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ABSTRACT:

Mobile Mapping is widely used for collecting large amounts of geo-referenced data. An important role plays sensor fusion, in order to
evaluate multiple sensors such as laser scanner and cameras jointly. This requires to determine the relative orientation between sensors.
Based on data of a RIEGL VMX-250 mobile mapping system equipped with two laser scanners, four optional cameras, and a highly
precise GNSS/IMU system, we propose an approach to improve camera orientations. A manually determined orientation is used as an
initial approximation for matching a large number of points in optical images and the corresponding projected scan images. The search
space of the point correspondences is reduced to skylines found in both the optical as well as the scan image. The skyline determination
is based on alpha shapes, the actual matching is done via an adapted ICP algorithm. The approximate values of the relative orientation
are used as starting values for an iterative resection process. Outliers are removed at several stages of the process. Our approach is fully
automatic and improves the camera orientation significantly.

1 INTRODUCTION

On Mobile Mapping Systems, different types of sensors are com-
monly used for the collection of large amounts of data. This
data can be used e.g. for visualization, 3D models of large ar-
eas, planning tools, mapping and more. Therefore, data integra-
tion between different types of sensors needs to be performed
in a way that the relative orientation between all sensors is pre-
cisely known. As in the example of the RIEGL VMX-250, two
laser scanners and a GNSS/IMU system are fully integrated and
mounted on a single platform, so the relative orientation of these
devices is stable over a long period. The IMU system serves as
primary coordinate system of the mobile mapping van. In order
to achieve high flexibility with the cameras, they are mounted
on their own platform where each camera can be oriented as re-
quested. Within each scan project the mounting of the cameras
and thus the relative orientation between camera and IMU re-
mains stable. Since the camera mounting is not necessarily stable
over a longer period, the relative orientation with reference to the
IMU and thus the lidar point cloud, has to be calibrated regularly.

At present, the relative orientation between point cloud and cam-
era is determined manually based on a single image. At least four
tie points in a single selectable image and their corresponding 3D
points in the lidar point cloud are selected manually and used to
determine position and orientation of the camera. One main prob-
lem results from the different type of data, meaning that in an op-
tical image corners, e.g. at windows, are good features, whereas
there are normally no lidar points directly on corners or edges.
Therefore, the manual result might be inaccurate due to the use
of only a very few points. Another possible source of inaccuracy
is the use of only a single image. In case the chosen 2D points
are not well distributed in the selected image, the resulting ori-
entation of the camera might also be inaccurate. Using such an
inaccurate calibration matrix leads to a wrong mapping of scan
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points to pixel coordinates. As an example see Figure 1, where
the right part of the roof is colored using light blue pixels from
the optical image which belong to the sky.

Since manual orientation for every scan project is a time consum-
ing task and depends on user abilities, automatic procedures for
camera calibration are needed.

Figure 1: Result of an inaccurate calibration matrix, image over-
laid with projected scan points (left) and colored point cloud
(right). Points on the right are colored using sky pixels

2 RELATED WORK

In the literature, several approaches for the registration of images
and point clouds are presented. (Swart et al., 2011) showed an
approach registering a sparse 3D point cloud reconstructed from
panoramic images and a dense 3D point cloud from laser scan-
ning. Both 3D point clouds are registered using a dynamic variant
of the iterative closest point (ICP) algorithm described by (Besl
and McKay, 1992). In addition, images of a virtual camera posi-
tion are rendered using panoramic images and point clouds. Sub-
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sequently, these images are searched for additional correspond-
ing feature points between the datasets. Afterwards, a dynamic
ICP is performed again. This approach requires a good geome-
try between the cameras so that each point is visible in at least
two images and ray intersections should not appear under sharp
angles. Depending on the field of view and type of the cameras
used, this geometric condition might not be met. Additionally,
this approach requires 2D image correspondences as well as 3D
point correspondences. Furthermore, only images with a suffi-
cient number of matched points can be used.

