Our segmentation method first
extracts all ground points from the point-cloud using a normal-
based region-growing. This leaves all remaining objects uncon-
nected, hence all objects are again segmented by region-growing.
Depending on the desired visualization scenario the all segmented
objects have to be classified. Within the scope of this work we
merely classified the objects into building/facade and other. Fi-
nally the relevant building layer is derived from the classified
building objects by detecting the major facade plane using the
RANSAC, see (Fischler and Bolles, 1981), plane-fit method. All
remaining objects are represented by a track-segment parallel layer
passing through the object’s center of mass.

4.2 Final Layer-Model

After the relevant layers have been detected the corresponding
texture representation is generated by projecting the associated
points onto the respective layer planes. Depending on the point-
cloud’s density and the used image-resolution the resulting im-
age can appear quite sparse. In order to face this intermediate
pixels can be interpolated accordingly. Both the point to plane
projection as well as the pixel interpolation are in detail covered
by (Eggert and Sester, 2013). An exemplary image is shown in
figure 7.

The result is a layer-model consisting of multiple translucent tex-
ture images which will eventually rendered by the parallax scrolling
visualization.
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Figure 7: Resulting texture image representing a single layer

5. HIDING BLIND SPOTS AND HOLE-FILLING

During the mobile mapping process it will often be the case, that
some objects are partially occluded by others, e.g. a parking car
in front of a house. Since the LiDAR’s laser beams do gener-
ally not pass through solid objects, this leads to volumes of no
information.

The camera movement in our model is constrained to the trajec-
tory of the mobile mapping system. Therefore it is easy to as-
sume, that these blind spots would not show up in the visualiza-
tion. But in contrast to the real world objects the visualized ones
are flattened. As figure 8 points out, this assumption doesn’t hold
in the parallax scrolling visualization.

Figure 8: Left: The car is blocking the camera from seeing the
blind spot on the wall. Right: The lack of depth on the car enables
the camera to see the blind spot.

In order to rectify this problem by making the blind spots in-
visible again, the positions of the occluding objects have to be
altered. The first step is finding the corresponding occluders for
the holes. This is done by first finding the holes in the textures
of the objects, which are not in the topmost layer. For this we
determine the connected components of the texture in regards to
pixels, which are marked as holes, using a two-pass algorithm
as described by (Azriel Rosenfeld, 1966). Then we calculate the
bounding boxes of these connected components and transform
them from texture space to model space. The corresponding oc-
cluder for a hole is now the closest object that lies completely
in front of the bounding box. Now that we know the holes for
each occluding object, we can adjust the position, such that the
holes will not be visible in the visualization. For this we show
two variants in this paper:

1. Static hiding

2. Movable hiding

5.1 Static Hiding

The basic idea is, that the hole is not visible, if its occluding ob-
ject moves at the same speed (they do not move relative to each
other, hence naming it ”static”). In order to achieve this, the ob-
ject needs to be pushed back, so that it is just in front of the hole,

as shown in figure 9. It must not be put in the same layer as the
hole to avoid confusion in the drawing order. If the object cor-
responds to more than one hole, the one nearest to the camera
is chosen, otherwise the object would be placed behind a hole,
which makes hiding it impossible.

Figure 9: Left: The original scene. Right: The scene with the use
of static hiding.

While this variant does fulfill its task of hiding the blind spots,
it performs radical changes to the scene. Often foreground ob-
jects are pushed noticeably far back, being practically wallpa-
pered onto another object.

5.2 Movable Hiding

Static hiding often pushes objects too far back. In the original
scene those objects are not pushed back far enough. From these
observations we can conclude, that there must be an optimal dis-
tance, at which the occluder is just near enough to the hole to
hide it, but can still move relative to it. Finding and relocating the
occluding object to this distance is the task of movable hiding.

In order to determine that distance we first assume, that the hole
lies centered behind the occluding object, which is depicted in
figure 10. In that figure the camera is placed in two positions,
such that the hole is just outside of the camera image. The goal is
to calculate the distance d, which determines how far in front of
the hole the occluder must be placed.

b

α α

βr

d

q

Figure 10: Birds-eye view on the movable hiding situation.

Let α be the aperture of the camera, b the width of the hole
and q the width of the occluder. The edges of the two camera
cones meet behind the hole and form a triangle with the hole, one
with the desired position of the occluder and one with the cam-
era movement line. It is obvious, that the angle β at that point is
equal to α. With α and b we can calculate the distance r between
the triangle point and the hole.

r =
b

2
· cot

(α
2

)
(5)

We can also calculate the distance r+d to the desired position of
the occluder.

r + d =
q

2
· cot

(α
2

)
(6)
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Now we can determine d through simple subtraction.

d =
q

2
· cot

(α
2

)
− b

2
· cot

(α
2

)
=
q − b

2
· cot

(α
2

)
(7)

The distance to the camera of the occluder can now simply be set
to the distance to the camera of the hole minus d.

If the hole is not centered behind the occluder, we can artificially
enlarge the hole to one side until the state is fabricated. Also, if
the occluder corresponds to more than one hole, we calculate the
new distances to the camera for every hole and take the biggest
distance. If that distance is further away than the nearest hole, we
use static hiding instead.

5.3 Hole-Filling

Another fact decreasing the visualization quality are holes that
are not caused by occlusion. Empty areas that are not occluded
are usually caused by materials that do not reflect the laser beams.
Glass is such an material, so windows often result in rectangular
holes in the facades texture images as depicted by figure 11.

Figure 11: Building facade containing holes caused by windows.

Detecting and classifying those holes/windows within the image
data is a bit out of scope of this paper and is already addressed by
various other publications like (Ali et al., 2007). As mentioned
earlier, our approach uses a connected component analysis in or-
der to find the corresponding holes. The actual filling will be
discussed in the following in more detail. The algorithm distin-
guishes between two types of holes, small and big ones.

