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ABSTRACT: 
 
One central problem in geospatial applications using 3D models is the tradeoff between detail and acquisition cost during 
acquisition, as well as processing speed during use. Commonly used laser-scanning technology can be used to record spatial data in 
various levels of detail. Much detail, even on a small scale, requires the complete scan to be conducted at high resolution and leads to 
long acquisition time, as well as a great amount of data and complex processing.  
Therefore, we propose a new scheme for the generation of geospatial 3D models that is driven by relevance rather than data. As part 
of that scheme we present a novel acquisition and analysis workflow, as well as supporting data-models. The workflow includes on-
site data evaluation (e.g. quality of the scan) and presentation (e.g. visualization of the quality), which demands fast data processing.  
Thus, we employ high performance graphics cards (GPGPU) to effectively process and analyze large volumes of LIDAR data. In 
particular we present a density calculation based on k-nearest-neighbor determination using OpenCL.  
The presented GPGPU-accelerated workflow enables a fast data acquisition with highly detailed relevant objects and minimal 
storage requirements. 
 
 
 
 

1. MOTIVATION 

A wide variety of 3D geospatial based applications have been 
proposed in recent years, mostly in relation to city modeling but 
also for other domains. Application paradigms like 3D location 
based services and augmented reality rely on appropriate 3D 
models of the environment as basic constituents. Despite 
technical advances, the cost effectiveness of creating and 
maintaining the required 3D models, as well as their appropriate 
presentation to users, remain a key issue. This situation is 
further complicated by the fact that 3D geospatial information is 
subject to frequent changes and that the current developments in 
3D computer games and film animation lead users to expect a 
high fidelity of the models used in an application. 
 
One central problem in applications using 3D model is the 
tradeoff between detail and acquisition cost, during conception, 
as well as processing speed, during use. Much detail, even on a 
small scale, requires the complete scan to be conducted at high 
resolution and leads to long acquisition time, great amount of 
data, and complex processing. Fast scanning in contrast will be 
shorter in duration but will provide lower resolution and an 
overall coarse model. Adding more detail and using more 
realistic graphics may seem the obvious solutions. However, 
often they are neither cost effective nor viable using existing 
techniques. 
 

We suggest looking for alternative ways to provide 3D 
information on a large scale. Recent research has found that in a 
variety of visual applications that use 3D city models, a high 
amount of detail is only required for objects that are of high 
relevance to the user (Cartwright 2005)(Elias, Paelke and Kuhnt 
2005). 
 
We propose the generation of large-scale geospatial models that 
are driven by relevance rather than data. Particularly, 
developing new progressive acquisition and modeling 
techniques that provide a more coherent view into the available 
sources of information. To achieve this, our plan is to use laser-
scanning technology and novel user interface techniques, 
providing instant visual feedback which demands fast data 
analysis. 
 
The established workflow consists of a data acquisition stage in 
the field and a following processing and analysis stage in a 
standard in-door office environment. This makes fast multi-core 
computers or even entire computer clusters available for the 
analysis. An on-site environment lacks this computation power; 
therefore we employ high performance graphic cards to process 
and analyze the LIDAR data at the recording site. Compared to 
common CPUs, even mobile GPUs (build into Laptops) have a 
significant increased computation power. Since these 
computation capabilities entail higher power consumption, most 
high performance mobile GPUs come along with an integrated 
low power GPU. In case the high performance GPU is not 



 

needed, it will be deactivated and the separate low power GPU 
takes over for longer battery life. Since the high performance 
GPU is only needed during the analysis, the concept of having a 
separate low power GPU fits the demands of our on-site 
analysis. 
 

