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ABSTRACT
This paper presents a generative statistical approach to 3D
building roof reconstruction from airborne laser scanning
point clouds. In previous works bottom-up methods, e.g.,
points clustering, plane detection, and contour extraction,
are widely used. Since the laser scanning data of urban
scenes often contain extra structures and artefacts due to
tree clutter, reflection from windows, water features, etc.,
bottom-up reconstructions may result in a number of in-
complete or irregular roof parts.

We propose a new top-down statistical method for roof re-
construction, in which the bottom-up efforts mentioned above
are no more required. Based on a predefined primitive li-
brary we conduct a generative modeling to construct the
target roof that fit the data. Allowing overlapping, prim-
itives are assembled and, if necessary, merged to present
the entire roof. The selection of roof primitives, as well
as the sampling of their parameters, is driven by the Re-
versible Jump Markov Chain Monte Carlo technique. Ex-
periments are performed on both low-resolution (1m) and
high-resolution (0.18m) data-sets. For high-resolution data
we also show the possibility to reconstruct smaller roof fea-
tures, such as chimneys and dormers. The results show ro-
bustness despite the clutter and flaws in the data points and
plausibility in reconstruction.
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1. INTRODUCTION
Many approaches for the reconstruction of 3D city mod-
els from measurement data have been reported in the past
decades. The introduction of laser scanning makes the ac-
quisition of 3D data easier and more accurate. Overviews
are given by Brenner [2], Schnabel et al. [9] and Vosselman
[10].

Current works include Rottensteiner et al. [7], in which a
roof plane delineation from LIDAR data is presented. Sta-
tistical tests and robust estimation are employed for stable
edge detection against the clutter. Using manually gener-
ated geometric constraints, topological correction is ensured
without additional 2D data. Sampath and Shan [8] segment
and reconstruct more complicated buildings from airborne
LIDAR point clouds based on polyhedral models. First,
non-planar points are detected by means of the eigenanaly-
sis making the roof planar segmentation more robust. The
latter is implemented through a clustering with extended
fuzzy k-means. An adjacency matrix is derived after the
segmentation. For reconstruction, the roof vertices, ridges,
and edges are determined by intersecting the corresponding
planes, which include roof segments and possibly vertical
walls or roof boundaries as the imposed constraints.

Lafarge et al. [5] present building reconstruction from a
Digital Surface Model (DSM) combining generic and para-
metric methods. Buildings are considered as an assemblage
of 3D parametric blocks. 2D-supports are firstly extracted
manually or automatically (Ortner et al. [6]). 3D blocks are
then assembled based on 2D-support and optimized within
a Bayesian framework.

Airborne laser scanning data of urban scenes often has the
following artefacts: (1) clutter by vegetation, e.g., trees, (2)
reflection from windows and waterlogged depressions on the
roof, and (3) HVAC (Heating, Ventilating and Air Condi-
tioning) equipment, and generally lower point cloud density.
The segmentation of relatively small roof structures and an
accurate determination of roof edges are always hard. Re-
sults of the bottom-up reconstruction may thus be limited
to a number of incomplete and irregular roof facets or build-
ing parts. A regularization during the extraction or after-
wards is always needed and in many cases it is not easy to
be conducted. For the issue of regularized plane detection
a probability-driven edge sweeping method is proposed by
Huang and Brenner [4]. Although it works robustly in spite
of clutter and data flaws, it encounters difficulties when pro-



cessing complex roofs.

In this paper we present a top-down statistical reconstruc-
tion of building roofs via generative models. Similar to [5],
a library of roof primitives is predefined and a building roof
is considered as a variant of one primitive or a combination
of a set of primitives. In this work, however, overlapping
of primitives is allowed in the combination for a more flex-
ible reconstruction. Unlike most of the related researches,
the bottom-up effort, e.g., points clustering, plane detection
([8]), or 2D building contour extraction ([5]), are not used
in the proposed work. Model selection mechanisms are inte-
grated into the statistical sampling perceptively determining
appropriate candidate models to compensate the absence of
the initial information provided by bottom-up analysis.

