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ABSTRACT: 
 
This paper presents a generative statistical approach for the automatic three-dimensional (3D) extraction and reconstruction of 
unfoliaged deciduous trees from terrestrial wide-baseline image sequences. Unfoliaged trees are difficult to reconstruct from images 
due to partially weak contrast, background clutter, occlusions, and particularly the possibly varying order of branches in images from 
different viewpoints. This work combines generative modeling by L-systems and a statistical approach for maximum a posteriori 
(MAP) estimation for the reconstruction of the 3D branching structure of trees. Background estimation is conducted by means of 
gray scale morphology to provide a good basis of generative modeling. A Gaussian likelihood function based on intensity differences 
is employed to evaluate the hypotheses. The target tree is classified into three typical branching types after the extraction of the first 
level of branches and specific Production Rules of an L-system are used. Generic prior distributions for parameters are refined based 
on already extracted branches in a Bayesian framework and are integrated into the MAP estimation. By these means most of the 
branching structure besides the tiny twigs can be reconstructed. The results are presented in form of VRML models and show the 
potential of the approach. 
 
 

1. INTRODUCTION 

Trees are an essential component in city scenes. The detailed 
3D representation of individual trees can substantially enhance 
3D urban geoinformation by adding natural touch and providing 
a realistic visualization of city models. Deciduous trees often 
form the majority of trees in urban areas as they provide shadow 
in summer while letting the sunlight through in winter. From a 
practical point of view, for data acquisition for city models 
terrestrial images are often acquired when trees are unfoliaged, 
as facades, etc. are more readily visible then. From a scientific, 
but also a practical point of view, unfoliaged trees have the 
advantage, that they explicitly show the branches. Yet, to 
construct 3D models of trees bottom-up/data-driven from wide-
baseline image sequences, the branches have to be matched. 
This is difficult due to the geometric complexity and mutual 
occlusions of tree branches along with weak contrast and 
background clutter in the images. Additionally, often the 
ordering constraint, i.e., a point left of another point on an 
epipolar line in one image is also left of the corresponding point 
on the epipolar line in the other image, employed to guide 
matching, is often not valid for branches even for images taken 
close to each other. 
 
Former work on tree extraction has focused on aerial images 
and especially recently laser scanner data. E.g., aerial images 
are used in (Cheng et al., 2006), which like our work employs a 
statistical framework consisting also of a generative component. 
In (Gorte and Pfeifer, 2004) detailed models for trees are 
extracted from terrestrial laser scanner data. 
 
Like our work, (Sakaguchi and Ohya, 1999) uses terrestrial 
images. Branches are grown in a volume carved out based on 
the tree silhouettes in multiple images. (Shlyakhter et al., 2001) 
generates volumes as in (Sakaguchi and Ohya, 1999) and then 
3D medial axes are constructed constrained via an open 
Lindenmayer-, or in short L-system (Měch and Prusinkiewicz, 
1996). In (Reche et al., 2004) volumetric opacity estimation for 
3D reconstruction and view-dependent interactive texturing for 

visualization are combined. (Neubert et al., 2007) employs 3D 
particle flow for the estimation of the tree volume in voxel 
space. (Tan et al., 2007) is based on high quality structure from 
motion and dense depth estimation and employs shape patterns 
of visible branches to reconstruct missing parts of trees. The 
most current approaches are (Chen et al., 2008) and (Tan et al., 
2008). Both let the user sketch the trunk and basic branches or 
the outline of the crown. Trees are then generated by image 
matching and randomization of existing models from a data-
base. All the given approaches provide plausible results in terms 
of visualization, but substantial human intervention is needed. 
 
Our work uses the ideas of (Huang and Mayer 2007, Huang 
2008) as basis. It presents an approach combining tree modeling 
by L-systems and statistical sampling, which is able to 
reconstruct the basic branching structure. We have extended 
(Huang, 2008) with the following contributions: (1) 
Background estimation by means of gray scale morphology is 
employed to remove the relatively thin and mostly dark linear 
branches as basis for generative modeling. (2) The 3D 
hypotheses for branches in the form of cylinders are projected 
into the estimated background and are evaluated with a 
Gaussian likelihood function based on intensity differences. (3) 
A Bayesian framework was devised to refine the generic prior 
distributions for the parameters based on already accepted 
hypotheses. The improved priors are then integrated into a 
maximum a posteriori (MAP) estimation. Thus, the results have 
become more plausible and complete and the sampling more 
efficient. 
 
