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ABSTRACT: 
 
This work presents a combined bottom-up and top-down approach to extraction and refinement of building footprints from airborne 
LIDAR data. Building footprints are interesting for many applications in urban planning. The cadastral maps, however, may be 
limited for certain areas or not be updated frequently. Airborne laser scanning data is therefore considered by many people in the last 
decade as an important alternative data for change detection and update of building footprints. Laser scanning data of city scenes, 
however, often shows noise and incompleteness because of, e.g., the clutter by vegetation and the reflection of windows/waterlogged 
depressions on the roof. Results of the bottom-up detection may thus be limited to incomplete or irregular polygons. We employ 3D 
Hough transform to detect the building points. An improved joint multiple-plane detection scheme is proposed to find and label the 
laser points on multiple roof facets synchronously. The bottom-up processing provides not only a rough point segmentation but also 
additional 3D information, e.g., roof heights and horizontal ridges. Using these as priors, a top-down reconstruction is conducted via 
generative models. We consider the building footprint as an assembly of regular primitives. A statistical search by means of 
Reversible Jump Markov Chain Monte Carlo and Maximum A Posteriori estimation is implemented to find the optimal 
configuration of the footprint. By these means a robust and plausible reconstruction is guaranteed. First results on point clouds with 
various resolutions show the potential of this approach. 
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1. INTRODUCTION 

In the past decades many approaches for the extraction and 
reconstruction of building models from measurement data have 
been reported. The data sources include aerial and satellite 
photographs, synthetic aperture radar (SAR) images, and 
airborne and terrestrial laser scanning data. Overviews are given 
by Brenner (2005), Schnabel et al. (2008), and Vosselman 
(2009). Additionally, digital surface models (DSMs) generated 
by interpolation from laser point clouds or stereo-pair-images 
are used as the basis for the reconstruction of building outlines 
(Ortner, 2007) and 3D buildings (Lafarge, 2010).  
 
Building footprints are interesting for many applications in 
urban planning. The cadastral maps, however, may be limited 
for certain areas or not be updated frequently. Airborne laser 
scanning data is therefore considered by many people in the last 
decade as an important alternative data for change detection and 
update of building footprints. In (Pfeifer et al., 2007), an 
overview of the algorithms and methods of quality assessment 
are given. Recent works include (Lafarge et al., 2008), in which 
building footprints are modeled as connected rectangles and 
detected based on marked point processes from DSM, and 
(Rutzinger et al., 2010), which focuses on the large scale 
building change detection from airborne laser scanning data.  
 
Building detection is often based on the extraction of planar 
surfaces. 3D Hough transform (Vosselman and Dijkman, 2001) 
is an application of the 2D Hough transform technique (Hough, 
1962). In the context of laser scanning, it is often employed for 

plane detection. One plane in object space can be mapped to a 
point in parameter space and then the mapping of all possible 
planes passing through the point in object space leads to a 
certain manifold in parameter space. The coplanar condition of 
multiple points can therefore be equally expressed as the 
intersection of their corresponding manifolds. Recently, this 
technique has been extended in (Rabbani and Van den Heuvel, 
2005) to detect more complicated geometries, e.g., cylinders. 
 
Airborne laser scanning data of city scenes, however, often 
shows noise and incompleteness because of, e.g., the clutter by 
vegetation and the reflection of windows and waterlogged 
depressions on the roof. Direct results of the bottom-up 
detection may thus be limited to incomplete or irregular 
polygons.  
 
