

RELEVANCE-DRIVEN ACQUISITION AND

RAPID ON-SITE ANALYSIS OF 3D GEOSPATIAL DATA

D. Eggert, V. Paelke

IKG, Institute for Cartography and Geoinformatics, Leibniz Universität Hannover, Appelstr. 9a, 30167 Hannover,

Germany, {eggert, paelke}@ikg.uni-hannover.de

KEY WORDS: Information Visualization, 3D Geovisualization, Data Analysis, GPGPU, CUDA, OPENCL, Density Calculation,

k-nearest-neighbors

ABSTRACT:

One central problem in geospatial applications using 3D models is the tradeoff between detail and acquisition cost during
acquisition, as well as processing speed during use. Commonly used laser-scanning technology can be used to record spatial data in
various levels of detail. Much detail, even on a small scale, requires the complete scan to be conducted at high resolution and leads to
long acquisition time, as well as a great amount of data and complex processing.
Therefore, we propose a new scheme for the generation of geospatial 3D models that is driven by relevance rather than data. As part
of that scheme we present a novel acquisition and analysis workflow, as well as supporting data-models. The workflow includes on-
site data evaluation (e.g. quality of the scan) and presentation (e.g. visualization of the quality), which demands fast data processing.
Thus, we employ high performance graphics cards (GPGPU) to effectively process and analyze large volumes of LIDAR data. In
particular we present a density calculation based on k-nearest-neighbor determination using OpenCL.
The presented GPGPU-accelerated workflow enables a fast data acquisition with highly detailed relevant objects and minimal
storage requirements.

1. MOTIVATION

A wide variety of 3D geospatial based applications have been
proposed in recent years, mostly in relation to city modeling but
also for other domains. Application paradigms like 3D location
based services and augmented reality rely on appropriate 3D
models of the environment as basic constituents. Despite
technical advances, the cost effectiveness of creating and
maintaining the required 3D models, as well as their appropriate
presentation to users, remain a key issue. This situation is
further complicated by the fact that 3D geospatial information is
subject to frequent changes and that the current developments in
3D computer games and film animation lead users to expect a
high fidelity of the models used in an application.

One central problem in applications using 3D model is the
tradeoff between detail and acquisition cost, during conception,
as well as processing speed, during use. Much detail, even on a
small scale, requires the complete scan to be conducted at high
resolution and leads to long acquisition time, great amount of
data, and complex processing. Fast scanning in contrast will be
shorter in duration but will provide lower resolution and an
overall coarse model. Adding more detail and using more
realistic graphics may seem the obvious solutions. However,
often they are neither cost effective nor viable using existing
techniques.

We suggest looking for alternative ways to provide 3D
information on a large scale. Recent research has found that in a
variety of visual applications that use 3D city models, a high
amount of detail is only required for objects that are of high
relevance to the user (Cartwright 2005)(Elias, Paelke and Kuhnt
2005).

We propose the generation of large-scale geospatial models that
are driven by relevance rather than data. Particularly,
developing new progressive acquisition and modeling
techniques that provide a more coherent view into the available
sources of information. To achieve this, our plan is to use laser-
scanning technology and novel user interface techniques,
providing instant visual feedback which demands fast data
analysis.

The established workflow consists of a data acquisition stage in
the field and a following processing and analysis stage in a
standard in-door office environment. This makes fast multi-core
computers or even entire computer clusters available for the
analysis. An on-site environment lacks this computation power;
therefore we employ high performance graphic cards to process
and analyze the LIDAR data at the recording site. Compared to
common CPUs, even mobile GPUs (build into Laptops) have a
significant increased computation power. Since these
computation capabilities entail higher power consumption, most
high performance mobile GPUs come along with an integrated
low power GPU. In case the high performance GPU is not

needed, it will be deactivated and the separate low power GPU
takes over for longer battery life. Since the high performance
GPU is only needed during the analysis, the concept of having a
separate low power GPU fits the demands of our on-site
analysis.