The paper is organized as follows. In Section 2 the definition
of roof primitives and the combination rules are described.
The overall strategy of the statistical reconstruction of roofs
is given in Section 3. Hypothesis models are generated by
means of Markov Chain Monte Carlo (MCMC) sampling.
An estimation of model size (ground area) and reversible
jumps between different primitives are integrated into the
search. As shown in Section 4, the optimal reconstruction
is achieved by Maximum A Posteriori (MAP) estimation in-
tegrating prior information of the parameters into the goal
function. After presenting results for data with varied reso-
lutions in Section 5, the paper ends up with conclusions.

2. ROOF PRIMITIVES
Generative modeling works based on parametrized primi-
tives. In this work we give flexible definitions of primitives
and their interactions to gain more stable reconstruction re-
sults. The basic idea is to allow overlapping in the combina-
tion of multiple primitives. Basic rules are given to ensure
plausibility.

2.1 Primitives vs. facets
In comparison with facet-based reconstruction, modeling with
assembled roof primitives has the following advantages:

– There are no more irregular and incomplete roof facets
or building blocks (forced to fit the bottom-up features
like plane segment or 2D-support)

– A large scope of buildings can be represented by a
limited number of primitives and their combinations.

– Complex roofs can possibly be interpreted more easily.

Figure 1 demonstrates two example roofs represented by the
two schemes mentioned above. The target roofs can be seen
as a group of facets, which are labeled with numbers. A
derived Region Adjacency Graph (RAG) shows the organi-
zation of the facets (right) and could be used to guide the
further reconstruction. Some roof parts, e.g., facet 10 in the
first model and facet 3 in the second, however, are hard to
be interpreted from the graph. In primitive-based model-
ing, on the other hand, the building roof is considered as an
assembly of regular basic parts. The interpretation (left) is
much simpler and clear. It is because not only the belong-
ing facets have already been embedded in the primitives, but

also the irregular facets caused by the plane intersection no
longer need to be studied.

Another advantage of the primitive-based modeling is that
the predefined constraints of member facets in the primitive
ensure regularized reconstructions. Allowing overlapping,
furthermore, makes every primitive to maintain complete
during the reconstruction and assembly (cf. Figure 1, color-
ful blocks) instead of being cropped to fit the ground plan or
neighbors. In the final roof model, the redundant parts are
always hidden inside the assembly and they could be easily
removed afterwards, e.g., by intersecting with CAD tools.

Figure 1: Roof configurations (top) can be simpler
interpreted by the primitive-based modeling (bot-
tom left) than the facet-based one (bottom right).

Beside the horizontal intersection we allow the vertical one
as well. By this means some combined roofs, e.g., platform
roofs (multi-level flat roofs, cf. Figure 12, buildings 1 and
8) and complex buildings (cf. Figure 12, buildings 3 and 5)
are possible to be reconstructed without adding any more
particular models in the library.

2.2 Library of primitives
The parameters of roof primitives are defined as:

θ ∈ Θ; Θ = {P, C,S}, (1)

where Θ the parameter space: position parameters P =
{x, y, azimuth}, contour parameters C = {length, width} as



Figure 2: Library of roof primitives with top- (left),
front- (middle), and side-view (right)

all primitives are defined to have a rectangle footprint. P
and C have fixed members. S contains shape parameters,
e.g., ridge/eave height, depth of hip, deviation of ridge from
the center, and is varied for different primitives.

As shown in Figure 2, we provide 3 groups including 11 types
of primitives:

– Group F: generalized flat roofs including flat roof (F1)
and shed roof (F2).

All possible shape parameters: SF,max = {z1, z2} with
z1 the roof/eave height for flat roof and z2 the addi-
tional different eave height for shed roof.