This paper presents a hybrid approach to extraction and 
reconstruction of building footprints from airborne laser 
scanning data combining bottom-up roof plane detection and 
top-down footprint reconstruction via generative models. We 
show how additional 3D information improves the 2D footprint 
reconstruction. We employ 3D Hough transform to detect the 
building points. Following (Huang and Brenner 2011), an 
improved joint multiple-plane detection scheme is proposed to 
find the roof facets, as well as the laser points belonging to the 
same building synchronously. A generative statistical approach 
is then conducted for the footprint reconstruction. We consider 
the building footprint as an assembly of regular primitives, 
which are parameterized in a predefined library.  Based on an 
initial model provided by the bottom up process a search by 



 

means of Reversible Jump Markov Chain Monte Carlo 
(RJMCMC) and Maximum A Posteriori (MAP) estimation is 
implemented to find the optimal reconstruction.  
 
The next sections are organized as follows. Section 2 introduces 
3D Hough transform and the multiple-plane detection scheme. 
A primitive-based generative statistical modeling is described in 
Section 3. Section 4 presents the optimization with MAP 
estimation. First experiment results shown in Section 5 
demonstrate the potential of the proposed approach. The paper 
ends up with conclusion and outlook. 
  

2. PLANE DETECTION 

Planes are often the basis of building detection and can be 
obtained employing various algorithms. The mostly used 
techniques for plane detection from point clouds include Hough 
transform, Region Growing, and Random Sample Consensus 
(RANSAC). No matter which technique is chosen, they share a 
similar scheme: first finding one plane each time, then 
removing the corresponding points, and going on with the next 
one in the next iteration. The possible problems are: (1) time 
consuming search as the remaining points are calculated 
repeatedly until they have been recognized and removed; (2) 
points that belong to two adjacent planes may be too early 
removed with the firstly found plane. To avoid these drawbacks 
we propose a joint plane detection scheme by enhancing the 
Hough transform to find multiple planes synchronously. By this 
means the points are used more efficiently – they are calculated 
for only one time while being allowed to vote multiple planes. 
 
The basic purpose of the plane detection is to find and label 
data points on the roof implying a rough outline (2D) of the 
target building. Since the planes are actually found in 3D, 
additional instructive information: roof heights and horizontal 
ridges (of hipped roofs) can be derived from the available plane 
parameters and used to guide the further reconstruction. 
 
2.1 Pre-segmentation 

Dealing with relatively large scenes, in which multiple 
buildings or building groups exist, a pre-segmentation provides 
the following advantages:  
 

1. The result of 3D Hough transform becomes more 
stable with limited numbers of points as well as 
underlying planes. 

2. The MCMC search is conducted locally, i.e., the 
sampler does not need to travel the whole scene 
overcoming many local minima to find the target, 
which guarantees the efficiency and convergence. 

 

 
Figure 1. Pre-segmentation: the given point cloud (left) is 
converted into a raster image (middle). After morphology 
processing blobs containing individual buildings are labeled and 
segmented (red dashed rectangle). 
 

As shown in Figure 1 the point cloud of a test zone (left) is 
converted into a grayscale image (middle) with the gray value 
of each pixel indicating the elevation. Buildings, as well as a 
number of other objects, mostly trees, are presented as brighter 
areas with higher elevation over the ground. We employ 
mathematical morphology to reduce small spots, which suppose 
to be non-building objects. Let I be the input image and s the 
structuring element, which is defined as a disk with a radius of 
5 meters, an “Opening” operation 
 

 
 
is conducted with “Erosion” and subsequent “Dilation”. 
Essential effects of “Opening” are to remove the trivial spots 
and restore the outline. The relatively large “blobs”, which are 
supposed to contain individual buildings or building groups, are 
thereby clearly separated in spite of the numerous adjacent 
noises and shown in a binary image (Figure 1, middle). 
 
The point cloud is segmented into subzones based on the 
detected blobs. A subzone is defined as the minimum 
circumscribed rectangle (or “bounding box”, cf. Figure 1, right, 
red dashed rectangle) of the blob and a few more meters 
tolerance is given according to the size of the employed 
structuring element.  
 
Plane detection and footprint reconstruction are conducted in 
individual subzones with reduced calculation complexity. The 
subzones have a local coordinate system for calculation and 
keep the original (global) coordinates as well. The latter is used 
to reconstruct the complete scene by assembling the individual 
footprints.  
 