Small holes are probably not caused by windows rather by an-
other material not reflecting the laser beam. That’s why small
holes are filled by interpolation. As the first step the colored bor-
der pixels of the hole are determined. Based on the location and
color of those pixels two dimensional function is approximated
for each color channel. In the end a color for all pixels is derived
based in the determined functions, while the pixel coordinates are
used as input values.

Big rectangular holes, in contrast to small holes, are very likely
caused by windows. Since the border of those holes are repre-
sented by the corresponding window frames, interpolating the
color between those is not a good idea, because the frame’s color
usually has nothing to do with the color of the window’s glass.
Therefore those holes are covered by a gray rectangle mimicking
the window’s glass. For a more natural visualization some noise
is added as well. The result is shown in figure 12. While the three
small holes in the upper part are filled using the approximated
color functions, the big holes are covered by gray rectangles.

Figure 12: Building facade with filled holes.

6. IMPLEMENTATION AND RESULTS

The implementation of the visualization was done in Java, using
the ”Lightweight Java Game Library” (Lightweight Java Game
Library, 2013) for its OpenGL bindings. While the usage of a
3D-capable graphics library is in no way necessary, as indeed no
3D-functions of OpenGL were used, we used it for its efficient
handling and rendering of textured faces.

The first step when loading the scene is to prepare it for efficient
rendering. This consists of translating the scene such that the
camera starts of in the middle of it, scaling the layers by their
distances and calculating their speeds. The translation is done
by calculating the scenes 2D-bounding box (ignoring the depth),
determining the position of its middle and translating every layer,
which means every quad in a layer, such that the new middle posi-

tion of the bounding box is at
(

0
0

)
. Scaling and speed calculation

are done as described in chapter 3.

After that, the quads of every layer, as well as their textures, are
uploaded into OpenGL memory. Each quad consists of four ver-
tices, which consist of their two dimensional spacial positions,
as well as their two dimensional texture coordinates. Because
OpenGL has a limitation on the maximum size of a texture, we
can not just combine every quad of a layer into one big quad.

The rendering of the scene is done as described in chapter 3. At
first we clear the screen. Then the stack of layers is rendered bot-
tom to top. Each layer is rendered by rendering all its contained
quads, which are stored as vertex buffer objects and references to
their textures. The translation of each layer with regards to the
simulated camera position is done in the vertex shader and works
as in equation (4), with a few exceptions. The vertex positions are
already scaled according to their layers distance. Also, OpenGLs
screen coordinates are always ∈ [−1, 1] for both dimensions, no
matter if the screen is actually square or not. Therefore it is nec-
essary, to add the aspect ratio as a factor for the y-coordinate. The
fragment shader just does a texture lookup.

6.1 Results

The different scaling and speeds of the layers does create an illu-
sion of depth, when the camera is moved. But we had to restrict
the camera movement in y-direction to a small interval. The cam-
era should not be able to move down below street level, as that
gives the impression that the objects were flying. The camera
should also not be able to move too far up, as the lack of depth
on an object (especially the lack of a roof) gives the impression
that there are huge gaps between objects. The resulting visualiza-
tion is shown in figure 13. Since the depth illusion results from
the different moving layers during an animation, the shown figure
hardly does justice to the scheme.
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Moreover, the figure also reveals various problems not necessar-
ily related to the proposed visualization scheme. For instance,
some building parts mainly in the upper region are missing. This
is caused by the fact that the acquisition vehicle was passing to
closely by the corresponding building, which means the cameras
taking the pictures used for coloring the point-cloud were also
very close. The closer the camera is the less of the buildings fa-
cade is covered by the resulting image, which results in missing
colors for the corresponding points. Furthermore, the shown tree
in the center shows also weird colors. This results from the fact
that the used camera might not have been calibrated correctly and
the tree points are mapped to pixels in between the tree branches.
This are basically pixels from the sky and therefore often blue or
white.

Figure 13: Resulting parallax scrolling visualization.

One motivation for the proposed visualization scheme was the
inability of modern hardware to render massive mobile mapping
point-clouds in real-time. The rendering of a single frame took
less than a millisecond for the implemented prototype on a mod-
ern computer, which allows a theoretic framerate of 1000 fps,
enabling even low-end devices or web-based applications.

7. CONCLUSIONS AND FUTURE WORK

This work introduced a new visualization scheme for massive
mobile mapping data based on the parallax scrolling technique.
An overview of layered models are derived from the mobile map-
ping point-cloud data, especially the identification of relevant lay-
ers is discussed. As shown in chapter 5. the presented approach
enables interesting ways of dealing with holes caused by occlu-
sion, by recreating the original occlusion situation in the visu-
alized scene. This hiding instead of interpolating bypasses many
problems caused by interpolation. Finally an OpenGL-based pro-
totype implementing the proposed scheme was realized. Even
with a minimum number of two layers the illusion of depth was
clearly perceptible, while amplified by the use of more layers. As
the results indicate a real-time rendering of even big datasets is
rather unproblematic, and therefore applicable for many scenar-
ios, including even web-based visualizations.

Alongside the actual visualization many issues have to be ad-
dressed in later research. In order to enhanced the visualiza-
tion quality the coloring of the original point-cloud has to be im-
proved, e.g. applying a fine-tuned mobile mapping camera cali-
bration as presented in (Hofmann et al., 2014). Moreover more
sophisticated layered model building techniques will be evalu-
ated. Another approach to enhance the depth illusion beside the
parallax effect is the use of bump or displacement mapping, which
could be integrated into future prototypes. While the discussed
static and movable hiding schemes present rather basic concepts,
more sophisticated approaches are possible, which will also be
elaborated in future research.
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