Feature based approaches are widely used, since no additional
information is needed. For example, (Böhm and Becker, 2007)
and (Shahzad and Wiggenhagen, 2010) use SIFT features first de-
scribed by (Lowe, 1999), as corresponding feature points. They
use the intensity information of the point cloud in order to com-
pare the feature descriptors. Prerequisite for a successful feature
matching between optical and intensity image from a scan is that
the point cloud is very dense and intensities from the laser scan-
ner are correlated with intensities of the optical image. Another
approach using interest points as features is used by (González-
Aguilera et al., 2009) using a hierarchical approach for feature
matching based on an area based and least squares matching.
Eliminating wrong feature matches is done in an estimation step
using the Direct Linear Transform (DLT) and RANSAC, fol-
lowed by a computation step using least squares adjustment in or-
der to refine the results given from the DLT. (González-Aguilera
et al., 2009) also address the problem of the low density of pro-
jected points. This is especially important with mobile mapping,
since mobile mapping point clouds are often less dense than static
terrestrial scans, which causes gaps between scan points when
projected to high resolution images. This is also shown by (Wod-
niok et al., 2013). (Li Chee Ming and Armenakis, 2010) de-
scribe an area-based feature approach which is based on corner
features, since corners can be naturally found in the data of ur-
ban scenes. Corners are defined as intersection of horizontal and
vertical edges, while correspondences are detected using cross-
correlation. Therefore, parameters such as scale, intensity and
orientation need to be similar in the optical and scan image. The
RIEGL VMX-250 also provides intensity values for each point.
Though, in our own experiments, we found the intensity to be too
noisy to get stable matching results using cross-correlation.

An approach using prior knowledge is matching the outline of ob-
jects with a given 3D model. As (Lensch et al., 2001) show, a sil-
houette based algorithm is usable for small scale objects, where
the CAD model of the object is known in advance. In case of
mobile mapping, mostly buildings are used as objects. Build-
ings have several advantages, e.g. 3D models are often avail-
able, the outline consists of straight vertical as well as horizontal
lines, and the outline normally includes measurements in the up-
per and lower part of the images. (Haala et al., 2002) and (Haala
and Böhm, 2003) for example use the silhouette of buildings ex-
tracted from single images using the Generalized Hough Trans-
form and a 3D city model for camera registration. While coarse
orientation is done based on low-cost sensors, fine alignment is
based on resection using points on the outline of the building and
corresponding points from a given CAD model. They found the
accuracy of the result depending very much on the geometric and
visual quality of the given model and its level-of-detail. In re-
cent years, there is an increasing amount of methods for registra-
tion of panoramic or multi-view images which can be found for
example in (Pylvanainen et al., 2010) and (Taneja et al., 2012).
(Pylvanainen et al., 2010) use panoramic images and a 3D laser
scanner together with building outlines from ground plans and an
additional height. Their objective is to correct the drift of a mo-
bile mapping system in large areas based on a coarse 3D-model

and non-rigid ICP. Building outlines are segmented using graph
cuts in order to obtain shape priors. Therefore, the 3D building
outlines are projected into the images. In order to correct mis-
takes in a single image e.g. caused by occlusions, (Pylvanainen
et al., 2010) accumulate their segmentation results over ten im-
ages and therefore refine their result. (Taneja et al., 2012) use
3D cadastral models and building outlines for registering spheri-
cal panoramic images from StreetView in order to use these im-
ages for city planning or tracking of changes in urban areas. The
building outline in the first step is segmented using a conditional
random field approach where the classifier was trained on man-
ually labeled images. After pose estimation of the camera using
the given cadastral building information, the outline extraction is
refined using the given prior information. For pose estimation,
the projected outline of the 3D model and the given image out-
line are matched minimizing the number of mismatching outline
pixels using Particle Swarm Optimization.

In most of the cited publications (panoramic) images are used.
These images normally contain several buildings in different
parts of the image and therefore, the points are well distributed.
In our case, were images are taken with portrait format vertical
to the facade from street level with a DSLR Camera, only small
parts of mostly one building, often a part of the roof, are cap-
tured. Therefore, matching a given 3D model of the building
would not be reliable. Additionally, a 3D model of the scanned
area is required. Furthermore, there are many other objects within
the scene, such as lamp posts or street signs, which could be used,
but normally GIS data do not contain such objects in detail. Us-
ing such objects leads to more flexibility than only using building
outlines. Furthermore, when using non-panoramic images, an ap-
proach is needed to accumulate points from several images until
defined geometric constrains for good resection results are met.