2.2 3D Hough Transform 

3D Hough transform is chosen as basis for the proposed plane 
detection because of its potential of finding multiple planes 
synchronously.  
 
As shown in Figure 2 (left), the polar coordinates of the plane 
are employed as its parameters. A plane passing through the 
point (x, y, z, Cartesian-coordinates) can then be expressed as 
 

 sincossincoscos zyx                 (1) 

 
with φ the azimuth, θ the angle of elevation, and ρ the normal 
distance from the origin to the plane. We define the origin to be 
lower than the whole point cloud so that the ranges of φ and θ 
can be reduced to φ ϵ [0°, 180°] and θ ϵ [0°, 180°], i.e., only the 
upper half-sphere. 

 
Figure 2.  Definition of the Cartesian- and polar-coordinates for 
the transform (left) and a 3D view of Hough space (right). 3 
manifolds intersect at one point (red circle) in Hough space 
indicates 3 points defining one plane in Euclidean space.  



 

The plane is presented as a point in its parameter space – Hough 
space. All possible planes passing a single point then form a 
manifold in Hough space. As shown in Figure 2 (right), 3 
manifolds intersect at one point (red circle), which is 
corresponding to 3 points determining one plane in Euclidean 
space. Theoretically, if there are n (n ≥ 3) coplanar points in 
object space, an exclusive intersection position of their 
corresponding manifolds should exist in Hough space as well. 
In practice, however, they may not perfectly meet at one point 
because of the noise. On the other side, there are many trivial 
intersections as an arbitrary non-colinear point-triplet 
determines a plane. To find the best estimation of the common 
plane we, therefore, look for the position, where the manifolds 
show the highest degree of concentration rather than chasing the 
intersected locations. Mapping only the maximum 
concentration degree for each φ-θ location, the Hough space 
can be plotted into 2D, as shown in Figure 3. 

 
Figure 3.  2D plots (azimuth-elevation) of 3D Hough spaces for 
4 points voting 1 plane (left), 120 points/3 planes (middle) and 
the test zone (4800 points/6 planes, right). A lighter pixel 
indicates a higher manifolds concentration. 
 
According to the density and quality of the point cloud a 
threshold can be set (manually) to accept all the potential 
planes. Yet, as the number of points increases, the results no 
more concentrate well (cf. Figure3, middle and right). This is 
particularly crucial for non-flat roofs. A post-processing is 
needed to analyze the results. 
 
2.3 Joint Plane Detection 

As shown in Figure 4, a joint multiple-plane detection scheme 
is employed to find plausible construction from the fuzzy 
results. The sketch in φ-θ diagram (left) demonstrates a filtered 
result of the 3D Hough transform. Although the top candidates 
of φ-θ are well concentrated in four groups, simple clustering 
and averaging of them still lead to obvious errors (middle, gray 
rectangles). Assuming these planes belong to an individual 
building, basic constraints can be derived without knowing the 
actual configuration: 
 

– Planes sharing a horizontal ridge have the same 
azimuth. E.g., for planes 0 and 2 (cf. Figure 4, right): 
if |φ0−φ2| < 5° or > 175°, then adjust |φ0−φ2| = 0° or 
180°. The variation of each φ is inversely proportional 
to the number of the coplanar points. 

– Planes sharing a horizontal ridge follow θ0+θ 2 = 180° 
if |φ0−φ2| = 0° or θ0 = θ2 if |φ0−φ2| = 180°, which 
implies that the roof has a symmetrical form. 

– Planes sharing a diagonal ridge have perpendicular 
azimuths. E.g., for planes 0 and 1: if |φ0−φ1| ϵ 
(90°±5°), then force |φ0−φ1| = 90°.  

