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ABSTRACT: 

 

In general, the development of prediction methods is a quite challenging field. However, as difficult the development is, as useful 

those methods can be in a large variety of use cases. Whether the weather of tomorrow or the destination of a moving individual is to 

be predicted, in both cases many different aspects have to be considered, because as well as the weather’s behaviour the one of 

individuals, especially human beings, is influenced by many factors. For instance, movements of human beings are either planned, 

arbitrary or influenced by their environment or social aspects. In most cases a combination of those factors is involved. In this paper, 

motivated by the context of a decentralized surveillance scenario, we present an approach for predicting movements on the basis of a 

prediction model generated from the knowledge, which is implicated in spatio-temporal trajectories. This model is based on 

extracted interesting places and considers several aspects, which contain gained information about the movement behaviour in a 

given scenario. 

 

 

1. INTRODUCTION 

Safety and security issues in large public open spaces are often 

ensured using surveillance cameras. Considering public places 

like railway stations or stadiums at the rush hour, the 

simultaneous observation of large numbers of people is a huge 

challenge. The surveillance cameras have to observe the 

peoples’ movements and detect unusual or safety-threatening 

behavior. Due to the fact that those scenarios are often extended 

over rather big or complex areas, a large number of cameras is 

needed, each of which has a dedicated, fixed observation area. 

To reduce the costs incurred by the expensive hardware the 

efficiency of such surveillance systems has to be increased. This 

can be achieved by using a decentralized (smart-) camera 

network, in which a few cooperating cameras are able to 

perform the same task as a set of fixed cameras with a dedicated 

observation area. 

Using fewer smart cameras leads to fact that the observation 

area can be overseen completely but the fields of view of the 

cameras are not able to cover it completely. So there are gaps, in 

which moving individuals may disappear from tracking. Due to 

this fact there are two competing aims concerning the efficiency 

of a tracking system to provide data in terms of evaluable 

trajectories. On the one hand gaps within tracks have to be 

avoided, on the other hand as many individuals as possible have 

to be tracked. However, both of them can only be reached by an 

efficient adjustment of the cameras. The efficiency depends on 

the cooperation of the cameras. It will be increased, if 

information about possible movements of the individuals can be 

included. Using prediction knowledge an optimum of adjusting 

the fields of view of the cameras can be found at any time so 

that one of the competing aims can be pursued. In addition, of 

course, a prioritization of the individuals or subareas can be 

used for pursuing a combination of both aims. 

There are various possibilities to predict movements. Often and 

in the simplest case a future location       is calculated by a 

linear relationship of the current location    and velocity vector 

   like              . In most cases individuals do not 

behave like this. Their movements are initiated or influenced by 

many factors. Those factors are, for instance, described by a 

social force model in Helbing and Molnar (1995). 

The described problem and its context request an algorithm, 

which provides reliable results for a simultaneous observation 

of several objects at real-time. 

This paper will show an approach to learn the required 

prediction knowledge at runtime by evaluating the trajectory 

data. It is based on a graph structure and an on-line 

determination of probability values of future movements gained 

from the observed movements. After an overview on related 

work, our approach is presented in detail, followed by 

experiments which verify the suitability and applicability. An 

outlook on future work concludes the paper. 

 

 

2. RELATED WORK 

There are several different approaches to gain information to 

predict movements or possible target locations of individuals. 

Ashbrook et al. (2003) describe a prediction method, which 

bases on Markov models for extracted locations and their 

transitions to other locations. They calculate the probabilities 

for an individual to visit another location Li by using the relative 

frequencies of all transitions and those, who lead to a location 

Li. They are able to use Markov models of nth order to increase 

the prediction certainty, but those models are not updated in 

real-time. 

Asahara et al. (2011) propose a method for predicting pedestrian 

movement on the basis of a mixed Markov-chain model, which 

takes into account a pedestrian's personality and previous status, 

but does not adapt to temporal changes. This leads to lower 

prediction rates at later movement steps. 

Makris and Ellis (2002) describe a way for incrementally 

building spatial envelopes for sets of trajectories. New 

trajectories can be analyzed in respect to the membership to the 

identified models. Besides the possibility to detect unusual 

behavior the membership probability corresponds to the 

probability the trajectory shares their destination with the 

model. In this way, probabilities for using whole tracks are 

established, however not for individual segments of a track. 
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Baiget et al. (2008) also compare new trajectories with existing 

models to gain prediction knowledge. Instead of using spatial 

envelopes as models they are generating trajectory prototypes 

from trajectories with common start and end locations. They get 

these locations by clustering the points, where the already 

existing trajectories enter or leave the observed scene. Using the 

prototypes they predict the development of new trajectories. 