3 DATA

Data was collected using a Mobile Mapping System RIEGL
VMX-250 with two laser scanners and four optional cameras as
shown in Figure 2.

Figure 2: Mobile mapping van, equipped with the RIEGL
VMX-250

Position and orientation of the system is gathered using a highly
accurate global navigation satellite system (GNSS receiver),
an inertial measurement unit (IMU) and an external Distance
Measurement Instrument (DMI). All data is preprocessed us-
ing corresponding RIEGL software and additional software for
GNSS/IMU processing.

In the first step, preprocessing obtains a highly accurate trajec-
tory by integrating GNSS base station data and filtering the cap-
tured GNSS/IMU data. In the second step a 3D point cloud is
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calculated based on trajectory information and the laser scanner
measurements using highly accurate time stamps for data integra-
tion. Under good conditions an absolute positional accuracy of 2
to 5 cm can be obtained. However, in urban areas the achievable
accuracy might be lower due to multipath effects and occlusions
from buildings or vegetation which frequently cause GNSS out-
ages. In our experience, an accuracy of 10 to 30 cm in height and
up to 20 cm in position has to be expected in urban areas. For
more details on the system, see (Riegl LMS GmbH, 2012) and
(Rieger et al., 2010).

Each scanner captures full a 360 degree with a maximum rate of
100 profiles and 300 000 measurements per second. This leads
to a point density of 2 mm per meter distance along scan profiles
and 1 cm per m/s vehicle speed in the direction of travel. Scan
data is saved in separate records for each scanner and after each
interruption of the scanning process, e.g. after stopping at traf-
fic lights. Lidar measurements are given in a scanner coordinate
system with known calibration matrices with respect to the IMU
coordinate system. All data, e.g. trajectory, scan points as well as
images, are precisely time stamped. Using given time stamps and
the known calibration matrices of each scanner, points can be de-
termined in the IMU system. Based on trajectory information all
points can be transformed to a global geocentric coordinate sys-
tem, e.g. ETRS89, or projected to a given virtual camera pose.

For our experiments, a DSLR Nikon D700 camera with 12 MP
and a 20 mm Nikkor lens was used for image capturing. During
each data recording the mounting of the camera is stable, so the
relative orientation between camera and IMU coordinate system
is assumed to be identical for all images. The camera is mounted
transverse to the direction of travel and therefore, almost perpen-
dicular to facades in portrait format in order to capture the major
part of the facade up to the roof of the building in a single image.
As an example see Figure 3. Images are taken with a frame rate
of two images per second, which leads to an overlap within the
image of 20% with an object distance of 5 m and an overlap of
approximately 60% with a distance of 10 m at a driving speed of
30 km/h.

Figure 3: Two example images of the Nikon D700 DSLR camera
with a Nikkor 20 mm lens

4 APPROACH

Our approach is based on the characteristic that laser scanners do
only get range measurements from objects but do not get any re-
sponse from open sky. Hence, the skyline (that is the contour be-
tween foreground objects and the sky) of scanned objects should

correspond to the skyline in an optical image. For this purpose,
scan data is projected into a virtual image with size and orien-
tation identical to the captured optical images. Subsequently, all
pixels within these scan images, which are covered by a projected
point, have known world coordinates. Therefore, corresponding
points in optical and scan images can be used for resection. In
order to determine the relative orientation between camera and
scanner the following steps need to be carried out: image prepro-
cessing in order to get the skyline in both image types, finding
corresponding points on these skylines, and finally the iterative
robust resection in order to eliminate outliers and calculate the
final relative orientation of the camera.

4.1 Skyline Extraction in Optical Images

In order to derive the skyline path from the optical image a thresh-
old is applied to the image. The resulting threshold image is
supposed to contain black pixels for objects and white ones for
the sky. The needed threshold value is automatically determined
based on the image’s histogram. Since we intend to separate the
bright sky from the darker objects we first find the maximum of
the bright values (values above 128) representing the major sky
value. As shown in Figure 4 we subsequently find the minimum
value between 128 and the previously found maximum.