 
These rules work only based on the parameter values while the 
context (adjacency) relation of the planes is still unknown. The 
result is thereby refined as shown in Figure 4 (middle, red 
rectangles). Please note that this diagram only shows the 

distribution on azimuth-elevation, i.e., parallel planes are shown 
at the same position (cf. positions 3/5 and 2/4). They, however, 
can be easily separated by their different ρ values. Figure 5 
(middle) presents the detected planes by labeling the coplanar 
points with different colors. 
 

 
Figure 4. Joint adjustment of plane parameters: the preliminary 
result of the 3D Hough transform (left), results before (gray) 
and after (red) joint planes adjustment (middle), and the 
underlying model (right) 
 
The advantages of the proposed scheme are: 
 

1. The parameters of multiple planes are jointly 
adjusted, i.e., points of multiple planes contribute to 
their common parameter, e.g., azimuth of planes 0 
and 2, making the result more accurate and 
reasonable. 

2. No point-deletion during the detection. Points in 
adjacent areas are allowed to vote multiple planes 
instead of being removed too early with the first 
found facet. The point cloud can thus be used more 
efficiently leading to more robust detection. 

 
2.4 Initial Contour and Additional 3D Information 

We note that simple morphology processing already provide 
some meaningful contours, which in many cases can even be 
directly used for footprint reconstruction. The more expensive 
3D plane detection is implemented because it can sort out non-
planar objects, i.e., trees (cf. Figure 1, right, green dashed 
outlines) as well as provides instructive 3D information. The 
following information can be derived from the plane detection 
(cf. Figure 5): 
 

1. Roof points: the data points that belong to the roof 
planes are labeled, implying a rough outline (blue 
dashed line) of the target building.  

2. Roof Heights: different roof heights indicating 
separate building parts. 

3. Ridges (non-flat roofs): horizontal ridges (red lines) 
and diagonal ridges (green lines) are calculated by 
intersecting planes.  

 

 
Figure 5. The output of the bottom-up process: the point cloud 
(left), the roof points (middle) labeled with colors indicating a 
rough building outline (blue dashed contour), and horizontal 
(red lines) as well as diagonal (green lines) ridges (right) 



 

Although the ridges are not shown in the building footprint, 
they provide essential constraints for the reconstruction. 
Especially, horizontal ridge is the key as it mostly indicates the 
main axis of the building. Please note, although the plane 
detection and the building outline can be rough, the 
determination of ridges has higher accuracy as their parameters 
can be seen as a synthesis of all the related planes’ parameters. 
 

3. HYPOTHESES GENERATION 

In the generative reconstruction, a building footprint is 
considered as a variant of a single primitive or an assembly of 
multiple primitives.  One or more primitives are instantiated 
and fitted into the point cloud, until the majority of the points 
are represented by the primitives. The main advantage of the 
generative reconstruction is the guarantee of plausible results. 
The influence of the clutter by vegetation and errors in the point 
cloud may be significantly reduced. 
 
A statistical search is conducted by means of Reversible Jump 
Markov Chain Monte Carlo. The initial information derived 
from plane detection (cf. Section 2.4) is integrated into the 
search in the form of priors. 
 
3.1 Primitive-based Modeling 

We use square and rectangle as the primitives of footprints. The 
rectangle has 5 parameters: length (l), width (d), azimuth (α), 
coordinates of the centroid (x, y) while the square has 4 (l=d). 
Through sampling the parameters a large number of hypothesis 
models are generated and the best candidate is found in the 
optimization (cf. Section 4). 
 
Being different from most approaches, overlapping is allowed 
in the combination of primitives. By this means (1) a number of 
complex buildings are possible to be represented by simple 
primitives and (2) the primitives can maintain the regularity 
during the reconstruction instead of being cropped into irregular 
facets to fit the data. The side effect – the redundant parts are 
always hidden inside the assembly and they can be easily 
removed by “merging” the primitives with usual geometrical 
tools. 
 