The basis of our approach is a highly precise structure from 
motion procedure (Mayer, 2005) extended to make use of 
camera calibration information. We manually set the scale for 
the 3D model. The vertical direction is either derived from the 
vanishing point of the vertical lines in the images or is defined 
manually. We assume that trunks correspond to thick, mostly 
vertical lines. They are verified by matching them in several 
images using trifocal tensors for prediction. For the remainder 



 

 

of the paper we assume that the 3D position of the tree is 
determined by the trunk. 
 
Section 2 describes generative modeling of trees by means of L-
systems and background estimation. The generation of 3D 
hypotheses, the classification of branching types, and the MAP 
estimation are presented together with the Bayesian refinement 
of priors in Section 3. Results of experiments on a simulated 
tree model and trees in real scenes are given in Section 4. The 
paper ends with conclusions. 
 
 

2. GENERATIVE MODELING USING L-SYSTEMS 

As the bottom-up extraction and matching of branches seems 
difficult, we model the tree structure as in (Huang, 2008) 
generatively using L-systems (Měch and Prusinkiewicz, 1996) 
and extract the tree top-down/model-driven. Particularly, the 
parameters are determined by statistical sampling to fit the 
images (cf. Section 3). L-systems are widely used in computer 
graphics to simulate the structure and growth of vegetation. 
They represent branching structures in terms of bracketed 
strings of symbols possibly with associated numerical 
parameters. The simulation of branching starts with an initial 
string (axiom). By means of string rewriting substrings of the 
predecessor string are substituted by successor strings according 
to a number of Production Rules. Models produced by L-
systems show basic botanical features such as a hierarchical 
structure and self-similarity. 
 
2.1 Branching types 

Branching structures of trees can be basically divided into two 
main groups: “monopodial” and “sympodial” (Deussen and 
Lintermann, 2005), for which different Production Rules have 
to be used. The monopodial – m branching system (cf. Fig. 1, 
m) has a prominent main axis, which is stronger and longer than 
the side branches. The side branches are again stronger and 
longer than their side branches of the second order, etc. Because 
of the dominant axes, monopodial branching structures have a 
radially symmetric crown. 
 

 
Figure 1:  Branching types: (m) monopodial; (sd) sympodial-

dichasium; (sm) sympodial-monochasium 
 
Fig. 1 (sd) and (sm) show the two main types of sympodial 
branching. “Sympodial-dichasium” – sd branching means, that 
two buds sprout and grow synchronously. Thus, these trees 
have bilaterally symmetric crowns. The most common 
branching structure is “sympodial-monochasium” – sm, where 

one of the secondary branches has approximately the same 
direction as the original branch. Sympodial-monochasium 
branching results into only partially symmetric structures, which 
still often appear very similar to monopodial branching. 
 
2.2 L-systems 

We have devised L-systems for the above branching types with 
basic Production Rules. As basic entities for the construction of 
trees we employ cylinders. Compared with (Huang, 2008), the 
L-systems are extended to dual-variable systems. Additional to 
the basic Variable “F”, which indicates growth, an additional 
Variable “I” is employed to control the branching. “I” is only 
used to derive the next level of string and does not generate any 
branches. 
 
For example, for monopodial – m trees, the L-system G(m) is 
defined as follows: 
 
 G (m) = (V, S, ω, P) 
with 
 
V(m) (Variable): F, I 
S(m) (Constants): +, -, <, >, [, ] 
ω(m) (Initial State): I 
P1(m) (Production Rule): F = FF 
P2(m) (Production Rule): I = F[+>I][-<I] I , 
 
where the Constants describe rotation around certain axes (“+” 
and “-” indicate turn left and right – Inclinations; “<” and “>” 
indicate roll left and right – Azimuths) and the creation of new 
branches (enclosed by brackets “[” and “]”). The Production 
Rules instruct to replace “F” and “I” with the given strings in 
the next iteration. 
 