This approach gains its prediction knowledge exclusively from 

the shapes of the trajectories. Further factors are not considered. 

When trying to transfer the described algorithms to our 

problem, we face the following drawbacks: the algorithms do 

not supported real-time processing, they are poor in adaption to 

changes in movement behavior and further influences to the 

movement behavior are hardly considered.  

Our approach is based on different methods for analyzing 

trajectory data in order to gain a graph structure: to this end, 

methods for identifying important or interesting places (e.g. 

Schmid et al., 2009) and similar trajectories are essential (e.g.  

Buchin et al., 2011) 

 

 

3. A GRAPH BASED PREDICTION APPROACH 

Our goal is the implementation of a camera tracking system, 

thus we need to use a prediction method which is able to operate 

at runtime. In spite of the given video tracking scenario, we 

want to keep this approach that general that it can also be 

applied to other scenarios. Furthermore, we consider the fact 

that there are several factors that influence the individual’s 

decision, where to go next, which we model explicitly. 

Our approach is based on a graph which models the behavior of 

individuals moving in space, and is composed of several 

consecutive algorithms. The first one, which is described in 

detail in Feuerhake et al. (2011), creates and updates the graph 

structure. It is incrementally built up by extracted interesting 

places (nodes in graph) and a segmentation of trajectories, 

which clusters trajectory segments connecting the same start 

and end places (edges). The resulting graph is an input for the 

second step, the prediction. In this step the next possible target 

locations including their probabilities calculated. 

 

3.1 Setup of graph structure 

As mentioned before, the first algorithm extracts interesting 

places. In our context an interesting place is defined as a region 

(with a certain size), where individuals slow down and which 

are visited several times. It can be either an attractive place (e.g. 

a cash desk, a shopping window or any often visited place 

people are getting slower or even stop at) or a place at which 

individuals appear or disappear (for example people entering a 

building or leaving the area visible by a camera). To find these 

places at runtime, the proposed approach uses three different 

parameters (a visit count, a region size and a velocity threshold) 

and checks certain criteria for all movements. The first criterion 

determines whether a movement is examined or not. It will be 

examined, if either the individual’s velocity is below a certain 

threshold (attractive place) or it is detected the first or last time 

(place of appearance or disappearance). A second criterion is 

that a minimum threshold for a place’s visit count has to be 

reached to make an interesting place out of a candidate place. 

After the interesting places are found (cf. Figure 1 (1)), the next 

step consists of a segmentation of the original trajectories. The 

trajectory segments leading from one place to another are cut 

and gathered in corresponding collections, which are 

represented as edges in the graph. The edges of the graph are 

labeled with the underlying information, e.g. the number and 

direction of trajectory segments they represent (cf. Figure 1 (2)). 

 

 
Figure 1:  Using a places extraction algorithm for creating the 

graph as basis for the prediction algorithm 

 

3.2 Prediction of possible moves 

The second step consists of the prediction algorithm. Statements 

about possible paths of an individual are made with the help of 

the graph at every time step. Each of those statements is 

quantified by a probability value. The calculation of such a 

value always refers to the current position of the individual, all 

leaving edges from the last node an individual has reached and 

also to the whole path before. 

A first criterion is a statistics of usage of all outgoing 

trajectories which can be set up to yield probability values of a 

possible decision (cf. Figure 2 (a)). However, a decision will 

also depend on additional factors e.g. the distance to possible 

targets (b), the similarities concerning the shape of the current 

to other way segments (c), as well as the already passed way, 

i.e. where the object comes from (d).  

 
Figure 2:  The probability value depends on four factors: (a) the 

preferred target of other individuals, (b) the distance to possible 

targets, (c) the similarities concerning the shape and parameters 

of the current to other way segments, (d) the already passed 

places. 

 

3.3 Prediction criteria 

In the following, these four criteria are motivated and described 

in detail. Note that the probabilities are calculated and updated 

at each time instance (and position) of an object, and not only at 

the nodes. Furthermore, each probability factor Px applies  

 

       . (1) 

 

3.3.1 Neighborhood Factor Pn: It is obvious that sometimes 

individuals use typical routes when moving from one to another 

place. For instance, after entering a cinema entrance hall people 
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often walk to the cash desks to buy the tickets. After that, in 

most cases they head for the next desk to buy some popcorn or 

drinks and then to the cinema hall, which shows their movie. 

