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Abstract— This paper presents a combined bottom-up and top-
down approach to 3D roof plane detection and segmentation from
laser scanning point clouds. Laser scanning data of city scenes
often shows noise and incompleteness because of, e.g., the clutter
by trees and the reflection of windows/waterlogged depressions on
the roof. Results of the bottom-up plane reconstruction may thus
be limited to a number of incomplete and/or irregular regions.
We proposed a joint multiple-plane detection scheme to improve
the performance of the 3D Hough transform. A model-driven
segmentation, which works with the constraint-rules derived from
the basic roof model, is conducted to overcome the clutter and
flaws in the point cloud ensuring a plausible reconstruction.

I. INTRODUCTION

Many approaches for the reconstruction of 3D city models
from measurement data have been reported in the past decades.
The introduction of laser scanning makes the acquisition of 3D
data easier and more accurate. Overviews are given by Brenner
[1], Schnabel et al. [2] and Vosselman [3].

Recent contributions were made by Rottensteiner et al.
in [4], in which an algorithm for roof line delineation is
presented with a statistical framework for the determination
of the needed thresholds, and Tarsha-Kurdi et al. in [5], in
which they report an extended Random Sample Consensus
(RANSAC) algorithm for automatic roof plane detection from
airborne laser scanning data. Based on the graph description of
building roofs [6], Milde et al. [7] present a formal grammar
for roof plane layouts, by which means relatively complex
roofs can be derived from the predefined primitives. The most
recent contribution for modeling buildings with primitives is
given by Oude Elberink in [8].

Building reconstruction is often based on planar surfaces,
which can be obtained using different algorithms. The 3D
Hough transform [9] is an application of the 2D Hough trans-
form technique [10]. In the context of laser scanning, it is often
employed for plane detection. One plane in object space can
be mapped to a point in parameter space and then the mapping
of all possible planes passing through a point in object space
leads to a certain manifold in parameter space. The coplanar
condition of multiple points can therefore be equally expressed
as the intersection of their corresponding manifolds. Recently,
this technique has been extended by Rabbani and Van den
Heuvel [11] to more complicated primitives, e.g., cylinders.

A basic problem of automatic and reliable generation of
3D building models, however, has not been well solved. Laser

scanning data taken in city scenes often shows noise and
incompleteness because of clutter and occlusion, e.g., by trees,
or reflection, e.g., glass windows or waterlogged depressions
on the roof. Results of the conventional segmentation may
therefore be limited to many incomplete and/or irregular
regions. We present a combined framework for 3D building
roof extraction from LIDAR data by combining the power
of bottom-up and top-down approaches for the roof plane
detection and segmentation. An improved 3D Hough transform
is designed to find multiple planes from the point cloud at the
same time. By this means a context relationship of the roof
planes can be derived and utilized in the detection. We then
conduct a model-driven approach to segment roofs in the found
planes overcoming the flaws in laser data and ensuring regular
results.

II. JOINT MULTIPLE-PLANE DETECTION

The mostly used techniques for shape detection from point
clouds are Hough transform, Region Growing, and RANSAC.
No matter which technique is chosen, the plan is to find
one plane each time, remove the corresponding points and
go on with the next one in the next iteration. The possible
problems of this scheme are: 1. time consuming search, as the
remaining points are calculated repeatedly until they have been
recognized and removed; 2. points that belong to two adjacent
planes may be too early removed with the firstly found plane.
The proposed scheme is trying to avoid these drawbacks by
enhancing the Hough transform to find multiple planes at the
same time. By this means the points are used more efficiently
– they are calculated for only one time while being allowed
to vote multiple planes.

A. 3D Hough Transform

The plane parameters, i.e., its polar coordinates, are defined
as shown in Fig. 1 (left). The equation of the planes passing
through the point (x, y, z) can then be expressed as

ρ = xcosϕcosθ + ysinϕcosθ + zsinθ (1)

with ϕ the azimuth, θ the elevation, and ρ the normal distance
from the origin to the plane. We define the origin to be lower
than the whole point cloud so that the ranges of ϕ and θ can
be reduced to ϕ ∈ [0◦, 180◦] and θ ∈ [0◦, 180◦] considering
only the upper half-sphere.



Fig. 1. Definition of the Cartesian- and polar-coordinates for the 3D Hough
transform (left). 2D plots of Hough spaces for 4 points voting 1 plane (middle)
and 120 points voting 3 planes (right). A lighter pixel indicates a higher
manifolds concentration for the azimuth-elevation combination.

Assuming there are n coplanar points in object space, an ex-
clusive intersection position of their corresponding manifolds
should exist in Hough space as well. In practice, however,
they may not perfectly meet at one point because of the noise.
On the other side, there are many trivial intersections as an
arbitrary non-colinear point-triplet determines a plane. To find
the best estimation of the common plane we, therefore, look
for the position, in which all the corresponding manifolds show
the highest degree of concentration, rather than chasing the
intersected locations. To achieve this we discretize the ρ value
for each ϕ-θ location into small intervals and use the number
of manifolds passing through an interval as the measure of
concentration. The size of the interval can be tuned according
to the data density and quality. Mapping only the maximum
concentration degree for each ϕ-θ location, the Hough space
can be plotted into 2D, as shown in Fig. 1 (middle).