For instance, starting from ω(m) = I, after two iterations of 
applying the Production Rules mentioned above (actually two 
times P2 and one time P1 since there is no “F” in the Initial 
State), the L-system model becomes: 
 

FF[+>F[+>I][–<I]I][–<F[+>I][–<I]I]F[+>I][–<I]I . 
 
A graphical example after four iterations (in 2D) is given in Fig. 
1 (m). 
 
The Production Rule P1 results after several iterations in 
branches with a number of connected “F”s. Hence, there are 
two description levels of branches: the first level is “branch”, 
i.e., a sequence of “F”s, while the second level is “branch 
components”, i.e., individual “F”s. 
 
The L-systems for sympodial-dichasium – sd and sympodial-
monochasium – sm trees are defined in the same way, but with 
different Production Rules for “I”: 
 
P2(sd): I = F[+<I][–<I] 
P2(sm): I = F[+>I]F[–<I]I . 
 
A Production Rule can be expressed in parameterized form, 
e.g., 
 
P2(m): I = F(l1,d1)[+(β1) >(α1) I][–(β2) <(α2) I]I , 
 
which indicates the basic parameters: 
 

li : Length 



 

 

di : Diameter 
αi : Angle of Azimuth 

 βi : Angle of Inclination . 
 
2.3 Priors 

The Production Rules only give a basic description of natural 
branching. To model real trees, parameters are allowed to vary 
according to prior distributions. 
 
A generic set of priors is used when the sampling starts and no 
information about the type of the target tree is available. For the 
Azimuth α a uniform distribution in [0°, 360°) is used, because 
most trees have (partially-) radially symmetric crowns. As we 
employ the full Azimuth, the Inclination β is restricted to the 
half circle, from -90° (downwards) to 90° (upwards) and we use 
a normal distribution 
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with mean μβ = 45° and standard deviation σβ= 20° (cf. Fig. 2 
red dotted line) reflecting our experience and that for most types 
of trees the majority of branches points upwards due to 
phototropism. For length and diameter also normal distributions 
are used with manually given mean and standard deviation for 
the first level of branches. For the examples shown in this 
paper, μl = 1 meter, σl = 0.3 meter and μd = 0.1μl, σd = 0.2d were 
employed. For the higher levels of branches a generic 
contraction coefficient δ = 0.62, derived from the golden 
section, was used. 
 

 
 
Figure 2:  Prior distribution for Inclination and its refinement 

(example): dotted line (red) – initial prior; dash-dot 
line (magenta) – after first branch; dashed line (blue) 
– after second branch; solid line (black) – final prior. 

 
2.4 Background Estimation 

For generative modeling, the background clutter has to be 
modeled. Unfoliaged trees mostly consist of relatively thin 
linear structures and it can be assumed that they have a color 
different from the background, e.g., sky or building facades. 
The background is estimated based on gray scale morphological 
Closing or Opening, the latter for trees brighter than their 
background, e.g., in night scenes. A circular structuring 
element, i.e., rotation invariant, is employed to filter linear 
structures. The size of the structuring element is derived from 
the projected diameter of the trunk. 

Unfortunately, Closing or Opening with such a large structuring 
element strongly blurs the background. We, therefore, use an 
iterative recovery process for the background detail. The 
estimated background is compared with the original image in a 
sub-domain with a radius of 3 pixels, i.e., smaller than the width 
of most branches. If the average absolute gray value difference 
inside the domain is lower than 3 gray values used as an 
estimate for the image noise, the original value of the current 
center pixel is inserted into the estimated background. After 
Gaussian smoothing, the improved background image is used 
for the next iteration. Fig. 3 shows the original image (left), the 
result after gray scale Closing (center), and after three recovery 
iterations (right). For the latter two the histograms below show 
the gray value differences to the original image. In the 
histograms the effect of detail recovery, i.e., most small 
deviations are reconstructed, can be seen more explicitly. 
 

 
 
Figure 3:  Background estimation: original image (left), after 

gray scale Closing (center), and after three recovery 
iterations (right). The bottom row shows the 
histograms of the gray value differences to the 
original image. 

 
 

3. 3D EXTRACTION OF BRANCHES 

After locating the trunk by line extraction and matching (cf. 
Section 1), the branches are extracted. Candidate branches 
generated by the L-system and parameter sampling are projected 
into the estimated background images from different viewpoints 
via the given highly precisely known orientation parameters (cf. 
Fig. 4). This results in simulated images. Candidates are verified 
by comparing simulated and original images by means of a 
Gaussian likelihood function (cf. below). 
 