Because this fact, those typical routes can be used for getting a 

first hint for the next target of an individual and represent the 

first factor of the overall probability. Its value can be derived by 

the relative frequency that the edge of the graph was used, 

which connects the last node (last place) and the target node 

(target place). So let          be the weights (i.e. the number of 

times, the edge was used) of the edges leaving a node A and    

be the weight of the edge connecting A and node A1. Then the 

probability value    of target A1 is calculated by 

 

         
  

   
 
   

. (2) 

 

3.3.2 Distance Factor Pd: The second factor compares the 

distances to possible targets. The underlying idea is that a target 

is more probable, when it is closer. Thus, the highest probability 

value is assigned to the closest place. The value will change 

according to the distances. Let the nodes          be possible 

targets and P the current position of an individual, which can be 

anywhere in the network, not only in the nodes. The relationship 

between the distances        and the probability    of node A1 

can be described by 

 

           
       

        
 
   

. (3) 

 

3.3.3 Shape Factor Ps: Often the shape of the path an 

individual has passed since the last place is informative, too. 

Similarities to existing trajectory segments may be found and a 

common target may be derived. This fact is considered by the 

shape factor. It uses all leaving segments from the last visited 

place and compares them to the current segment. To this end, 

the Hausdorff distances between the segment bundles, which 

are already stored in the edges of the graph, and the current 

segment are calculated. The probability value calculation is 

similar to the previous calculation. Let          be the segment 

bundles leading accordingly to the target nodes            , c 

the current segment and          the Hausdorff distance. Then 

the probability         that an individual is moving to A1 is 

calculated by 

 

           
        

         
 
   

. (4) 

 

3.3.4 History Factor Ph: The last factor deals with the 

history of visited places. By this means, repeating patterns of 

sequences of visited places are searched and used for gaining 

additional hints for the next possible place. Similar to the first 

introduced factor which only considers the decisions of former 

individuals being at the same place without looking in the past, 

this factor includes the information, where an individual has 

already been. Transferred to the cinema visit example, this 

means that there can be another usual sequence of interesting 

places. Next to the sequence ‘entrance’, ‘ticket desk’, ‘popcorn 

stand’, ‘toilette’, ‘cinema hall’, there might be a similar 

sequence with a small change in order, like ‘entrance’, ‘ticket 

desk’, ‘toilette’, ‘popcorn stand’, ‘cinema hall’. Assuming that 

an individual follows the second sequence and is at the ‘popcorn 

stand’, there are two possibilities to go next; the ‘toilette’ or the 

‘cinema hall’. The first factor might output the ‘toilette’ as the 

most probable target. Looking only at the individuals that 

following the sequence ‘toilette’, ‘popcorn stand’, so they have 

been to the toilette already, the output might change to ‘cinema 

hall’. The probability is described by the relative frequency of a 

given sequence in a subset of all sequences. Let              be 

possible target nodes. Further, let            be the according 

sequences ending at those targets and containing the 

subsequence (previous node, current node). This leads to the 

following relationship  

 

         
  

   
 
   

. (5) 

 

3.3.5 Integration of Factors: Since the introduced factors 

give independent hints for the next probable destination, we 

combine them by summing them up. At the same time we 

weight them. Those weights are used to normalize the resulting 

probability value and to handle different scenarios, where the 

relevance of each factor differs. For instance, given a scenario, 

where a priori is known, that the distances to possible targets 

play a minor role, the relevance of the distance factor Pd can be 

reduced by decreasing the its weight ωd. In general, if there is 

no a priori knowledge, the factors should be equally weighted. 

The overall probability       for the next visited place A1 

including the components described above is 

 

                              
                      , 

(6) 

 

with 

                      . (7) 

 

 

4. EXPERIMENTS 

In this paragraph we present and discuss the results of this 

approach. To this end, we determine their completeness and 

correctness. Completeness describes for how many objects a 

prediction could be calculated at all. Note that predictions are 

only possible, when an object has passed a node. If it takes a 

(yet) unknown path through the scene, its possible moves 

cannot be predicted. Thus, it is likely that the completeness is 

low at the beginning of the analysis. Correctness evaluates the 

reliability of the predictions. It can be determined by comparing 

predicted to actual, verified targets. In the next subsections, we 

apply the method to different examples to show its portability to 

other data sources like GPS trajectories and other use cases like 

traffic or animals observation. 

First of all we give an impression on how the results look like 

during the runtime. For this purpose, we use a video tracking 

dataset recorded in the main hall of the Leibniz University of 

Hannover. There 213 trajectories (10955 tracking points) of 

walking people have been tracked for about 30 minutes. In 

Figure 3 the results of the first step are shown: 14 places (nodes) 

have been found; they correspond to locations, where the people 

stopped (or reduced their speed) and where they entered or 

exited the observation area. Figure 4, shows the generated graph 

structure. 