2. RELATED WORK 

Almost all approaches to recognize salient objects and 
reconstruct their shape are data driven, targeting the extraction 
of every detail from the data, needed or not, see e.g., 
(Volsseman and Dijkman 2001), (Rottensteiner and Briese 
2002), (Filin 2004), (Filin, Abo-Akel and Doytsher 2007), 
(Becker and Haala 2007). Recent advances in terrestrial laser 
scanning has shown that processing the point-clouds can be 
performed, under adequate representation, both efficiently in 
terms of processing time and with relatively limited 
computational resources (Zeibak and Filin 2007), (Gorte 2007), 
(Barnea and Filin 2007), (Barnea and Filin 2008). These results 
refer to the registration of the point clouds (Barnea and Filin 
2007), (Barnea and Filin 2008), the extraction of primitives and 
objects (Gorte 2007), (Barnea, Filin and Alchanaties 2007), and 
to the association of scan pairs (Zeibak and Filin 2007). 
 
The software currently used in the 3D reconstruction process 
and for data acquisition is designed for operation in standard in-
door office environments, e.g., (InnovMetric 2008),  (Cyclone 
2008). Regarding on-site interaction, the user interface concepts 
of mixed and augmented reality (Milgram, et al. 1994), (Azuma 
1997), (Azuma, Baillot, et al. 2001) that integrate the real 
environment into the user interface have shown high potential to 
support complex spatial interaction tasks. As an example, the 
Studierstube system (Schmalstieg, et al. 2002) demonstrates a 
number of promising spatial interaction concepts. Hedley 
(Hedley, et al. 2002) and others have demonstrated 
collaborative 3D geovisualization applications based on 
augmented reality techniques. While the technical challenges of 
mobile outdoor are great, there have been a number of 
demonstrators, e.g., the outdoor modeling application by 
(Piekarski and Thomas 2001). Another AR input/output device 
is the GeoScope (Paelke and Brenner 2007) that aims to avoid 
some of the central problems by providing high-precision video 
overlay in outdoor use-cases where high mobility is not required 
and seems well suited for acquisition applications. 
 
A point cloud’s density is an important indicator of its quality. 
In order to determine this density the k-nearest-neighbors (kNN) 
can be used. Most approaches for determining the kNN of a 
point in a point set rely on reducing the complexity of the 
required neighbor searches. They generally try to reduce the 
number of distances to calculate by arranging the data in spatial 
data structures, e.g. a kd-tree structure (Arya, et al. 1998) or by 
using Morton order or Z-order of points as in (Connor and 
Kumar 2008). Another recent proposal with promising results 
uses a brute-force search implemented using the C for CUDA 
API (Garcia, Debreuve and Barlaud 2008). 
 
 

3. CONCEPT 

The objective of our work is the effective creation of 3D 
geospatial models based on integrating global data (airborne 
laser or alternative sources) if available with local detail from 
terrestrial laser scans through progressive acquisition and 
modeling. Such modeling will be according to need, relevance, 
and controlled on-site with an augmented reality user interface. 

The central idea is to control and limit the amount of detail in 
all processing stages to that actually required while providing 
feedback and on-site interaction capabilities. This will allow 
reducing acquisition time, modeling time, as well as storage and 
computation requirements in the actual use of the resulting 
models. Additionally, it will allow to focus on the relevant 
features needing further detailing. Such focus is almost 
impossible to achieve using uniform scans. For this we propose 
a demand-driven workflow, as shown in Figure 1, into which 
the acquisition, analysis, integration and presentation activities 
are embedded. 
 

 
Figure 1: acquisition and analysis workflow 

 
Based on the application and requirements, an initial model is 
acquired via airborne laser scanning where and if possible to 
provide a cost effective base model. Alternatively, existing 2D 
or 3D models can be used if available. 
 
The central activity is on-site modeling, in which terrestrial 
laser scanning is employed. A user interface based on the 
paradigm of augmented reality (AR) in which the view of the 
real environment is augmented with information on the current 
model, its resolution and quality allows to control the 
acquisition and modeling process through intuitive decisions 
and selection of relevant features worth or need detailing. A 
mobile version of the previous mentioned GeoScope constitutes 
a suitable AR setup. 
 