 
 
Figure 4: A new hypothesis is projected into the estimated 

background (top), to be compared with the original 
images (bottom). 



 

 

 
3.1 Classification of Branching Types 

After determining the first level of branches, i.e., the branches, 
which directly grow from the trunk, the branching types are 
classified. As the branching type is unknown before the 
extraction and because also the length of the trunk has only 
been approximately determined, we employ a particularly 
flexible search for this level by adding the vertical Z-coordinate 
of the begin point of the branch, i.e., its joint position along the 
trunk, as an additional parameter (cf. Fig. 5, left). This 
parameter is sampled together with the branching angles. Thus, 
branches do not have to start exactly at the given end point of 
the trunk. The classification is based on the distribution of the 
joint positions along the trunk. 
 

 
 
Table 1: The two Conditions used for classification of 

branching types. 
 
As shown in Table 1, we use two Conditions to distinguish the 
branching types: According to Condition (1) trees are supposed 
to be of the sympodial-monochasium – sm type if for the 
maximal difference of the Z-coordinates ΔZmax holds ΔZmax > 
ΔZsm, i.e., most of the joint positions of the extracted branches 
are not concentrated in a relatively small area (cf. also Fig. 5, 
center); Condition (2) states that if for one of the deviation 
angles of the branches to the trunk direction holds αtrunk-α ≤ 
Δαm, i.e., at least one branch follows the direction of the trunk, 
trees are classified as monopodial – m type (cf. Fig. 5, right), 
otherwise the branches are assumed to be more suitably 
described as sympodial-dichasium – sd type. 
 
The appropriate Production Rules of the corresponding L-
system (cf. Section 2.1) are then employed for the further levels. 
As shown below, the priors are refined based on this first level 
of branches. 

 
 
Figure 5: Classification of branching types: additional 

parameter ΔZ (left), sm type according to 
Condition1 (center) and m type and sd type 
according to Condition2 (right) 

 
3.2 Refinement of Priors 

During the extraction the distributions of the parameters are 
refined based on the already extracted branches. This leads to 
more plausible results and restricts the further search, thus 
making the sampling more efficient. For context-independent 
parameters, e.g., Inclinations of branches inside one level, a 

Bayesian refinement is used to integrate new evidence. For 
context-sensitive parameters, i.e., at different branching levels, 
inheritance and a decay model for the growing space, simulating 
the influence of the parent and the competition in the 
neighborhood, respectively, are employed. 
 
We assume that context-independent parameters follow 
independent and identically-distributed (iid) Gaussians. The 
initial prior p(θ0) is thus refined by new evidence as follows: 
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After multiple evidence has been integrated, the refined prior 
can be expressed as 
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We give the first evidence the weight w1 = 1. The weight of 
other evidence is scaled according to the likelihoods wi = Li/L1 
×w1, i.e., wi = Li/L1. w0 = 2 is used to give the prior value a 
slightly stronger weight. After normalization, this means 
 

∑

∑

=

== n

i
i

n

i i

ii

w

w

0

0
2

2

σ
µσ

µ
θ

θ ; 

∑

∑

=

−

=









= n

i i

n

i i

i

w

w

0

1

0
2

2

1
σ

σθ  .         (3) 

 
An example for the refinement of the Inclination is given in Fig. 
2. 
 
For the kth level of branches, with k > 1, the context-sensitive 
Azimuths and Inclinations are assumed to obey Gaussians 
around the values of their predecessor branches j 
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Initial values are inherited from the parent branches without 
explicitly considering phototropism or gravity. In the upper 
levels the density of branches increases, restricting the space for 
each branch. Assuming that branches grow exponentially 
 

λeNN kk =+1                                       (4) 
 
with Nk the number of branches in the kth level and λ the growth 
constant, the sequential reduction of the space Φ for an 
individual branch at level k can be formulated by an exponential 
decay 
 

k
k e λ−Φ=Φ 0                                    (5) 

 
with Φ0 indicating the initial space and -λ the decay constant. 
The latter can be derived from the L-system. For a typical sd 
type tree, N1 = N0eλ = 2N0, and thus λ is ln2. For sm- and m- 
trees, λ is ln3 according to their Production Rules. 
 