 

 
Figure 3: The extracted interesting places are results of the first 

step. 
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Figure 4: The graph structure generated from the extracted 

places and the segmented trajectories. 

 

4.1 Evaluation of prediction quality 

During the runtime the probabilities for all possible targets are 

calculated. In Figure 5 a typical prediction scenario is shown. 

The grey circle, which represents a moving individual, has 

followed the black trajectory and has entered an interesting 

place (green circle). Now several possible targets are 

determined and evaluated by probabilities. They are visualized 

by pairs of grey dashed lines and values.  

 

 
Figure 5:  Visualisation of the results of the prediction step: 

dashed lines point at the possible targets, values describe the 

current probabilities 

 

Since these algorithms work incrementally, we are supposing 

that the completeness and correctness values of an earlier stage 

of the runtime are worse than those at a later stage. This is 

motivated by the fundamental idea that there is an underlying 

structure in the environment, which gets visible in the data and 

which applies for at least a certain time. While in the early 

stage, a kind of 'learning stage', the model has to be built up, in 

the later stage, which starts after the dominant graph structure 

has been found, only small changes to the structure of the 

existing prediction model appear. Because of these different 

runtime stages, we divide the whole processing into smaller 

stages, which are evaluated incrementally. Further, we are 

comparing the results including all prediction factors and every 

factor individually. In this way, we get more significant values 

for the completeness C and the correctness R. In the 

experiments, equal weights have been set for the four factors.  

The results of this evaluation are presented in Table 1. The first 

two stages (comprising approx. 1/3 of the data set) are 

considered as training, whereas the next two stages, each of 

which also comprises approx. 1/3 of the data set, are taken as 

test data. Note, however, that strictly speaking, there is no clear 

learning phase, as the system constantly adapts its knowledge.  

The completeness increases from about 31% in stage 1 to about 

92% in the last stage, which is quite satisfying. The correctness 

for all evaluated scenarios also increases to a maximum of 44%. 

So, nearly a half of all predictions is correct. However, there is a 

slight decrease in stage 3. This may result from the change of 

the behavior of the objects the dataset. So the test dataset, which 

is used in stage 3 and 4, may contain a slightly different 

movement behavior. Since there is an increase in stage 4, the 

model seems to have adapted to this change. A possible reason 

for the change in the movement behavior can be the advanced 

time, the dataset has been recorded. At that time the intention of 

the users for crossing the observed area may have changed.  

The correctness values were calculated at each time step a 

trajectory point was measured. Thus, there are positions, where 

the prediction is less reliable than at others, e.g. at the start node 

it is probably less clear, where the object is heading at than 

closer to the end node. A closer look at the correctness can be 

made by dividing the segments into three parts. This 

information is visualized by Figure 6. There, an increase of the 

prediction reliability to a maximum of about 60% is 

recognizable during the three parts and during the four stages. 

This is in conformance with the average correctness of approx. 

40%. 

 
Figure 6:  The average correctness development during the three 

parts of a segment 

 

After evaluating the correctness of the predictions using all 

factors at the same time, we have also examined each factor 

independently (cf. Table 1). The resulting values behave similar 

during the stages, which, however, are below the corresponding 

integrated values. In this example, the neighborhood- and the 

history-factor provide the best results. This may change for 

other scenarios, where the significance of each factors differs. 

Finally, the results can be improved by combining and 

weighting those factors. 

 

4.2 Transfer to other data sets 

We developed this approach as general as possible, so that it can 

be used for other evaluation scenarios as well. This contains a 

change of input data, which may be provided by another 

tracking device like GPS, or a change of the use case, on which 

this kind of system is applied to. Besides the observation of 

human beings, an observation of traffic or animals is also 

conceivable. We want to demonstrate the portability by showing 

another example. This example contains an extract of a dataset, 

which has been collected by some students taking part at a GPS 

game during a summer school in Genth, Belgium (2011). The  
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 Stage 1 Stage 2 Stage 3 Stage 4 

Description Early training Late training Early test Late test 

# tracking points 1939 1939 3538 3539 

Completeness C (total) 31.37% 85.96% 91.32% 91.92% 

Correctness R (total) 18.02% 43.89% 40.40% 43.54% 

R (Neighborhood factor) 17.69% 36.87% 34.78% 42.64% 

R (Distance factor) 18.97% 43.53% 30.30% 34.26% 

R (Shape factor) 18.72% 39.26% 23.86% 28.17% 

R (History factor) 15.02% 40.01% 33.34% 37.78% 

 

Table 1:  Evaluation of the completeness (C) and correctness (R) of the prediction based on the video tracking datasets 

 

 

dataset consist of 11 long trajectories (9627 tracking points). It 

shows different routes through the city taken by the participants. 