– Group H: generalized hipped roofs including all vari-
ants of hipped roofs. Gable roof (H4) and mansard
roof (H6) are considered as special cases of hipped
roofs.

SH,max = {z1, z2, hipl1, hipl2, hipd1, hipd2} with z1 the
eave height, z2 the ridge height, hipl1 and hipl2 the
longitudinal hips, and hipd1 and hipd2 the lateral hips.

– Group G: Gambrel roof (G1) and others. The com-
mon point of this group is every roof has three different
height levels. E.g., although the salt-box roof (G3) is
very similar to the asymmetric gable roof (H5), it can-
not be represented as an H-type because the parameter
number of “heights” is limited to two in Group H. In
this library we do not define elliptic roofs, which might
be approximated by gambrel roofs.

SG,max = {z1, z2, z3, hipl1, hipl2, hipd1, hipd2}.

All geometrical elements, i.e., vertices, edges, and facets,
and their relationships are encapsulated in the primitives.

2.3 Primitive combination and merging
By combining primitives we propose a context-sensitive reg-
ularization with the following rules:

Rule 1: Intersection angle of adjacent primitives are
conditionally regularized (cf. also below) to 0◦or 90◦,
if they are close to each other.

Rule 2: Heights of flat roofs or ridge heights of hipped
roofs are harmonized if they are close to each other.

Rule 3: Eave heights of all non-flat roofs are harmo-
nized if they are close to each other.

The Rule 1 helps us to solve another general problem in flat
roof extraction. As the roof points (especially in low density
data) on the corners are very likely missing and that on the
edges are not perfect either, slight deviation in azimuth (ro-
tation in the roof plane) may lead to similar or even better
evaluation and therefore cannot be detected. This is espe-
cially true for flat roofs with (1) less length to width ratio
(square shape), (2) small size, and (3) low data density. This
is hard to be solved without any prior information. Figure
3 (top) shows the reconstruction errors.

With the assumption that shed roofs and hipped roofs, which
are composed by non-horizontal plane(s), are extracted nor-
mally with more reliably azimuth. We implement Rule 1 for
flat roofs as follows:

R1.1: If a flat roof is adjacent to a shed/hipped roof,
then align to the latter (cf. Figure 3, left).

R1.2: If two flat roofs are combined, the azimuths are
jointly adjusted, weighted according to their areas (cf.
Figure 3, right).

R1.3: A single flat roof can possibly be adjusted ac-
cording to neighbor buildings in the multiple-building
scene (cf. Section 3.1 Point D).

The derived parameter constraints are employed to guide
the generation of new roof parts (primitives) and the post-
processing of already found ones.

Although the primitives are regularized with the combina-
tion constraints, deviations still very often exist because of
the random sampling. Most of them do not jeopardize the
reconstruction results as they are hidden inside the inter-
sected domain. However, for the primitives that share mul-
tiple planes, e.g., the L-form hipped roof, the deviation can
be crucial (cf. Figure 5, top). A geometrical adjustment is
needed to “merge” the primitives into a plausible model. We
conduct the following rules for primitive merging:

– To choose arbitrary edge of each of the both primitives
li and lj with end points (P0,i, P1,i) and (P0,j , P1,j)

– To compare their lengths: e.g., |li| > |lj |

– If lj near to li (dist(P0,j , li) and dist(P1,j , li) < ε) then
it should be merged to the latter.



Figure 3: Azimuth deviation of flat roofs can be
adjusted jointly with the adjacent roofs.

– By merging, as shown in Figure 4, if Pj is close to one
of the end points of li then align to the point (left), if
not then align to the line (right).

Figure 4: Primitive merging: the shorter edge (red)
is merged to the adjacent longer edge (green). If
their end points are close enough (inside dashed cir-
cles) then align to the end point, otherwise align to
the edge.

Figure 5 (bottom) shows the result. Three pairs of edges are
found and merged while the corresponding vertices are also
aligned to each other.