2. RELATED WORK

Almost all approaches to recognize salient objects and
reconstruct their shape are data driven, targeting the extraction
of every detail from the data, needed or not, see e.g.,
(Volsseman and Dijkman 2001), (Rottensteiner and Briese
2002), (Filin 2004), (Filin, Abo-Akel and Doytsher 2007),
(Becker and Haala 2007). Recent advances in terrestrial laser
scanning has shown that processing the point-clouds can be
performed, under adequate representation, both efficiently in
terms of processing time and with relatively limited
computational resources (Zeibak and Filin 2007), (Gorte 2007),
(Barnea and Filin 2007), (Barnea and Filin 2008). These results
refer to the registration of the point clouds (Barnea and Filin
2007), (Barnea and Filin 2008), the extraction of primitives and
objects (Gorte 2007), (Barnea, Filin and Alchanaties 2007), and
to the association of scan pairs (Zeibak and Filin 2007).

The software currently used in the 3D reconstruction process
and for data acquisition is designed for operation in standard in-
door office environments, e.g., (InnovMetric 2008), (Cyclone
2008). Regarding on-site interaction, the user interface concepts
of mixed and augmented reality (Milgram, et al. 1994), (Azuma
1997), (Azuma, Baillot, et al. 2001) that integrate the real
environment into the user interface have shown high potential to
support complex spatial interaction tasks. As an example, the
Studierstube system (Schmalstieg, et al. 2002) demonstrates a
number of promising spatial interaction concepts. Hedley
(Hedley, et al. 2002) and others have demonstrated
collaborative 3D geovisualization applications based on
augmented reality techniques. While the technical challenges of
mobile outdoor are great, there have been a number of
demonstrators, e.g., the outdoor modeling application by
(Piekarski and Thomas 2001). Another AR input/output device
is the GeoScope (Paelke and Brenner 2007) that aims to avoid
some of the central problems by providing high-precision video
overlay in outdoor use-cases where high mobility is not required
and seems well suited for acquisition applications.

A point cloud’s density is an important indicator of its quality.
In order to determine this density the k-nearest-neighbors (kNN)
can be used. Most approaches for determining the kNN of a
point in a point set rely on reducing the complexity of the
required neighbor searches. They generally try to reduce the
number of distances to calculate by arranging the data in spatial
data structures, e.g. a kd-tree structure (Arya, et al. 1998) or by
using Morton order or Z-order of points as in (Connor and
Kumar 2008). Another recent proposal with promising results
uses a brute-force search implemented using the C for CUDA
API (Garcia, Debreuve and Barlaud 2008).

3. CONCEPT

The objective of our work is the effective creation of 3D
geospatial models based on integrating global data (airborne
laser or alternative sources) if available with local detail from
terrestrial laser scans through progressive acquisition and
modeling. Such modeling will be according to need, relevance,
and controlled on-site with an augmented reality user interface.

The central idea is to control and limit the amount of detail in
all processing stages to that actually required while providing
feedback and on-site interaction capabilities. This will allow
reducing acquisition time, modeling time, as well as storage and
computation requirements in the actual use of the resulting
models. Additionally, it will allow to focus on the relevant
features needing further detailing. Such focus is almost
impossible to achieve using uniform scans. For this we propose
a demand-driven workflow, as shown in Figure 1, into which
the acquisition, analysis, integration and presentation activities
are embedded.

Figure 1: acquisition and analysis workflow

Based on the application and requirements, an initial model is
acquired via airborne laser scanning where and if possible to
provide a cost effective base model. Alternatively, existing 2D
or 3D models can be used if available.

The central activity is on-site modeling, in which terrestrial
laser scanning is employed. A user interface based on the
paradigm of augmented reality (AR) in which the view of the
real environment is augmented with information on the current
model, its resolution and quality allows to control the
acquisition and modeling process through intuitive decisions
and selection of relevant features worth or need detailing. A
mobile version of the previous mentioned GeoScope constitutes
a suitable AR setup.