0 128 255bright
max

threshold

Figure 4: Histogram-based threshold for sky separation

The found value is used as the desired threshold to separate the
sky from all world objects. Applying the determined threshold to
the optical image results in a binary image as shown in Figure 5
(left). A statistical approach on finding the best threshold in a
bimodal histogram of gray scale images is given by (Otsu, 1979),
however, we found that our simple scheme works reasonably well
on our data. Errors might occur, if a bright facade is illuminated
directly by the sun. In this case, parts of the building may also
be detected as background. Since that error arises only at some
images and the resulting skyline is expectedly rugged, such parts
within a skyline will be filtered out in the following steps.

Based on the binary threshold image the alpha shape outline de-
fined by (Edelsbrunner et al., 1983) is derived. Since the point set,
in our case all black pixels, is dense and compact, a small disk ra-
dius of three pixels is used in order to compute the alpha shape.
The resulting outline is visualized in Figure 5 (right). From this
alpha shape outline the actual skyline is extracted by removing
all parts touching the image border.

The final step of extracting the skyline from the optical image
includes the removal of jagged line segments. Those segments
mainly originate from tree branches which are no good candi-
dates for scan point matching pixels. Therefore, we propose a
window-based approach where for each window it is decided
whether it is too jagged and hence shall be removed from the sky-
line path. There each window ranges over a predefined number
of consecutive path points. The bigger that number the bigger
the window will be and the more jagged line segments will be
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Figure 5: Resulting threshold image (left), alpha shape based out-
line (right)

removed. In our case a window size of 50 has been found suit-
able. Within the window the total number of directions between
each two consecutive points is counted. The possible directions
are binned to eight values: four straight and four diagonal ones.
In case six or more directions are present in a window the first
half of the windows path points are marked for removal and the
window is shifted by half its size along the skyline path. This is
repeated until the window has moved all the way to the end of the
path.

Instead of removing all marked path points, the connected com-
ponents to keep or remove are homogenized, where small com-
ponents are combined with bigger adjacent components. This is
necessary in order to remove fairly straight parts of tree branches
and keep small building details like chimneys which otherwise
would have been kept in the skyline path or removed from it, re-
spectively. The homogenization step repetitively finds the small-
est component and merges it with the adjacent ones. In case
two components have the same size the component with the big-
ger adjacent components is chosen for merging. A component
is considered small if it is less than four times the window size
mentioned earlier. This is repeated until all small components are
merged. The result as shown in Figure 6 is a skyline path (green)
with most of the jagged path segments removed (red). In case the
skyline path of an optical image is reduced to less than 15% of its
original size the entire image is excluded from the process since
its skyline might contain almost only tree branches.

Figure 6: Final skyline with jagged line-segments removed

4.2 Skyline Extraction in Lidar Point Clouds

For the subsequent matching step the skylines path of the cor-
responding scan point image is needed as well. The scan point
images contain all recorded laserscan points that can be projected
into each of the optical images taken during the data acquisition.
In general a scan point image contains the pixel coordinates of
a laserscan measurement and its xyz coordinates, encoded in the
images three color channels. As a trade off between accuracy and
storage each channel is encoded with four byte allowing single-
precision floating point values. Since a scan point image is rather
sparse the stored image data is compressed using a lossless com-
pression algorithm like LZ4. For developing purposes all scan
point images have been generated in advance but might also be
generated on-the-fly for the current optical image.

In principle the scan images are processed in the same way as the
optical images. Since there are no lidar measurements for the sky,
the initial threshold step can be omitted. For the alpha shape, a
bigger disk radius has to be used because the pixels distribution
is much sparser compared to the optical image. Furthermore all
outline segments without a corresponding optical image skyline
counterpart are removed, which makes the jagged line segment
removal omittable. The respective results are shown in Figure 7
(left and right).

Figure 7: Alpha shape based outline of projected scan point im-
age (left), resulting skyline after removal of unrelated segments
(right)

4.3 2D Point Matching

Based on the given skyline, corresponding points in 3D scan im-
age and optical image need to be determined. This is done on
separate contiguous clusters of points which belong to the same
object or at least belong to one distance class.