3.2 Priors 

As mentioned before, horizontal ridge is the key of the roof 
geometry. Knowing it as y=ax+b|hridge, constraints can be 
derived for the footprint parameters. 
 

1. The horizontal ridge indicates the orientation of the 
primitive: 

 ),()( 2
 hridgeprimitive Np                    (2) 

 
with )1800(,arctan  oraa hridgehridgehridge . 

      (3) 
2. Projection of the horizontal ridge is very likely in the 

axis of the primitive. The centroid of the primitive is 
located on it. x and y are then coupled as: 
y=ax+b|centroid with 
 

hridgecentroid aa                                     (4) 

 

),()( 2
bhridgecentroid bNbp                          (5) 

 

with b the y-intercept. The normal deviation of the footprint 
central axis to the horizontal ridge is allowed and can be 
calculated as ∆=cosα·|bcentroid - bhridge| for asymmetry roofs. 
 
The sampling of parameter space Θ={x, y, α, l, d} is now 
equivalent to the sampling of Θ’={x, α, b, l, d}. Although the 
size of Θ is the same, the parameters that have large searching 
ranges are now narrowed down to {x, l, d} as the standard 
deviations for α and b are mostly very small. Furthermore, the 
number of horizontal ridges also implies the minimum number 
of primitives, which gives prior information for the Reversible 
Jumps (cf. Section 3.3). 
 
Priors for l and d can be derived from the initial building 
outline. The search space of parameters is thereby significantly 
reduced making the sampling faster and more stable. 
 
3.3 Statistical Sampling 

Reversible Jump MCMC is an extension of the MCMC 
algorithm to handle variable-dimension solution spaces. As 
proposed in (Green, 1995), the Markov Chain sampler is 
allowed to switch between subspaces with variable dimensions 
in the search. The dimension jumps, i.e., modeling with varying 
numbers of parameters or/and objects, is employed in this work 
to simulate the choice of different configurations of primitives. 
 
RJMCMC has a mixed transition kernel, which defines all 
possible movements: 
 

– Sw1: “switch” to primitive with n+1 parameters 
(square to rectangle); 

– Sw2: “switch” to primitive with n−1 parameters 
(rectangle to square); 

– Bi: “birth” of a new primitive adjacent to the existing 
one; 

– De: “death” of the last born primitive. 
 
Let Mi and Mj be states (configurations) before and after a 
movement. The “detailed balance” condition in the Markov 
Chain can be expressed as: 
 

jiijjjii MMMMDMpMMDMp  ),()|(),()|(  (6) 

 
with D the data set, i.e., the point cloud and p(M|D) the 
posterior of the state M and τ(Mi, Mj) the transition density from 
Mi to Mj. 
 
The Markov Chain is constructed with Metropolis-Hastings 
algorithm as: 
 

),(),(),( jijiji MMAMMqMM    ,                 (7) 

 
where q(Mi, Mj)  is the proposal density for the movement and 
A(Mi, Mj) the acceptance probability. 
 
The RJMCMC sampling can be summarized as follows: 
 
    1. Initialization:  (M(i=0), Θ(i=0)) 
    2. Proposing new state M’ 

    2.1 sampling configuration from {u, Sw1, Sw2, Bi, De} 
          with u ~ U [0,1] 
    2.2 sampling parameters Θ’ 

    3. Accepting new proposal with probability 
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    4. M(i+1)=M’ if accepted, otherwise M(i+1)=M(i). 
 
Please note that as long as the jump kernels keep the balance 
condition, i.e., being reversible – possible to return to the 
previous state, the RJMCMC sampler can explore in a great 
wider variety of hypothesis models. This makes RJMCMC 
itself has a powerful “model selection” effect, i.e., the ability to 
find optimal configuration of the model. 
 