Knowing the density of the point cloud it is easy to set a
threshold to accept all the potential planes. Yet, as the number
of points increases, it is harder to achieve a clear result (cf.
Fig. 1, right).

B. Rule-based Post-processing of the Results

The sketch in ϕ-θ diagram (Fig. 2, middle) demonstrates a
filtered result of the 3D Hough transform showing only the lo-
cations with distinguished manifolds concentration. Although
the direct result of the Hough transform is still rough, multiple
planes have been recognized – top candidates of ϕ-θ are well
concentrated in four groups. Yet, as shown in Fig. 2 (right),
a simple clustering and averaging still leads to obvious errors
(gray rectangles).

Assuming these planes belong to an individual building (cf.
Fig. 2, left), constraints can be derived from the basic roof
model to regularize the results. We subdivide the intersection
lines (ridges) into two classes:

– horizontal ridges (red): ridges between two vertices on
the roof;

– diagonal ridges (green): ridges connecting one vertex and
one eaves corner, which include hips and valleys.

The following rules can then be derived:
1. Planes sharing a horizontal ridge have the same azimuth.

E.g., for planes 0 and 2: if |ϕ0 − ϕ2| < 5◦ or > 175◦,
then adjust |ϕ0 − ϕ2| = 0◦ or 180◦. The variation of

Fig. 2. Rule-based post-processing: Building model (left) with horizontal
ridges (red) and diagonal ridges (green). The preliminary result from the 3D
Hough transform (middle). Results before (gray) and after (red) joint planes
adjustment (right).

each ϕ is inversely proportional to the number of the
coplanar points. This condition implies the horizontal
ridge is parallel to the ground.

2. Planes sharing a horizontal ridge follow θ0 + θ2 = 180◦

if |ϕ0−ϕ2| = 0◦ or θ0 = θ2 if |ϕ0−ϕ2| = 180◦, which
implies that the roof has a symmetrical form.

3. Planes sharing a diagonal ridge have perpendicular az-
imuths. E.g., for planes 0 and 1: if |ϕ0−ϕ1| ∈ (90±5)◦,
then force |ϕ0 − ϕ1| = 90◦.

These rules work only based on the parameter values while
the context (adjacency) relation of the planes is still unknown.
The latter is going to be automatically derived afterwards.

The result is thereby refined as shown in Fig. 2 (right,
red rectangles). Please note that this diagram only shows
the distribution on azimuth-elevation, i.e., parallel planes are
shown at the same position (cf. positions 3/5 and 2/4). They,
however, can be easily separated by their different ρ values.
Fig. 5 (b) presents the detected planes by labeling the coplanar
points with different colors.

The advantage of this scheme is that the parameters of
multiple planes are jointly adjusted, i.e., points of multiple
planes contribute to their common parameter, e.g., azimuth
of planes 0 and 2, making the result more accurate and
reasonable.

C. Relation Matrix and Region Adjacency Graph

Intersection lines are calculated after the planes have been
detected. We count points that belong to (the vicinity of) the
intersection lines and note the numbers down in a relation
matrix (Fig. 3, middle). Yet, as both the planes and the
intersection lines are infinite before the segmentation (cf.
Section III), false intersections, e.g., planes 0-3 and planes
1-2 (gray dashed lines in Fig. 3, left), could still be found.
We verify the intersection lines by checking the plane normal
vectors on its both sides: if the vectors are similar to each
other, the intersection is false and the corresponding number
in the matrix cell is set to null.

Please note that the relation matrix is symmetric and we
use the lower triangle (gray) to show the initial values while
the upper triangle (color, italic) presenting the result after the
verification of intersections. Drawing all non-zero relations
shown in the matrix results in a Region Adjacency Graph



Fig. 3. Relation matrix (middle) is generated by analyzing intersection lines
(left) and leads to a RAG (right). Intersection lines are verified to eliminate
the false ones (gray dashed lines).

(RAG, Fig. 3, right), where the two classes of ridges are shown
in red and green colors respectively.

III. PLANE SEGMENTATION

After the plane parameters and the intersection lines have
been determined, the plane segmentation means finding the
ridges, i.e., to segment the intersection lines, and eaves, i.e.,
to find the lower edges of the roof planes.

A. Ridge Determination

A ridge is a segment of an intersection line. As mentioned
in Section II-B, a horizontal ridge (red) has both end points at
vertices. Studying the RAG, we can see that each basic closed
circle (e.g., 0-2-5 or 0-1-3-2) indicates a vertex on the roof
(cf. Fig. 3):

v0−2−5 = P0 ∩ P2 ∩ P5 = r0−2 ∩ P5 ; (2)

v0−1−3−2 = P0 ∩ P1 ∩ P3 ∩ P2 = r0−2 ∩ r1−3 (3)

with vm−n−p the vertex of plane m − n − p, Pn the plane
n, and rm−n the ridge connecting plane m−n. The diagonal
ridges will be finished after the determination of eaves.