In a first step, all skyline pixels of the scan point image are clus-
tered based on their 3D distance to the camera, because the influ-
ence of erroneous transformation parameters differs depending
on their distance to camera and their position in the image. This
clustering allows to obtain better results in the following ICP step.
The clustering is based on the Jenks natural breaks classification
algorithm invented by (Jenks and Caspall, 1971). The number
of distance classes depends on the range of distance within each
image. This ensures that points belonging to the same object are
in a single point cluster. We have chosen the number of distance
classes as

numclasses = ln(distanceRange), (1)
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where distanceRange [m] is determined using maximum and
minimum point distance from camera. This leads to a sufficient
number of distance classes in case the covered 3D distance is
small. In case the distance range is large the number of buckets
is growing more slowly. Subsequently, in order to get contiguous
clusters, clusters are subdivided if the 2D distance between con-
secutive points in one cluster is too big. In order to achieve the
goal of compact and reliable clusters, small clusters are removed
from the skyline. In our case, clusters with less than ten points
were eliminated.

In the following step the ICP algorithm is performed in the image
plane for each point cluster separately. Point correspondences are
only accepted if they are within a selectable 2D distance in order
to avoid outlier matches between widely spaced points. Addition-
ally, clusters with too few correspondences on the image skyline,
are again eliminated. In our case we used a threshold of less than
50% matched points within a cluster. Furthermore, in the remain-
ing clusters all points without correspondence are also removed.
The ICP algorithm terminates if the change in the transformation
parameters is smaller than 0.01 pixels.

As illustrated in Figure 8, a simple ICP algorithm would often
lead to wrong correspondences, especially at the outline of small
objects. As an example a lamp post whose skyline points split
into two distance clusters is shown in Figure 8 (left). Since both
clusters are close to the same skyline segment from the optical
image, the standard ICP algorithm would match both clusters
to the same segment as illustrated in Figure 8 (center). There-
fore, the ICP algorithm needs to be extended. An overview on
different types and extensions of the ICP algorithm is given in
(Rusinkiewicz and Levoy, 2001), e.g. using point normals. For
each point on the skyline the corresponding point normal pointing
away from the object is known and can be used to find the correct
correspondences. Hence, only points with similar point normals
are matched. In the given example, it forces the left cluster to cor-
rectly match with the left side of the lamp post even though those
are not the closest points. The corresponding result is shown in
Figure 8 (right).

Figure 8: Two distance clusters at a lamp post (left), ICP result
without point normal consideration (center), ICP result with point
normals (right)

4.4 Image Selection

For a stable result of the resection it is critical to use an appro-
priate number of points which are sufficiently distributed in 2D
image space as well as in 3D object space and, therefore, re-
sult in a good geometry. Points should be uniformly distributed

throughout the entire image and cover a large depth of field. This
is expressed with the following conditions: a minimum number
of images have to be used, points should cover a wide range of
3D distances, and points should cover the four image quadrants
evenly.

Since each scan project contains far more images than what is re-
quired for a resection, a subset has to be chosen from all recorded
images along the trajectory. At the moment, this is done by ran-
domly picking a minimum number of images along the track,
but one can think of other sampling methods. In addition to the
minimum number of images, the condition that points of a wide
range of 3D distances are included must be met. This is real-
ized defining a fixed set of distance buckets and filling them with
each newly picked image. In our example we used a maximum
distance of 200 m and five distance buckets. Therefore, in each
randomly picked optical image the skyline is determined as de-
scribed in section 4.1. Due to the characteristic of the captured
area more than 50% of the images contain mainly trees, which
are not useable for our approach and are identified and omitted
during skyline extraction. New images are added as long as the
condition of points in all distance buckets is not satisfied or the
minimum number of images has not been reached. As we use the
skyline of the objects, points are more likely to be in the upper
part of the image and accordingly we do not use any fixed condi-
tion on 2D point distribution. Figure 9 shows the resulting point
distribution in 2D image space of one run using ten randomly
picked images for calculation.