3. HYPOTHESES GENERATION
The question to be answered in the top-down extraction is if
the target roof can still be stably found without any initial
information from bottom-up analysis. Besides the heavier
search task, there are also two difficulties:

1 Local extrema: Enlarged search area means also many
other objects, e.g., trees, are possibly involved and
lead to many more local extrema. An improved search
strategy is needed to tackle this (cf. Section 3.1).

2 Model-minimizing tendency: Using the average de-
viation to evaluate the reconstruction result, the fi-
nally found “best” model tends to shrink to a very
small piece as smaller comparison area (correspond-
ing to fewer data points) means less error and there
is nothing to constrain the minimum model size (A =
length × width). In this case the size of the model
should be reasonably estimated (cf. Section 3.2).

Figure 5: Primitive merging: geometrical conflicts
by primitive combination (top) can be adjusted by
merging corresponding edges (bottom).

We conduct MCMC sampling with Sequential Monte Carlo
(SMC) scheme for a stable and efficient search. Information
criterion is employed to give instructive values for A, which
guide the search of parameter-set C. The choice of differ-
ent primitives is simulated by reversible jumps integrated in
MCMC.

3.1 Search strategy
We summarize the strategy as follows:

A Finding the first primitive (mostly the largest one or that
near the start position) in the scene

A1 Rough search with relaxed MCMC sampling and
one simple primitive: gable roof (cf. Figure 6, a).
Gable roof is chosen as initial primitive instead of
flat roof because it is more sensitive for azimuth
and it can actually also represent flat roof by har-
monizing ridge and eave heights.

A2 To refine the model parameters (cf. Figure 6, b)
and possibly switch to more sophisticated primi-
tives with reversible jumps in MCMC (cf. Figure
6, c and d).

A3 After this primitive is accepted, we do not as
usual delete the corresponding points from the
source data as these points may be shared with
other parts of this roof. This is more meaning-
ful for low density data. Instead, we record its
parameters and update the prior distributions to
avoid this combination of parameters being sam-
pled twice, i.e., the same primitive will not be
proposed again in the next rounds of search.

B Finishing the whole building

B1 Iteratively do step A finding all possible prim-
itives near to (supposed to compose the target
roof with) the found one(s) (cf. Figure 7)



B2 Stop criterion: the maximum acceptable error is
no more satisfied.

B3 Jointly adjustment of primitives with combina-
tion rules

C Reconstructing superstructures if the point cloud is dense
enough

C1 Search in the roof area focusing the points above
roofs

C2 Simple flat and gable roof models with modified
priors are used as primitives for chimneys and
dormers.

D Possibly finding further buildings in the scene by repeat-
ing steps A to C with the points of the found building
removed. The parameters of the found roofs, e.g., az-
imuths and heights, can be (optionally) used as refer-
ences for the search of their potential neighbors. The
generic parameter priors can thereby be refined for this
scene.

Figure 6: Search of the roof primitive: (a) rough
search with simple gable roof, (b) local search refin-
ing the model, (c) jump to the half-hipped roof, and
(d) jump to the hipped roof.

Figure 6 shows traces of the iterative search described in
Step A. The rough search (a) started simply from the center

Figure 7: Reconstruction of an “E”-form building

of the scene (no initial position information) and employs
generic priors for the other parameters. As the parameter
sampling is constrained by the underlying primitive model,
the disturbance from other non-building objects nearby is
reduced. In relatively simple scenes MCMC is powerful
enough to travel to the target. A refined search is then con-
ducted locally (b) with reversible jumps (c, d) to finished
the reconstruction.

3.2 Model size estimation
To overcome the model-minimizing tendency mentioned above,
an instructive constraint for the model size A (correspond-
ing to parameter-set C) is needed. We conduct a perceptive
estimation employing information criterion to balance the
goodness of fit and the size of the model.