 

 

As the standard deviations of the angle distributions imply the 
possible growth space, they also follow the derived exponential 
decay: 

k
k e λ
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3.3 Likelihood Function and MAP Estimation 

As (Huang, 2008) we use a simple and efficient 2D 
representation consisting of trapezoids derived from the 3D 
representation instead of the actual projection of the cylinders. 
Empirical investigations have shown that the texture of the bark 
is hard to estimate and shading is not significant for most 
branches at the employed image resolution. 
 
For the evaluation of the hypotheses we follow (Tu and Zhu, 
2006). Assuming that the difference for each pixel follows an 
iid Gaussian, the likelihood function L can be expressed as: 
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where D indicates the domain of comparison and Is(x,y) and 
Io(x,y) the pixel intensities in the simulated and the original 
image. 
 
Integrating the refined prior information, the MAP estimation 
for parameter optimization can be formulated as 
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with Θ the parameter space. 
 
The estimates are computed via a combined Monte Carlo (MC) 
plus sequential Markov Chain Monte Carlo (MCMC) sampling 
(Neal, 1993). Since the parameters, especially the branching 
angles, are distributed sparsely in a relatively large space, plain 
MC is used in the first coarse sampling phase. The parameters 
are refined in the second phase. Particularly, the best samples 
from MC, i.e., ten from one hundred, are taken as candidates for 
a refined search using ten MCMC iterations for each. The 
number of candidates is reduced to three after the first round of 
refinement and the best one is finally found after another twenty 
MCMC iterations for each of them. Basic MC search is 
complemented by the Metropolis-Hastings algorithm (Neal, 
1993), to avoid local minima. 
 
While in (Huang, 2008) the parameters are sampled in a fixed 
order, they are now selected based on a probability function 
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This function consists of two parts: (1) the initial probability g0, 
which is derived based on the distributions of individual 
parameters; (2) a probability conditional to the sampling result 

in the last step, which presents the influence of the sampling 
sequence. 
 
The initial probability is defined in a way giving parameters 
with a larger search space a higher priority. Table 2 gives an 
example of g0s for the parameters of branches in the first level. 
For parameters following Gaussian distributions, g0=2σ/Ω, 
where Ω indicates the solution space. For Azimuth and 
Inclination, the solution spaces are 360° and 180°, respectively. 
The Ω for length and diameter are approximately limited by 0 
and a derived upper limit of μ+3σ. For parameters with uniform 
distribution g0 = 1. 
 
The parameters sampled in the last step (θi∈Θ’) and their 
performance influence the current step via a conditional 
probability: 
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with |Θ’| the cardinals of Θ’, i.e., the number of parameters that 
has been sampled in last step, and Perf indicating the 
performance of the sampling: if the hypothesis was accepted, 
then Perf = 0, otherwise Perf = 1. To illustrate how this works, a 
simplified example for the Azimuth is given in Table 3, with 
g(θi) = 1, when θi∈Θ’ 
 

 
 
Table 2: Initial probabilities for parameters in the first level 

based on their distributions. 
 

 
 
Table 3: Probabilities for Azimuth α conditional to the 

selection and the performance in the last step for all 
possible cases. α+1 stands for Azimuth plus one 
additional parameter, etc. Perf = 0 means the last 
hypothesis was accepted. 

 
For the sampling of four parameters, the number of all possible 
combinations is 15. However, assuming that all previously 
sampled parameters have identical influence on the sampling for 
the Azimuth in the current step, this number reduces to five: 
Azimuth alone, Azimuth with 1 to 3 other parameter(s) and any 
other parameter(s) without Azimuth. Taking the performance of 
the sampling into account (cf. Equation 10), the probabilities 
for Azimuth for all possible cases are listed in Table 3. 
 
Generally, (1) if a parameter has not been selected in the last 
steps, its probability increases; (2) Parameters that led to better 
results are given a lower priority to keep them basically fixed 
while other parameters are varied. 
 
 



 

 

4. RESULTS 

Current approaches such as (Chen et al., 2008) and (Tan et al., 
2008) aim at the efficient generation of realistic looking trees 
based on significant user input, particularly in terms of the basic 
tree structure. Opposed to this, we want to demonstrate the 
potential, but also shortcomings of the devised modeling for 
trees and their extraction in a fully automatic way with minimal 
human intervention. For the given examples only the 
information if the vertical vanishing point is seen horizontally 
or vertically was given manually. 
 