Figure 9: 2D point distribution used for resection

4.5 Resection

In the subsequent processing step, resection is performed in order
to refine the relative orientation between camera and the IMU. As
functional model the collinearity equations are used:

x′ = x0 + c
r11(X −X0) + r12(Y − Y0) + r12(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
∆x′

y′ = y0 + c
r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
∆y′

(2)

Image coordinates x′, y′ on the skyline of the optical image are
used as observations. Rotation angles which can be computed
from the elements of the rotation matrix rij and 3D coordinates
of the cameras projection center X0, Y0, Z0 are unknowns. Ap-
proximate values for all unknowns are given from a manual ori-
entation of the cameras using four manually chosen correspond-
ing points. The interior orientation parameters of the camera
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∆x′, ∆y′ and c are determined by a separate calibration proce-
dure.

Equation 2 can be linearized using Taylor expansion, since ap-
proximations of the unknowns are given. This leads to the final
linearized equation of the functional model in the form of

l + v̂ = A · x̂, (3)

with observations l = L−L0 (were L are the observations in the
optical image and L0 are calculated from approximate values of
the unknowns), corrections v for each observation, design matrix
A containing the partial derivatives and finally supplements to
the unknown x̂. A more detailed description of the least squares
method is given in (Luhmann, 2003). Objective of the adjustment
is to minimize the error v:

vT · P · v → min. (4)

In the stochastic model all observations are assumed to be equal
and independent, therefore the weight matrix P is the identity
matrix.

The adjustment is performed iteratively eliminating coarse out-
liers, generating more precise approximations in each iteration.
An outlier test is performed in order to remove remaining out-
liers from the data set. Therefore, the Data-Snooping-Method de-
scribed by (Baarda, 1968) indicates observations as outliers based
on their normalized error wi. The normalized error is given by

wi =
vi

ŝvi

(5)

with the standard deviation ŝvi of error v

ŝvi = ŝli ·
√

(Qvv)ii, (6)

and the cofactor matrix Qvv as

Qvv = Qll −A ·Q ·AT (7)

of the error v. Starting with the maximum normalized error wi,
all observations with wi > k are eliminated iteratively as outliers
with a threshold of k = 2.56 as proposed by (Luhmann, 2003).

5 RESULTS AND DISCUSSION

Our algorithm was tested on data of one scan project in the city
of Hanover, Germany. The data set contains 977.4 million scan
points. Overall, 3385 images per DSLR camera were captured
from different types of areas such as highways and urban areas.
Along highways, mainly trees form the skyline of the foreground
objects as illustrated in Figure 10 (left). In urban areas buildings
and road furniture such as traffic lights, lamp posts, or street signs
are more prominent and therefore, lead to more linear skylines
and a large field of depth within the images which is required for a
stable resection. The following results were repeatedly produced
with randomly selected images.

Applying our approach on the used data set the initial calibration
parameters were shifted by 12.4 cm along track, 1.6 cm across
track and 0.2 cm in vertical direction. The changes in angles
were largest around the vehicle’s x-axis with ∆roll = 1.2◦. The
angle around the vehicle’s z-axis pointing downwards was ad-
justed with ∆yaw = 0.7◦ and the angle around the y-axis with
∆pitch = 0.07◦. This leads to a significant improvement of the
registration which can be visually determined by projecting scan
points to an image using the relative orientation determined by re-
section. For example, see Figure 11 showing the projected points

Figure 10: Two example images with no suitable skyline

based on the initial calibration matrix and after applying the rela-
tive orientation given by resection. The projected scan points are
colored using their elevation above ground. As expected the 2D
translation between corresponding points in all image regions is
smaller than before.

Figure 11: Projected point cloud using the original calibration
matrix (top) and after applying the relative orientation based on
resection (bottom)

A detail view of Figure 11 is given in Figure 12 showing the pro-
jected point cloud based on the original calibration matrix and
the resulting image when using the relative orientation given by
resection.

Figure 13 illustrates the resulting error when the point cloud is
colored using the initial calibration parameters (bottom left). The
colors are taken at the projected pixel position as shown in Fig-
ure 13 (top left). The sign in Figure 13 has a pixel error of ap-
proximately 26 pixels and an error of approximately 1 m in world
coordinates. Using the relative orientation based on resection re-
sults in a visually considerably better outcome as illustrated in
Figure 13 (right). Still, the orientation parameters need refine-
ment as can be seen on the left side of the depicted sign, since
there is an remaining error of approximately 3 to 5 pixels in im-
age space. This could be because the interior parameters of the
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Figure 12: Projected point cloud using the initial relative orienta-
tion (top) and the relative orientation given by resection (bottom)

camera are calibrated in advance, but are not stable over a long
period and are not calibrated on-the-fly. Similarly, this could oc-
cur if there are undetected errors in point correspondences which
causes inaccuracies in resection.