The AR user interface is closely coupled to 3D geometry
analysis and integration algorithms that match and integrate data
from different scans and data sources and provide measures of
object distinctiveness, complexity and scan quality. In contrast
to common off-line processing techniques, this approach
requires 3D geometry analysis and integration schemes that
operate at interactive speeds. Thus, we employ high
performance graphics cards to speed up the analysis algorithms.

The resulting model can be further extended and refined either
on-site or back in the office using established modeling tools or
dynamically generated structure elements (e.g. pre-packed
facade features from a library) to match the application
requirements. It can then be applied in the intended application
(e.g. visualization or precise positioning).

4. GEOMETRIC ANALYSIS ALGORITHMS

In order to create a 3D model from the LIDAR data, various
geometry analysis algorithms must be applied. Beside several
other algorithms the determination of the k nearest neighbors
(kNN) of each point in the recorded point cloud is commonly
needed. While algorithms like triangle-mesh reconstruction use
kNN for surface reconstruction, our approach employs kNN to
determine a density value for each point. The density in each
point gives information about the quality of the recorded point

set. The density of point is the inverted sum of the
distances between and the k nearest neighbors of .

∑ | |

The association of colors to the minimum and maximum density
value (e.g. max density = green, min density = red) allows to
visualize the calculated density values, as shown in Figure 2.

Figure 2: density visualization

Doing the kNN calculations on graphics processing units (GPU)
raises two questions:

 Which kNN algorithm to implement
 Which programming language to use

The technique of using a GPU to perform calculations is often
referred to as general purpose computation on GPUs (GPGPU).
GPGPU is basically a kind of stream processing that exploits
the parallel data processing capabilities of modern GPUs.
Therefore the used algorithm needs to be highly parallelizable.
Furthermore the processed data, or more specific the
corresponding results, must be independent. Regarding the
programming language to use leaves basically two options.
Manufactures of graphics hardware like Nvidia and ATI provide
their own proprietary GPU computing languages, like Nvidias
“C for CUDA” or ATIs “Stream”. Their major drawback lies in
the particular hardware support, since only the manufacturers
own platforms are supported. On the other hand there are
hardware independent languages like OpenCL and Microsoft’s
DirectCompute. While both work with most graphics hardware,
DirectCompute is still limited to operating systems supporting
DirectX 11. In contrast the OpenCL language framework, which
is managed by the Khronos Group, can be used in a cross-
platform manner, regarding the used hardware (not only
different GPUs, but even on CPUs and other processing units)
as well as the used operating system, analogue to OpenGL.
Therefore, we decided to use OpenCL to implement our
algorithms in order to keep a maximum of flexibility.

4.1 Methods

Since all programming languages utilizing GPUs are lacking of
an object-oriented modeling paradigm, the implemented kNN
algorithms needed to be simple to keep the realization costs
low. Considering the given GPGPU constraints, parallelizable
processing and independent data respectively results, we
evaluated two kNN algorithms.

First, we implemented the most simple brute-force kNN
algorithm (BF kNN) following (Garcia, Debreuve and Barlaud

2008). BF kNN is by nature highly-parallelizable which makes
it suitable for GPU computations. The second evaluated kNN
algorithm is based on partitioning the point cloud in a pre-
processing step. During the actual search only points of
neighbored partitions are considered. This algorithm will be
referred to as partitioned kNN (P kNN) search.

4.1.1 Brute-Force kNN Search

The brute-force kNN search calculates the distances between all
points to determine the k nearest neighbors. This results in a
quadratic runtime with being the number of points in
the point cloud.
Since every distance between arbitrary points can be calculated
independently, all distances could be calculated within a single
step in parallel, assuming the corresponding number of
computation units is present. This characteristic makes the BF
kNN search well suitable for GPU computations.