The AR user interface is closely coupled to 3D geometry 
analysis and integration algorithms that match and integrate data 
from different scans and data sources and provide measures of 
object distinctiveness, complexity and scan quality. In contrast 
to common off-line processing techniques, this approach 
requires 3D geometry analysis and integration schemes that 
operate at interactive speeds. Thus, we employ high 
performance graphics cards to speed up the analysis algorithms. 
 
The resulting model can be further extended and refined either 
on-site or back in the office using established modeling tools or 
dynamically generated structure elements (e.g. pre-packed 
facade features from a library) to match the application 
requirements. It can then be applied in the intended application 
(e.g. visualization or precise positioning).  
 
 

4. GEOMETRIC ANALYSIS ALGORITHMS 

In order to create a 3D model from the LIDAR data, various 
geometry analysis algorithms must be applied. Beside several 
other algorithms the determination of the k nearest neighbors 
(kNN) of each point in the recorded point cloud is commonly 
needed. While algorithms like triangle-mesh reconstruction use 
kNN for surface reconstruction, our approach employs kNN to 
determine a density value for each point. The density in each 
point gives information about the quality of the recorded point 



 

set. The density  of point  is the inverted sum of the 
distances between  and the k nearest neighbors  of . 
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The association of colors to the minimum and maximum density 
value (e.g. max density = green, min density = red) allows to 
visualize the calculated density values, as shown in Figure 2. 
 

 
Figure 2: density visualization 

 
Doing the kNN calculations on graphics processing units (GPU) 
raises two questions: 
 

 Which kNN algorithm to implement 
 Which programming language to use 

 
The technique of using a GPU to perform calculations is often 
referred to as general purpose computation on GPUs (GPGPU). 
GPGPU is basically a kind of stream processing that exploits 
the parallel data processing capabilities of modern GPUs. 
Therefore the used algorithm needs to be highly parallelizable. 
Furthermore the processed data, or more specific the 
corresponding results, must be independent. Regarding the 
programming language to use leaves  basically two options. 
Manufactures of graphics hardware like Nvidia and ATI provide 
their own proprietary GPU computing languages, like  Nvidias 
“C for CUDA” or ATIs “Stream”. Their major drawback lies in 
the particular hardware support, since only the manufacturers 
own platforms are supported. On the other hand there are 
hardware independent languages like OpenCL and Microsoft’s 
DirectCompute. While both work with most graphics hardware, 
DirectCompute is still limited to operating systems supporting 
DirectX 11. In contrast the OpenCL language framework, which 
is managed by the Khronos Group, can be used in a cross-
platform manner, regarding the used hardware (not only 
different GPUs, but even on CPUs and other processing units) 
as well as the used operating system, analogue to OpenGL. 
Therefore, we decided to use OpenCL to implement our 
algorithms in order to keep a maximum of flexibility. 
 
 
4.1 Methods         

Since all programming languages utilizing GPUs are lacking of 
an object-oriented modeling paradigm, the implemented kNN 
algorithms needed to be simple to keep the realization costs 
low. Considering the given GPGPU constraints, parallelizable 
processing and independent data respectively results, we 
evaluated two kNN algorithms. 
 
First, we implemented the most simple brute-force kNN 
algorithm (BF kNN) following (Garcia, Debreuve and Barlaud 

2008). BF kNN is by nature highly-parallelizable which makes 
it suitable for GPU computations. The second evaluated kNN 
algorithm is based on partitioning the point cloud in a pre-
processing step. During the actual search only points of 
neighbored partitions are considered. This algorithm will be 
referred to as partitioned kNN (P kNN) search. 
 
 
4.1.1 Brute-Force kNN Search 
 
The brute-force kNN search calculates the distances between all 
points to determine the k nearest neighbors. This results in a 
quadratic runtime  with  being the number of points in 
the point cloud. 
Since every distance between arbitrary points can be calculated 
independently, all distances could be calculated within a single 
step in parallel, assuming the corresponding number of 
computation units is present. This characteristic makes the BF 
kNN search well suitable for GPU computations. 
 