 

Most of the extracted places represent either meetings of 

different groups or road junctions, where the participants stayed 

for a certain time to plan where to go next. Due to the fact that a 

GPS tracking result is less accurate than a video tracking result, 

the size of the places (they are shown in Figure 7) has been 

enlarged. This adjustment has been necessary to receive a 

usable prediction basis, i.e. the graph structure, which is 

illustrated in Figure 8. 

A similar evaluation method like the one before provides the 

following results (cf. Table 2). 

 

 Early stage Late stage 

# tracking points 4703 4924 

C (total) 26.48% 89.66% 

R (total) 28.08% 40.91% 

 

Table 2:  Evaluation the completeness and correctness of the 

prediction based on the GPS-game dataset 

 

Again, the results are examined at an early and a late progress 

stage. The determined values behave similar to the values of the 

first test results. Here, a completeness of about 90% and a 

correctness of 41% are reached. 

 

 

 
 

Figure 7:  The extracted interesting places of the GPS game 

dataset... 

 

 
Figure 8: ...and the corresponding graph structure 

 

Besides the portability another required feature of this approach 

is the ability to use it at real-time. Due to the fact that this 

approach consists of two consecutive incremental steps, we 

examined the performance for both steps individually. Since the 

major effort is used by the first step (the graph building step), 

we are focusing on this step. When analyzing the performance it 

can be observed that there are also two different performance 

behaviors of this algorithm. Those can be referred to the 

different runtime stages. During the 'learning stage', in which 

the graph structure is built up, the processing rate decreases 

while the number of places increases. In the second stage just 

small changes of the structure appear. There, mainly the visit 

numbers of places are updated and new segments are added to 

existing segment clusters. The processing rate during this stage 

increases to a nearly constant level close to the start level. 

 

 

5. CONCLUSION AND OUTLOOK 

In summary, an approach has been presented that allows 

predicting movements of individuals based on path calculations 

within a graph structure using probability statements. The 

computation of the latter is composed by different components 

which include the knowledge about the movement behavior. 

The used algorithms work in real-time and on trajectory data 

measured by different kinds of tracking devices, which have to 

meet the requirements of a sufficiently high density and 

sampling rate. In the paper, it is applied to the observation of 

human beings acquired by video- and GPS-tracking. 

Nevertheless, some aspects are not or not fully considered in 

this approach, which may further increase the prediction 

reliability. The most obvious one is the fact that the time aspect, 

which certainly influences the movement behavior of the 

observed individuals. A consideration of e.g. different day times 
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may lead to day time dependent graphs. Thus, same situations 

lead to different predictions at different times.  

Besides that, the weighting factors have to be set at the 

beginning, which demands a priori knowledge about the 

scenario. An auto-fitting or learning possibility could be a 

solution for this problem. For this purpose, the graph structure 

and each prediction factor’s significance can be analyzed, so 

that conclusions regarding the optimal weight values can be 

drawn. For instance, if there is a graph structure, which is 

similar to a regular grid, the distances to possible targets will 

not differ significantly. Thus, the prediction factor’s weight will 

have to be decreased, while the other factors will have to be 

increased respectively. 

Furthermore, we plan to examine additional prediction factors 

(such as the straightness or good-continuation of the path) and, 

instead of summing them up, further possibilities to combine 

those. Both may increase the prediction reliability. 

Up to now we did not investigate, when the graph structure of 

the situation is consolidated and established. We merely divided 

the data sets into different stages. It will be another issue for 

future work to research, whether it is possible to automatically 

determine, when the graph is more or less established with its 

main components and only minor adaptations will be made. 

From this stage on, we assume that the correctness values of the 

predictions will increase. When we are able to determine this 

stage, the reliability of the predictions will also increase. Thus 

future research has to investigate, if measures can be provided, 

which determine, when a certain situation is stable, and when it 

starts changing to a new situation. 

Since our motivation in developing this approach has been 

originated by implementing a smart camera network and the 

fields of view of the cameras cover just a section of the 

observed area, the algorithms ultimately have to work in a 

decentralized fashion, where the individual cameras have to 

cooperate. For this purpose, they have to share the prediction 

knowledge gained by this approach. So a camera has to inform 

the corresponding neighbor when an individual leaves its field 

of view. 
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