4. LIKELIHOOD AND OPTIMIZATION 

4.1 Likelihood Function 

We define the quality of footprint reconstruction as follows and 
use it for the likelihood of hypotheses: 
 

FNFPTP
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QDL tionreconstruc 

)|(                 (9) 

 
with 

– TP: True Positive, building points that have been 
included inside the footprint; 

– FP: False Positive, building points outside the 
footprint; 

– FN: False Negative, the included positions (for raster 
data only) has no building points. 

 
4.2 Optimization 

In the random search, sometimes, incorrect parameters may 
lead to same or even better score for reconstruction because of 
the clutter and flaw in the data. To deal with this we employ the 
posterior instead of the likelihood of the proposal M (with 
parameter space Θ) as the goal function in the optimization:  
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with p(Θ) the priors: 
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and P(D) the marginal probability, which does not depend on Θ 
and can be seen as a constant in the optimization. The MAP 
estimation of Θ can then be expressed as: 
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As shown in Equation 12, additional to the likelihood of the 
reconstruction the plausibility of individual parameters is also 
taken into account in the optimization. Multiplication is used to 
integrate the priors making sure that unreasonable hypotheses 
will have much lower posterior and can be more easily 
recognized. 
 

5. EXPERIMENTS AND DISCUSSION 

First experiment is conducted for an urban scene with the data 
point density of 1 meter. Figure 6 shows in red the primitives 
(left), which the buildings consists of. In blue, the primitives are 
merged into result footprints (middle) and the ground plan is 
given in green (right). The assessment of the reconstruction is 
given in Table 1.  
 

 
 
Figure 6. Footprint reconstruction of a scene with multiple 
buildings: the extracted primitives (left), reconstructed 
footprints (middle), and the ground truth data (right) from 
cadastral map as reference 
 

Building # Rec. in % Building # Rec. in % 
1 97.62 6 96.22 
2 85.20 7 85.21 
3 83.34 8 88.03 
4 89.31 9 88.89 
5 94.19 Average 89.78 

Table 1: Assessment of the footprints reconstruction 
 
The problems in the reconstruction of building 3 (cf. Figure 7) 
can be explained as follows: first of all, in the north part there 
are two low roofs, which were not reconstructed by our method, 
since their height is lower than the search range. Secondly, 
there are small extrusions to the left and the right of the 
building, which could not be reconstructed because they are not 
represented by enough LIDAR points. This explains also the 
obvious deviation for building 7 (with a lower terrace) and 
some missing narrow and small parts. 
 

 
 
Figure 7. Building parts with lower roofs and smaller extrusions 
have not been reconstructed: footprint in point cloud (left), 
compaison with given ground plan (middle), and an aerial 
image as reference (right)  
 
High resolution data, relatively speaking, is able to provide 
higher accuracy and represent small structures more 
meaningfully. As shown in Figure 8, superstructure, in this case 
a chimney (black), has been extracted from a point cloud with 
the density of about 0.18 meter. A more detailed footprint 
(blue) is reconstructed including the chimney shaft. Without 
ground truth data, the result is projected (red contour) into the 
raster image (right) of the data for comparison. Please note the 
lighter margin outside the red contour approximately indicates 
the protrusion of the roof, which has been recognized as the 
ground points below are also available. 



 

 
Figure 8. More detailed footprint is reconstructed from the point 
cloud with high density. 
 

6. CONCLUSION AND OUTLOOK 

This paper presents a hybrid approach to building footprint 
extraction and reconstruction from airborne laser scanning data. 
The main contributions can be summarized as follows: 
 

– Point cloud segmentation based on 3D plane 
detection, from which additional 3D geometrical 
information is extracted and utilized to improve the 
2D footprint reconstruction; 

– Primitive-based modeling of building footprints 
allowing overlapping; 

– A generative statistical reconstruction driven by 
RJMCMC. 

 
By these means a robust and plausible reconstruction of 
building footprints is ensured. 
 