 
4.1.2 Partitioned kNN Search 
 
In contrast to BF kNN the partitioned kNN search needs a pre-
processing step, which divides the space into partitions of equal 
space (and/or other constrains like equal number of contained 
points). In our case we just divided the space into equal sized 
partitions. This enables a linear runtime complexity  for 
the pre-processing step. The partition indices  for each point 
are calculated as follows: 
 

 
 
where  is the corresponding dimension (in case of 3D: 

  1, 2, 3  ) and  is the number of partitions the particular 
dimension is divided in. 
 
After creating the partitions the k nearest neighbors are 
determined by calculating the distances between all points in the 
same, as well as in the 26 neighbored partitions (partitions at the 
border of course have less). Assuming each of the three 
dimensions is divided into eight partitions ( 8  the whole 
space is divided into 8 512 partitions. The kNN search 
situation for a single partition (solid red cube) for the described 
case is shown in Figure 3.  
 

 
Figure 3: partitioned kNN search space 

 



 

This also results in a quadratic runtime, however, with a 
considerably reduced number of distance calculations. 
Assuming the points are uniformly distributed and the space is 

divided into  partitions, there are  distances to calculate for 

each point of a partition, rather than  in case of the brute-force 
method. 
 
However, the points in point clouds acquired using laser 
scanning technology are not uniformly distributed. The points 
accumulate at walls and nearby the scanning device, as seen in 
Figure 2. Since all partitions are processed in parallel, the 
resulting duration is the processing duration of the densest 
partition. Given that the number of points within partitions 
varies significantly, a more sophisticated processing scheme has 
high potential to improve the performance of the P kNN for 
such data sets. 
 
 

5. TEST CASES AND ENVIRONMENT 

We implemented the two kNN methods, BF kNN and P kNN, in 
OpenCL to run them on a GPU. In order to get comparable 
CPU-based results we implemented them in C++ as well.  
 
The used test environment consists of an Intel Core 2 Duo 
E8400 with 3.0 GHz, 8 GB of dual channel DDR2 RAM, as 
well as an Nvidia Geforce GTX 285 with 240 stream 
processors. 
 
While the C++ implementation is single-threaded the OpenCL 
implementation creates multiple calculation threads. In case of 
the BF kNN there are as much threads started as number of 
points in the point cloud. In case of the P kNN algorithm the 
thread count corresponds to the number of partitions. 
 
The test scenarios included the calculation of 10 nearest 
neighbors for point clouds consisting of up to 60’000 points. 
Point clouds containing more points caused the OpenCL 
implementation to crash, so we assume the OpenCL/CUDA 
scheduler is unable to handle more threads. In case of P kNN 
the space was divided into 512 equal sized partitions. Overall, 
this test case was processed using BF kNN and P kNN running 
on the mentioned CPU, as well as GPU. In each case we ran 
three repetitions with different point sets. 
 
 

6. RESULTS 

As stated before we tested both algorithms with GPU-based, as 
well as with CPU-based implementations. While the x-axis 
shows the number of points in the point cloud, the y-axis shows 
the needed calculation time in milliseconds. The BF kNN 
method results are indicated with a red plus (+), in contrast the 
P kNN method results are indicated using a green x (x). 
 
Figure 4 shows the CPU-based results. The computation time 
needed by the BF kNN method shows the expected quadratic 
complexity (i.e. processing 20’000 points needed approx. 10 
seconds, while processing 40’000 points needed approx. 40 
seconds). By contrast the P kNN is considerable faster, needing 
less than five seconds calculating the 10 nearest neighbors of 
60’000 points, while the brute-force search needed about 90 
seconds. 
 

 
Figure 4: duration of kNN calculation using CPU-based 

implementation 
 
The results of the GPU-based implementation are shown in 
Figure 5. Just as the CPU-based methods GPU-based 
alternatives have a quadric time complexity as well. 
Nonetheless both are significantly faster due to parallel 
execution (factor 45 in case of BF kNN and factor 3 in case of P 
kNN). In contrast with the CPU versions the different methods 
doesn’t show a real difference in time consumption, while the P 
kNN method is slightly faster.  
 