4.1.2 Partitioned kNN Search

In contrast to BF kNN the partitioned kNN search needs a pre-
processing step, which divides the space into partitions of equal
space (and/or other constrains like equal number of contained
points). In our case we just divided the space into equal sized
partitions. This enables a linear runtime complexity for
the pre-processing step. The partition indices for each point
are calculated as follows:

where is the corresponding dimension (in case of 3D:

 1, 2, 3) and is the number of partitions the particular
dimension is divided in.

After creating the partitions the k nearest neighbors are
determined by calculating the distances between all points in the
same, as well as in the 26 neighbored partitions (partitions at the
border of course have less). Assuming each of the three
dimensions is divided into eight partitions (8 the whole
space is divided into 8 512 partitions. The kNN search
situation for a single partition (solid red cube) for the described
case is shown in Figure 3.

Figure 3: partitioned kNN search space

This also results in a quadratic runtime, however, with a
considerably reduced number of distance calculations.
Assuming the points are uniformly distributed and the space is

divided into partitions, there are distances to calculate for

each point of a partition, rather than in case of the brute-force
method.

However, the points in point clouds acquired using laser
scanning technology are not uniformly distributed. The points
accumulate at walls and nearby the scanning device, as seen in
Figure 2. Since all partitions are processed in parallel, the
resulting duration is the processing duration of the densest
partition. Given that the number of points within partitions
varies significantly, a more sophisticated processing scheme has
high potential to improve the performance of the P kNN for
such data sets.

5. TEST CASES AND ENVIRONMENT

We implemented the two kNN methods, BF kNN and P kNN, in
OpenCL to run them on a GPU. In order to get comparable
CPU-based results we implemented them in C++ as well.

The used test environment consists of an Intel Core 2 Duo
E8400 with 3.0 GHz, 8 GB of dual channel DDR2 RAM, as
well as an Nvidia Geforce GTX 285 with 240 stream
processors.

While the C++ implementation is single-threaded the OpenCL
implementation creates multiple calculation threads. In case of
the BF kNN there are as much threads started as number of
points in the point cloud. In case of the P kNN algorithm the
thread count corresponds to the number of partitions.

The test scenarios included the calculation of 10 nearest
neighbors for point clouds consisting of up to 60’000 points.
Point clouds containing more points caused the OpenCL
implementation to crash, so we assume the OpenCL/CUDA
scheduler is unable to handle more threads. In case of P kNN
the space was divided into 512 equal sized partitions. Overall,
this test case was processed using BF kNN and P kNN running
on the mentioned CPU, as well as GPU. In each case we ran
three repetitions with different point sets.

6. RESULTS

As stated before we tested both algorithms with GPU-based, as
well as with CPU-based implementations. While the x-axis
shows the number of points in the point cloud, the y-axis shows
the needed calculation time in milliseconds. The BF kNN
method results are indicated with a red plus (+), in contrast the
P kNN method results are indicated using a green x (x).

Figure 4 shows the CPU-based results. The computation time
needed by the BF kNN method shows the expected quadratic
complexity (i.e. processing 20’000 points needed approx. 10
seconds, while processing 40’000 points needed approx. 40
seconds). By contrast the P kNN is considerable faster, needing
less than five seconds calculating the 10 nearest neighbors of
60’000 points, while the brute-force search needed about 90
seconds.

Figure 4: duration of kNN calculation using CPU-based

implementation

The results of the GPU-based implementation are shown in
Figure 5. Just as the CPU-based methods GPU-based
alternatives have a quadric time complexity as well.
Nonetheless both are significantly faster due to parallel
execution (factor 45 in case of BF kNN and factor 3 in case of P
kNN). In contrast with the CPU versions the different methods
doesn’t show a real difference in time consumption, while the P
kNN method is slightly faster.