Another example, illustrating the results at the roof of a building
is given in Figure 14. On the left, wrongly projected and colored
points demonstrate the effect of inaccurate calibration parameters
whereas the refined relative orientation lead to correctly colored
point clouds (right).

Furthermore, the quality of the resection result can be specified
using the residuals of the ICP algorithm comparing initial values
with the final result executing the ICP algorithm again. Using the
original calibration parameters the ICP algorithm results in a 2D
transformation of 1.4 pixels in x and -24.3 pixels in y direction
with a length of 24.4 pixels on a point cluster with 70 m distance
to the camera. After applying our resection approach the ICP
algorithm results in a 2D transformation of 0.5 pixels in x and
-5.6 pixels in y direction with a length of 5.6 pixels for the same
cluster. The ICP results for the given example are visualized in
Figure 15.

In the previously discussed examples, the camera pointed to the
driver’s side of the mobile mapping van and therefore, the dis-
tance between camera and facade is reasonably large. Applying
our approach to images with the camera directing to the oppo-
site side of the mobile mapping van, indicates that the distance
between camera and captured objects has a major impact on the
quality of the result, since the distance between camera and fa-
cades is usually shorter on the passenger side. In case the dis-
tance between camera and objects is too short, often no skyline is
visible in the image as depicted in Figure 10 (right). Therefore,
image selection is more challenging and hence, more images are
used in order to determine the final resection result. Using this
mounting, approximately 60% to 70% of the images are rejected
during skyline extraction. As mentioned above, in our experi-
ments about 50% of the images were rejectied due to trees as
shown in Figure 10 (left), the rest is rejected due to invisible sky.
Nevertheless, our approach still provides a stable and visually in-
spected good result for the relative orientation.

Figure 13: Projected (top) and colored (bottom) point cloud using
original calibration (left) and relative orientation given by resec-
tion (right)

Figure 14: Projected (top) and colored (bottom) point cloud using
original calibration (left) and relative orientation given by resec-
tion (right)

6 CONCLUSIONS AND FUTURE WORK

In this work we showed an approach to improve the accuracy of
the initially known relative orientation between camera and laser
scanners of a mobile mapping system RIEGL VMX-250. Match-
ing between optical image and point cloud is done by finding
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Figure 15: Results of the ICP algorithm using original calibration
(left) and relative orientation refined by resection (right)

corresponding points on the skyline of captured objects, which is
extracted using alpha shapes. Potential outliers, such as points on
trees, are eliminated at this stage. The skyline extraction is fol-
lowed by a 2D point matching algorithm using an adapted ICP al-
gorithm. The adapted ICP algorithm takes into account the point
normals on the skyline, which is similar for corresponding parts
of an object. Subsequently, the relative orientation between cam-
era and IMU is improved using resection. As our results show,
the alignment of camera and point cloud using resection is vi-
sually considerably better than before. Taking the residuals into
account the resection leads to an improvement of approximately
20 pixels in the image plane compared to the initial parameters.

Future work needs to be done in order to get a better point dis-
tribution in the image plane. Since we use only the skyline of
objects, the points occur mainly in the upper part of the images,
which results in a suboptimal geometry for resection. Therefore,
additional edges should be used in order to evenly distribute the
points. Such edges could be the lower parts of lamp posts and
buildings, and the curbside along the road. Thus, for the match-
ing process the contour of those objects in the 3D point cloud
needs to be determined. Furthermore, the image selection proce-
dure should be varied. Instead of randomly picking images along
the route, further experiments are needed to assess the effects of
selecting images from different spatial or temporal regions. For
example, excluding images captured when the vehicle was turn-
ing could remove effects caused by an improper compensation of
large roll and pitch angles of the vehicle.
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