 
Figure 5: duration of kNN calculation using GPU-based 

implementation 
 
The minimal difference is somehow unexpected, because the 
method using partitions calculates just a fraction of the 
distances the brute-force one does. The reason for this, might 
caused by the way the points, respectively the memory is 
accessed. While each GPU thread running the brute-force 
method always fetches the same point, memory address 
respectively, the partitioned search doesn’t. The former is called 
coalesced memory access, which appears to be more efficient 
than the latter un-coalesced one. This will be topic of further 
research. Furthermore a growing variance of the P kNN method 
result is evident. This might be caused by the different 
distribution of the points in the point cloud. 
 
Once the kNN for each point has been calculated, the density in 
the corresponding point can be determined. After applying 
adequate colors to the resulting density space, as mentioned in 
section 4, a live visualization of the density quality of the 
recorded point set is possible as shown in Figure 2. This enables 
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an assessment by the operator. Based on the results the operator 
can take appropriate subsequent actions. 
 
 

7. CONCLUSION AND OUTLOOK 

In this paper, we proposed a new scheme for generation of 
geospatial 3D models that is driven by relevance. The presented 
workflow, which includes on-site data evaluation and 
presentation, demands fast data processing. We are facing these 
demands by employing GPGPU to effectively process and 
analyze large volumes of LIDAR data. 
 
In particular we presented a density calculation based on k-
nearest-neighbor determination using OpenCL. The evaluated 
implementations using OpenCL accelerated the kNN search by 
up to a factor of 45 compared to the brute-force algorithm CPU-
implementation. The P kNN algorithm acceleration reached a 
factor of up to 3. In summary the GPGPU analysis suites well 
the demands of the on-site environment and enables a much 
faster data analysis. Furthermore the GPGPU analysis concept 
isn’t just limited to field environment as it can be used on 
standard PC hardware as well. 
 
As discussed the P kNN OpenCL-based implementation leaves 
room for improvements, for instance in accessing the same 
points/memory in each GPU computation thread (coalesced 
memory access). Furthermore the algorithm needs to be adapted 
to efficiently process non-uniformly distributed point sets 
produced by using laser scanner. Both goals could be reached 
by changing the way the partitions are processed, e.g. 
processing all partitions in a serial manner and processing the 
points within a single partition in parallel. As mentioned this 
will be discussed in further research. 
 
In addition to the improvement of the current implementation 
our further research focuses on an appropriate AR setup, as well 
as on suitable integration algorithms.  
 
 

8. ACKNOWLEDGEMENT 

This joint research project was financially supported by the 
State of Lower-Saxony and the Volkswagen Foundation, 
Hannover, Germany. 
 
 

9. REFERENCES 

Arya, S., D. M. Mount, N. S. Netanyahu, R. Silverman, und A. 
Y. Wu. „An Optimal Algorithm for Approximate Nearest 
Neighbor Searching.“ Journal of the ACM, 45, 1998: 891-923. 

Azuma, R. "A Survey of Augmented Reality." Teleoperators 
and Virtual Environments, Vol. 6, No. 4. 1997. 

Azuma, R., Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. 
MacIntyre. "Recent Advances in Augmented Reality." IEEE 
Computer Graphics and Applications, Vol. 21, No. 6. 2001. 

Barnea, S., and S. Filin. "Keypoint Based Autonomous 
Registration of Terrestrial Laser Point Clouds." ISPRS journal 
of Photogrammetry and Remote Sensing, 2008. 

—. "Registration of terrestrial laser scans via image based 
features." International Archives of Photogrammetry and 
Remote Sensing. 36(3/W52). 2007. 26-31. 

Barnea, S., S. Filin, and V. Alchanaties. "A supervised approach 
for object extraction from terrestrial laser point clouds 
demonstrated on trees." International Archives of 
Photogrammetry and Remote Sensing. 36(3/W49A). 2007. 135-
140. 