Figure 5: duration of kNN calculation using GPU-based

implementation

The minimal difference is somehow unexpected, because the
method using partitions calculates just a fraction of the
distances the brute-force one does. The reason for this, might
caused by the way the points, respectively the memory is
accessed. While each GPU thread running the brute-force
method always fetches the same point, memory address
respectively, the partitioned search doesn’t. The former is called
coalesced memory access, which appears to be more efficient
than the latter un-coalesced one. This will be topic of further
research. Furthermore a growing variance of the P kNN method
result is evident. This might be caused by the different
distribution of the points in the point cloud.

Once the kNN for each point has been calculated, the density in
the corresponding point can be determined. After applying
adequate colors to the resulting density space, as mentioned in
section 4, a live visualization of the density quality of the
recorded point set is possible as shown in Figure 2. This enables

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10000 20000 30000 40000 50000 60000

C
a

lc
u

la
tio

n
 T

im
e

 [
m

s]

Number of Points [#]

Duration of kNN Calculation on CPU

Brute-Force
Partitioned

 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 30000 40000 50000 60000

C
a

lc
u

la
tio

n
 T

im
e

 [
m

s]

Number of Points [#]

Duration of kNN Calculation on GPU

Brute-Force
Partitioned

an assessment by the operator. Based on the results the operator
can take appropriate subsequent actions.

7. CONCLUSION AND OUTLOOK

In this paper, we proposed a new scheme for generation of
geospatial 3D models that is driven by relevance. The presented
workflow, which includes on-site data evaluation and
presentation, demands fast data processing. We are facing these
demands by employing GPGPU to effectively process and
analyze large volumes of LIDAR data.

In particular we presented a density calculation based on k-
nearest-neighbor determination using OpenCL. The evaluated
implementations using OpenCL accelerated the kNN search by
up to a factor of 45 compared to the brute-force algorithm CPU-
implementation. The P kNN algorithm acceleration reached a
factor of up to 3. In summary the GPGPU analysis suites well
the demands of the on-site environment and enables a much
faster data analysis. Furthermore the GPGPU analysis concept
isn’t just limited to field environment as it can be used on
standard PC hardware as well.

As discussed the P kNN OpenCL-based implementation leaves
room for improvements, for instance in accessing the same
points/memory in each GPU computation thread (coalesced
memory access). Furthermore the algorithm needs to be adapted
to efficiently process non-uniformly distributed point sets
produced by using laser scanner. Both goals could be reached
by changing the way the partitions are processed, e.g.
processing all partitions in a serial manner and processing the
points within a single partition in parallel. As mentioned this
will be discussed in further research.

In addition to the improvement of the current implementation
our further research focuses on an appropriate AR setup, as well
as on suitable integration algorithms.

8. ACKNOWLEDGEMENT

This joint research project was financially supported by the
State of Lower-Saxony and the Volkswagen Foundation,
Hannover, Germany.

9. REFERENCES

Arya, S., D. M. Mount, N. S. Netanyahu, R. Silverman, und A.
Y. Wu. „An Optimal Algorithm for Approximate Nearest
Neighbor Searching.“ Journal of the ACM, 45, 1998: 891-923.

Azuma, R. "A Survey of Augmented Reality." Teleoperators
and Virtual Environments, Vol. 6, No. 4. 1997.

Azuma, R., Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B.
MacIntyre. "Recent Advances in Augmented Reality." IEEE
Computer Graphics and Applications, Vol. 21, No. 6. 2001.

Barnea, S., and S. Filin. "Keypoint Based Autonomous
Registration of Terrestrial Laser Point Clouds." ISPRS journal
of Photogrammetry and Remote Sensing, 2008.

—. "Registration of terrestrial laser scans via image based
features." International Archives of Photogrammetry and
Remote Sensing. 36(3/W52). 2007. 26-31.

Barnea, S., S. Filin, and V. Alchanaties. "A supervised approach
for object extraction from terrestrial laser point clouds
demonstrated on trees." International Archives of
Photogrammetry and Remote Sensing. 36(3/W49A). 2007. 135-
140.