Please note in Figure 6, building 9 is reconstructed with two 
adjacent parts instead of one block because the roof planes has 
been found with very different heights and treated as separate 
building parts (Figure 9, left). On this basis, the same top-down 
reconstruction can also be considered for the enrichment of 
existing ground plans by 3D-information in terms of LoD 1 and 
LoD 2. To this end, a given ground plan, possibly consisting of 
different roof types, can be reconstructed as shown in Figure 9 
(right). A work towards this can be found in (Huang et al. 
2011). 
 

 
Figure 9. Enrichment of cadastral maps with different roof 
heights and types 
 
In this work only simple square and rectangle are used as 
primitives. A majority of the buildings can be represented or 
approximated by them. The primitive library, nevertheless, can 
be easily extended with triangle, circle and ellipse to present 
more sophisticated buildings like exhibition centers and stadia. 
 
REFERENCES 

Brenner, C., 2005. Building reconstruction from images and 
laser scanning. International Journal of Applied Earth 
Observation and Geoinformation, Theme Issue on Data Quality 
in Earth Observation Techniques, 6(3-4), pp. 187–198. 
 

Green, P., 1995. Reversible Jump Markov Chain Monte Carlo 
Computation and Bayesian Model Determination. Biometrika, 
82:711-732. 
 
Hough, P., 1962. Method and means for recognizing complex 
patterns, U.S. Patent 3,069,654. 
 
Huang, H. and Brenner, C., 2011. Rule-based roof plane 
detection and segmentation from laser point clouds. In: Joint 
Urban Remote Sensing Event (JURSE) 2011, pp. 293–296. 
 
Huang, H., Brenner, C. and Sester, M., 2011. 3D building roof 
reconstruction from point clouds via generative models. In: 
ACM SIGSPATIAL, the 19th International Conference on 
Advances in Geographic Information Systems (accepted). 
 
Lafarge, F., Descombes, X., Zerubia, J. and Pierrot-Deseilligny, 
M., 2008. Automatic building extraction from DEMs using an 
object approach and application to the 3d-city modeling. ISPRS 
Journal of Photogrammetry and Remote Sensing, 63(3), pp. 
365–381. 
 
Lafarge, F., Descombes, X., Zerubia, J. and Pierrot-Deseilligny, 
M., 2010. Structural approach for building reconstruction from 
a single DSM. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 32, 135–147. 
 
Ortner, M., Descombes, X.,  and Zerubia, J., 2007.  Building 
outline extraction from digital elevation models using marked 
point processes.  International Journal of Computer Vision, 
72(2), pp. 107–132. 

Pfeifer, N., Rutzinger, M., Rottensteiner, F., Muecke, W. and 
Hollaus, M., 2007. Extraction of building footprints from 
airborne laser scanning: Comparison and validation techniques. 
In: Urban Remote Sensing Joint Event, pp. 1–9. 
 
Rabbani, T. and Van den Heuvel, F., 2005. Efficient Hough 
transform for automatic detection of cylinders in point clouds. 
In: ISPRS Workshop Laser Scanning, Enschede, the 
Netherlands. 
 
Rutzinger, M., Rüf, B., Vetter, M., and Höfle, B., 2010. Change 
detection of building footprints from airborne laser scanning 
acquired in short time intervals. In: The International Archives 
of Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 38(7B), pp. 475–480. 
 
Schnabel, R., Wessel, R., Wahl, R. and Klein, R., 2008. Shape 
recognition in 3d point-clouds. In: The 16th International 
Conference in Central Europe on Computer Graphics, 
Visualization and Computer Vision. 
 
Vosselman, G., 2009. Advanced point cloud processing. In: 
Photogrammetric Week ’09, pp. 137–146. 
 
Vosselman, G. and Dijkman, S., 2001. 3D building model 
reconstruction from point clouds and ground plans. In: The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, 34(3/W4), pp. 37–43. 
 
ACKNOWLEDGEMENTS 

We thank Deutsche Forschungsgemeinschaft (DFG) for 
supporting Hai Huang under grant BR2970/2-2. 