Becker, S., and N. Haala. "Combined Feature Extraction for 
Façade Reconstruction." International Archives of 
Photogrammetry and Remote Sensing. 36(3/W52). 2007. 44-49. 

Cartwright, W. "Towards an understanding of the importance of 
landmarks to assist perceptions of a space in web-delivered 3D 
worlds." 3rd Symposium on LBS & TeleCartography. Vienna, 
Austria, 2005. 

Connor, M., and P. Kumar. "Parallel Construction of k-Nearest 
Neighbor Graphs for Point Clouds." Eurographics Symposium 
on Point-Based Graphics. Los Angeles, CA, USA, 2008. 

Cyclone. Leica Cyclone. 2008. http://www.leica-
geosystems.com/corporate/de/ndef/lgs_6515.htm (accessed 8 1, 
2008). 

Elias, B., V. Paelke, and S. Kuhnt. "Concepts for the 
Cartographic Visualization of Landmarks." Proc. 3rd 
Symposium on LBS & TeleCartography. Vienna, Austria, 2005. 

Filin, S. "Surface classification from airborne laser scanning 
data." Computers & Geoscience 30(9-10), 2004: 1033-1041. 

Filin, S., Avni, and A. Y. Baruch. "Quantification of 
Environmental Change in Receding Lake Environments." 
Proceedings of FIG working week 2007 and GSDI-8. Hong-
Kong, 2007. 1-6. 

Filin, S., N. Abo-Akel, and Y. Doytsher. "Detection and 
reconstruction of free form surfaces from airborne laser 
scanning data." International Archives of Photogrammetry and 
Remote Sensing. 36(3/W52). 2007. 119-124. 

Garcia, V., E. Debreuve, and M. Barlaud. "Fast k nearest 
neighbor search using GPU." CVPR Workshop on Computer 
Vision on GPU. Anchorage, Alaska, USA, 2008. 

Gorte, B. "Planar Feature Extraction in Terrestrial Laser Scans 
Using Gradient Based Range Image Segmentation." 
International Archives of Photogrammetry and Remote Sensing. 
36(3/W52). 2007. 173-182. 

Hedley, N., M. Billinghurst, L. Postner, R. May, and H. Kato. 
"Explorations in the use of Augmented Reality for Geographic 
Visualization." Teleoperators and Virtual Environments, Vol. 
11, No. 2. 2002. 119-133. 

InnovMetric. InnovMetric Polyworks. 2008. 
http://www.innovmetric.com/Manufacturing/home.aspx 
(accessed 1 8, 2008). 

Milgram, P., H. Takemura, Utsumi A., and F. Kishino. 
"Augmented Reality: A class of displays on the reality-virtuality 
continuum." SPIE Vol. 2351-34, Telemanipulator and 
Telepresence Technologies. 1994. 



 

Paelke, V., and C. Brenner. "Development of a Mixed Reality 
Device for Interactive On-Site Geo-visualization." Proc. 
Simulation und Visualisierung. Magdeburg, 2007. 

Piekarski, W., and B. H. Thomas. "Tinmith-Metro: New 
Outdoor Techniques for Creating City Models with an 
Augmented Reality Wearable Computer." 5th Int'l Symposium 
on Wearable Computers. Zurich, Switzerland, 2001. 31-38. 

Rottensteiner, F., and C. Briese. "A new method for building 
extraction in urban areas from high-resolution LiDAR data." 
International Archives of Photogrammetry and Remote Sensing 
34(3A). 2002. 295-301. 

Schmalstieg, D., et al. "The Studierstube Augmented Reality 
Project." Teleoperators and Virtual Environments, Vol. 11, No. 
1. 2002. 

Volsseman, G., and S. Dijkman. "3D building model 
reconstruction from point clouds and ground plans." In 
International Archives of Photogrammetry and Remote Sensing. 
34(3W4), 37-43. 2001. 

Zeibak, R., and S. Filin. "Change detection via terrestrial laser 
scanning." International Archives of Photogrammetry and 
Remote Sensing. 36(3/W52). 2007. 430-435. 

 