Becker, S., and N. Haala. "Combined Feature Extraction for
Façade Reconstruction." International Archives of
Photogrammetry and Remote Sensing. 36(3/W52). 2007. 44-49.

Cartwright, W. "Towards an understanding of the importance of
landmarks to assist perceptions of a space in web-delivered 3D
worlds." 3rd Symposium on LBS & TeleCartography. Vienna,
Austria, 2005.

Connor, M., and P. Kumar. "Parallel Construction of k-Nearest
Neighbor Graphs for Point Clouds." Eurographics Symposium
on Point-Based Graphics. Los Angeles, CA, USA, 2008.

Cyclone. Leica Cyclone. 2008. http://www.leica-
geosystems.com/corporate/de/ndef/lgs_6515.htm (accessed 8 1,
2008).

Elias, B., V. Paelke, and S. Kuhnt. "Concepts for the
Cartographic Visualization of Landmarks." Proc. 3rd
Symposium on LBS & TeleCartography. Vienna, Austria, 2005.

Filin, S. "Surface classification from airborne laser scanning
data." Computers & Geoscience 30(9-10), 2004: 1033-1041.

Filin, S., Avni, and A. Y. Baruch. "Quantification of
Environmental Change in Receding Lake Environments."
Proceedings of FIG working week 2007 and GSDI-8. Hong-
Kong, 2007. 1-6.

Filin, S., N. Abo-Akel, and Y. Doytsher. "Detection and
reconstruction of free form surfaces from airborne laser
scanning data." International Archives of Photogrammetry and
Remote Sensing. 36(3/W52). 2007. 119-124.

Garcia, V., E. Debreuve, and M. Barlaud. "Fast k nearest
neighbor search using GPU." CVPR Workshop on Computer
Vision on GPU. Anchorage, Alaska, USA, 2008.

Gorte, B. "Planar Feature Extraction in Terrestrial Laser Scans
Using Gradient Based Range Image Segmentation."
International Archives of Photogrammetry and Remote Sensing.
36(3/W52). 2007. 173-182.

Hedley, N., M. Billinghurst, L. Postner, R. May, and H. Kato.
"Explorations in the use of Augmented Reality for Geographic
Visualization." Teleoperators and Virtual Environments, Vol.
11, No. 2. 2002. 119-133.

InnovMetric. InnovMetric Polyworks. 2008.
http://www.innovmetric.com/Manufacturing/home.aspx
(accessed 1 8, 2008).

Milgram, P., H. Takemura, Utsumi A., and F. Kishino.
"Augmented Reality: A class of displays on the reality-virtuality
continuum." SPIE Vol. 2351-34, Telemanipulator and
Telepresence Technologies. 1994.

Paelke, V., and C. Brenner. "Development of a Mixed Reality
Device for Interactive On-Site Geo-visualization." Proc.
Simulation und Visualisierung. Magdeburg, 2007.

Piekarski, W., and B. H. Thomas. "Tinmith-Metro: New
Outdoor Techniques for Creating City Models with an
Augmented Reality Wearable Computer." 5th Int'l Symposium
on Wearable Computers. Zurich, Switzerland, 2001. 31-38.

Rottensteiner, F., and C. Briese. "A new method for building
extraction in urban areas from high-resolution LiDAR data."
International Archives of Photogrammetry and Remote Sensing
34(3A). 2002. 295-301.

Schmalstieg, D., et al. "The Studierstube Augmented Reality
Project." Teleoperators and Virtual Environments, Vol. 11, No.
1. 2002.

Volsseman, G., and S. Dijkman. "3D building model
reconstruction from point clouds and ground plans." In
International Archives of Photogrammetry and Remote Sensing.
34(3W4), 37-43. 2001.

Zeibak, R., and S. Filin. "Change detection via terrestrial laser
scanning." International Archives of Photogrammetry and
Remote Sensing. 36(3/W52). 2007. 430-435.