Figure 8 (top) shows the average deviation (blue) from the
proposed model to the data points while the model size in-
creases. Please note that this function is neither linear nor
monotonic increasing because of the influences coming from
the target building and other objects in the scene.

Since what we need is just an approximate value (actually a
lower limit) to guide the search, we simply follow the basic
idea of Akaike Information Criterion (AIC, [1])

AIC = 2k − 2ln(L) (2)



Figure 8: Plots of average deviation (blue), the in-
fluence of model size −Kα (red) and Akaike Infor-
mation Criterion (black) over model size. The mini-
mum AIC indicates the optimal model size balancing
goodness of fit and complexity of the model.

to build our goal function. In Equation 2, k indicates the
number of parameters, which implies the complexity of the
model, and L the maximum likelihood while the employed
parameters have been optimized. In our case, on the other
hand, what we want to prevent is not the model being too
complicated but the size of the model being too small. We
use the assessment of model for the L (cf. Section 4) and
−Kα to represent the influence of the model size. K is
the number of data points involved to the proposed model
implying the size of the model (linear proportion in raster
data). We employ the actual number of points instead of the
model size because the former is more sensitive as the likeli-
hood is also calculated with these points. α is the influence
factor, which is empirically determined α = 0.1. The total
information entropy of the proposed model (M) is then be
updated as:

HM = −Kα − 2ln (L(D|M)) . (3)

By these means better fit is rewarded while size decrease
gaining trivial improvement is discouraged. The conducted

information criterion, as shown in Figure 8 (bottom), is em-
ployed to guide the search of parameter-set C. Please note,
unlike AIC, this is not a trade-off between reconstruction
accuracy and model complexity because less error does not
mean better reconstruction either in this case. Besides, there
is no general threshold for acceptable error. The optimiza-
tion of the entropy function finds the maximum possible size
of the model by perceiving its influence on the tendency of
error change.

3.3 Reversible jumps
Reversible Jump Markov Chain Monte Carlo (RJMCMC)
is an extension of the MCMC algorithm to handle solution
spaces of variable dimensions. As introduced by Green in
[3], the Markov Chain sampler is allowed to switch between
subspaces with variable dimensions in the search. The di-
mension jumps, i.e., modeling with varying numbers of pa-
rameters, is employed in this work to simulate the choice of
different roof primitives.

RJMCMC has a mixed transition kernel, which defines all
possible movements. Studying the primitives, we narrow
down the possible moves as shown in Figure 9. The given
“jump routine” makes sure that each jump step only change
a limited number and more sensible parameters. A tran-
sition matrix T indicating the jump probabilities between
primitives is derived from the routine. Please note most
elements in T are thus zero.

Figure 9: Possible jumps between primitives are lim-
ited by a “jump routine”.

Let Mi and Mj be models in the family of primitives,
{Mn;n = 1, ..., N}. The move from i to j will be accepted
according to the probability:

Ai→j = min

{
1,
p(D|ΘMj )p(ΘMj )

p(D|ΘMi)p(ΘMi)
· Ji→jJj→i

}
. (4)

Ji→j is the Jacobian of the transform from i to j. For sim-
plicity, we use a fixed transition matrix T instead of the
Jacobian matrix J . Employing model selection mechanism
for the transition kernel, the acceptance probability is ex-
pressed as:



Ai→j = min

{
1,
H−1
Mj

H−1
Mi

× Tij

}
. (5)

The information entropy of the model HM is calculated as:

HM = kβ − 2ln (L(D|M)) , (6)

where β is used to tune the tolerance for the model com-
plexity. In this work we prefer better reconstruction than
simple model, so that β is given relatively small value, 1/12,
to reduce the sensitivity to the parameter number.

Figure 10: An example jump trace: (a) flat roof,
(b) gable roof, (c) half-hipped roof to (d) hipped
roof with increasing goodness of fit to the data
points (gray) as well as the number of parameters.
The gray dashed line shows the underlying building
model.