In our experiments we use images of both simulated tree models 
and real scenes. The former make it possible to demonstrate the 
accuracy of the reconstructed results, because 3D ground truth 
data is available, while for the latter it can be shown how far 
problems, e.g., with background clutter and weak contrast, can 
be handled. Because priors are refined, they mostly influence 
the time needed for a correct result, but not the quality of the 
result, at least as long as they are not chosen in a totally 
counter-intuitive way initially. 
 
The input data for our experiments consists of snapshots 
acquired while simulated models are rotated and wide-baseline 
image sequences taken unconstrained with hand-held consumer 
cameras. The output is the reconstructed branching system 
represented in the form of a VRML (Virtual Reality Modeling 
Language) model. 

The first experiment uses a simulated model of a sympodial-
monochasium tree generated with the software Xfrog. Six 
snapshots were taken as input images. The result presented in 
Fig. 6 shows the original (top) and the reconstructed (bottom) 
model from different viewpoints. Most branches could be 
reconstructed, even those completely occluded in some views. 
Fig. 6 (right) shows a comparison from the front and the top. 
Although the input images cover a relatively small viewing 
angle (about 45°), the main branches were determined with 
correct branching angles. 
 
Please note that although an L-system is at the basis of Xfrog, it 
actually works on an abstraction level with emphases on 
realistic visualization and ease-of-use. Models produced by 
Xfrog do not directly follow an L-system, comparable to that 
used in this work. We, therefore, treat Xfrog models in the same 
way as real trees without using any extra prior information. 
 
Fig. 7 presents in the top row three of six images showing a 
young monopodial tree. Below, the reconstruction result is 
presented from the same viewpoints. While many of the tiny 
twigs could not be reconstructed, the 3D model consists of most 
of the branching structure. In Fig. 8 a model of a sympodial-
monochasium tree reconstructed from six images is presented. 
Again, most of the branching structure besides the tiny twigs 
could be reconstructed. 

 
Figure 6: Images of the model of a sympodial-monochasium tree simulated by Xfrog from three of six different viewpoints (top), 

result from the same viewpoints (bottom), and comparison of simulated (green) and reconstructed (red) model from the 
front (right top) and the top (right bottom) 

 
5. CONCLUSIONS 

We have presented an extended approach for the generative 
statistical 3D extraction of unfoliaged trees from wide-
baseline image sequences. After extracting the basic branches 

of the first level, the type of the L-system is determined by 
means of classification. Hypotheses are projected into an 
estimated background and are evaluated by an intensity based 
Gaussian likelihood function. A Bayesian framework is 



 

 

devised to refine the generic prior distributions for 
parameters according to already accepted hypotheses. The 
updated priors are used in the MAP estimation. By these 
means tree structures can be reconstructed plausibly and 
efficiently. 
 
Concerning future research, we want to use the improved L-
systems presented in this paper to refine individual branches 
into multiply connected growth components. This makes it 
possible to model the branches more in detail, e.g., with a 
curved shape and varying width, by means of generalized 
cylinders. Reversible Jumps – RJ (Green, 1995) are to be 
integrated into MCMC for an even more flexible search in 
conjunction with model selection, e.g., using Akaike’s 
Information Criterion (AIC) (Akaike, 1973), to be able to 
distinguish between thin twigs and the background. 
 

 
 
Figure 7: Three of six images of a young monopodial (m-) 

tree (top) and result from the same viewpoints 
(bottom). 

 

 
 
Figure 8: Three of six images of a sympodial-monochasium 

(sm-) tree (top) and result from the same 
viewpoints (bottom). 

 
Generative statistical modeling is not confined to L-systems. 
Basically, just a means to construct realistically looking trees 
that can be efficiently controlled is needed. For this, e.g., 
(Deussen and Lintermann, 2005) could be a basis. The 
Production Rules of the L-system could also be refined 
according to the already found structure. We finally assume 

that the upper stages of branches with very thin twigs might 
be grown stochastically with the derived Production Rules 
and the learned priors to match the image density. 
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