B. Edge Sweeping for Eaves

An improved edge sweeping is conducted to find the eave
lines. It works based on Maximum a Posteriori (MAP) esti-
mation of the eave parameters. As the planes and horizontal
ridges are already known, the parameters of eaves, which are
coplanar with the corresponding ridge, can be simplified as
Θ = {d, α} with d the sweeping distance and α the angle on
the common plane. The sweeping distance is defined as the
normal distance from the midpoint/endpoint (cf. e.g., P0/P5)
of the ridge to the eave.

We use the following constraints as prior information:
1. Eaves are parallel (e.g., P0) or perpendicular (e.g., P5)

to the horizontal ridge:

p(αeave) = N(αhridge, σ
2
α) or N(αhridge +

Π

2
, σ2
α) .

(4)
2. Symmetry of eaves to both sides of the horizontal ridge:

p(|d− d′|) = N(0, σ2
d) (5)

with d and d′ the sweeping distances of both sides of
the ridge. It can be controlled by tuning σd and even be

overruled if the numbers of found points on both sides
are very different.

Quality of reconstruction is employed as the likelihood
function – the goodness of fit of the underlying model (gen-
erated by the sampling of Θ) to the data.

L(D|Θ) = Quality =
TP

TP + FP + FN
(6)

with D the data, i.e., the point cloud and
– TP: True Positive, plane points which have been included

inside the eave;
– FP: False Positive, plane points outside the eave;
– FN: False Negative, the included position has no point in

the roof plane (for point raster).
Integrating the prior information in the objective function,

the MAP estimation of the eave parameters can then be
expressed as:

Θ̂MAP = argmax
Θ

{
L(D|Θ)p(Θ)

P (D)

}
= argmax

Θ

{
L(D|Θ)p(Θ)

}
(7)

with p(Θ) = p(α) · p(|d− d′|) and P (D) the marginal proba-
bility. P (D) can be seen as a constant in the optimization, as
it does not depend on Θ.

Fig. 4 demonstrates how the proposed rule-based edge
sweeping works. Eaves parallel to the ridge are searched
jointly with the consideration of the parallelism and the
symmetry – first sweeping one eave by increasing d from the
horizontal ridge and then sampling d′ from p(|d−d′|) as well
as α from p(α) in each d-step. This helps to sort out the
points caused by the tree clutter (on both sides, cf. also Fig.
5) and to compensate the missing points (on the right side).
Eaves perpendicular to the ridge are found holding the angle
constraint.

The rules used in the edge sweeping are derived from a
simplified gable roof model. They are, as in (4) and (5), relaxed
to gain more flexibility in the reconstruction.

IV. RESULTS

Fig. 5 shows a result of the proposed approach. The raw
point cloud (Fig. 5, a) has relatively low density (1 meter
raster) and the roof points (blue solid polygon) are cluttered by

Fig. 4. Rule-based edge sweeping of the eaves parallel (left) and perpendic-
ular (right) to the horizontal ridge.



Fig. 5. Experimental result: (a) In the raw point cloud the roof (blue solid polygon) is cluttered by several trees (green dashed contours). (b) Some adjacent
tree points are falsely labeled as roof points in the plane detection. (c) The rule-based segmentation ensures the regularity of the roof. (d) The comparison of
results of simple bottom-up (red) and rule-based (blue) reconstructions with the building footprint (green). (e) The final roof model in the point cloud.

several adjacent trees (green dashed contours). Their influence
remains in the simple bottom-up segmentation because some
tree points have been falsely labeled as roof points after the
plane detection (Fig. 5, b). This difficulty, as mentioned in
Section III-B, is overcome by the rule-based segmentation
(Fig. 5, c). We compare the simple bottom-up reconstruction
(red) and our result (blue) with the building footprint data
(green) in Fig. 5 (d), the integration of model-driven approach
has notably improved the result. Fig. 5 (e) presents the final
roof model fitting the point cloud.

Please note although the reconstructed eave contour is close
to the building footprint, they should in principle not be
identical, as the latter is measured based on the wall/wainscot.
The result shows good correctness by being well parallel to
the corresponding lines in the footprint rather than matching
them.

V. CONCLUSION AND OUTLOOK

This paper presents an approach to 3D detection and seg-
mentation of building roof planes combining bottom-up and
top-down methods. The main contributions can be concluded
as follows:

1. A joint multiple-plane detection scheme is proposed to
enhance the result of 3D Hough transform.

2. A model-driven segmentation is conducted by integrating
model constraints into the MAP estimation of the roof
parameters.

By these means the laser scanning points are used more
efficiently and a plausible reconstruction is ensured.

Although we have tried to relax the search of plane pa-
rameters, the constraint rules are still limited because of the
relatively simple roof models. More sophisticated models and
refined rules are needed for a more flexible reconstruction.

Please note that we employ existing building footprints for
the evaluation of our results. This approach, however, can be
used for a reverse purpose, i.e., updating or completing build-

ing footprints derived from roof contours based on available
airborne LIDAR data.
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