As long as the jump kernels keep the balance condition, i.e.,
being reversible – possible to return to the previous state,
the RJMCMC sampler can search in a great wider variety of
hypothesis models. This makes RJMCMC itself has power-
ful model selection effect, but also usually time-consuming.
We conduct the sampling process in this work as follows:

– Jumps are proposed till the maximum likelihood for
the current primitive has been reached instead of switch-
ing primitives by random probability in every MCMC
move (exception is the step A1).

– Model selection technique is integrated in the transi-
tion kernel for jumps.

By these means the computing time is reduced by “cooling
down” the search entropy while the model selection ability
of RJMCMC is compromised at the same time. The loss is,
however, compensated by the explicit model selection mech-
anism.

4. LIKELIHOOD AND OPTIMIZATION
We use the average absolute deviation in z-direction (z-error)
from the proposed model (M) to the data points (D) to
assess new candidates.

∆z =

∑
f∈F (

∑
i∈Ωf

|zM − zD|i)
K

(7)

with f an individual facet from the facet-group (F) of the
primitive, i the data points in the domain of f : Ωf , and K
again the number of the involved data points.

Let X be the observations, the likelihood function for model
with parameters Θ can be expressed as:

Θ 7→ L(D) = L(X|Θ) ∝ exp(−∆z) (8)

For optimization we employ the posterior of the proposed
model integrating priors of the roof parameters: p(Θ), which
are supposed to provide the following information:

– generic value ranges of parameters – implausible can-
didates, e.g., roofs with the height near ground, can be
sorted out.

– recorded parameters of the already found primitives –
the joint distribution is simplified by labeling partic-
ular areas. Possible further (often smaller) primitives
are thereby easier to be found.

The Maximum A Posteriori (MAP) estimate can be ex-
pressed as:

Θ̂MAP = argmax
Θ

{
L(D|Θ)p(Θ)

P (D)

}
= argmax

Θ

{
L(D|Θ)p(Θ)

}
(9)

with p(Θ) = p(Mfound|Θ0) · p(Θ0) and P (D) the marginal
probability. P (D) can be seen as a constant in the optimiza-
tion, as it does not depend on Θ.

In practice, z-errors for different roofs in the same scene may
not be close to each other. Some qualified primitives have
relatively large deviation to the data points because of (1)
the “occlusion” of other intersected primitive(s) and (2) the
clutter of trees. This part of deviation cannot be seen as re-
construction error. On the contrary, it implies the regularity
of the primitive is maintained in spite of the clutter. E.g.,
in the example scene shown in Figure 12 the error range of
individual accepted primitives is [0.05, 1.10] meters, i.e., a
fixed threshold for acceptance is no more feasible. As shown
in Figure 11, however, the z-error for individual primitive
converges well in the MCMC sampling. We therefore use
the following stop criteria:

– The z-error becomes stable or

– A predefined maximum number of iterations is reached.



Figure 12: Experiment result: (a) laser scanning point cloud with several roofs cluttered by adjacent trees
(red dashed circles), (b) the reconstruction results in the form of VRML models, (c) 2D projections of
assembled roof primitives, (d) an aerial image as reference

Figure 11: The convergence of z-error during the
search of an individual primitive with MCMC sam-
pler. After about 1000 iterations the reconstruction
result became stable.

5. EXPERIMENTS AND RESULTS
Experiments are performed on both low-resolution (1m) and
high-resolution (0.18m) data-sets.

Figure 12 shows a roof extraction from a laser scanning data
(a) with the point density of 1.0 meter. The roofs are ex-
tracted in spite of the clutter from adjacent trees (red dashed
circles) and reconstructed in the form of Virtual Reality
Modeling Language (VRML) models (b). 2D projections
of primitives on the ground are given in (c) presenting the
way of the primitive combination.

Comparing the result with the reference image (Figure 12,
d), all the buildings completely represented in the scene
have been reconstructed with correct position and plausible
shape. As there is no 3D ground truth data or other building

models from, e.g., manual photogrammetric measurement,
available, it is hard to give a quantitative evaluation for the
3D models. Quality measures, however, can be given as
described in Section 4. We use the mean of z-errors for in-
dividual facets of the building (instead of the primitives) to
approximate the reconstruction error, which has an average
value of 0.11 meter for the scene. Please note this error still
includes clutter of trees and the real reconstruction error
should be less than it. The top-down reconstruction forces
a plausible model by ignoring occlusions and data flaws, i.e.,
more accurate roof models may have larger deviation to the
non-roof points. The runtime for this scene (32000 square
meters, 9 buildings) is about 15 minutes in total and 1.7 min-
utes in average using a laptop with a 2×1.3 GHz processor.
The most expensive part is the “global” search finding the
first primitive of each building (cf. Section 3.1, A1), which
may take more than 1 minute. Flat roofs and hipped roofs
have no significant difference in runtime. The longest time
for individual building was 2.5 minutes taken for building 2
as flat roof combination needs extra adjustment.

Figure 13 shows the building models derived from that of
the roofs with the roof contours being extruded from the
eave height to the ground.

Some narrow and small flat parts of buildings have not been
extracted, e.g., that of the east wing of building 2, the fire
escape shaft (top-left) of building 1, and the small structures
in the north of building 4, as the point cloud is too sparse
to represent them meaningfully. It is the same reason why
a number of small structures on the roofs have not been
reconstructed. Even relatively bigger dormers (e.g., that on
the building 5) have only less than 10 data points on it. It
is hard to tell if they belong to an individual structure or
just data flaw or clutter.

High resolution data, relatively speaking, provides denser
points representing small objects on the roof. As shown in
Figure 14, superstructures, e.g., chimney and dormers, have



been reconstructed from a point cloud with the density of
about 0.18 meter. The average z-error is 0.05 meter.

Figure 13: Building models derived from the ex-
tracted roofs

Figure 14: Roof reconstruction with superstructures
(right) from high density data points (left)

6. CONCLUSIONS AND OUTLOOK
In this paper we have proposed a generative statistical ap-
proach to the extraction and reconstruction of building roofs
from laser scanning point clouds. The main contributions of
this work can be summarized as follows:

– Generative modeling of building roofs with assembly
of primitives allowing overlapping;

– Estimation of model size by perceptively balancing its
influence on the reconstruction error to guide the pa-
rameter sampling;

– Scheduled reversible jumps switching between different
primitives driven by model selection mechanism.

By all these means the reconstruction becomes robust against
data flaws and clutter objects and a plausible result is guar-
anteed.

In this work we wanted to explore and demonstrate the po-
tential of a pure top-down approach. We could show that in
scenes with few buildings, i.e., lower complexity of the joint
distribution landscape, the proposed algorithm can find the
targets with only generic prior information.

Please note, however, that in complex scenes a complete
replacement of the bottom-up process is hard. It turned
out that in larger scenes, the complexity of the distribu-
tion as well as the number of disturbances is so high, that
the process did not find appropriate building candidates.
In practical application the real challenge is to balance the
bottom-up and top-down partitions to achieve robustness
as well as efficiency. This work gives more probability in
the latter direction. With the proposed scheme the empha-
sis on the bottom-up effort can be significantly reduced and
more space is given for the coordination of the both. We
plan to develop a coarse segmentation scheme for building
candidates in order to partition the space and apply our top-
down approach to each individual partition. The segmenta-
tion can be either based on given GIS-information (e.g. road
network) or by a coarse segmentation of the point cloud.

In this work our primitive library contains only planar roofs
with at most 3 differing height levels. New entries, e.g., flat
roofs in the forms of triangle and ellipse, domes, cones, and
other curved shapes, are needed to present more sophisti-
cated buildings like churches, exhibition centers and stadia.
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