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Abstract 
Geosensor networks can be applied to detect spatio-temporal phenomena in potentially large 
areas. The fundamental idea is that sensors are distributed in the environment. They can 
locally cooperate in order to detect higher level phenomena that a single sensor would not be 
able to detect. Such functionality is based on the principle, that the individual sensors do have 
a (often limited) computing power and communication range. In order to infer higher level 
information they have to locally cooperate. There are several examples for the application of 
geosensor networks, e.g. environment, traffic, military. The advantage of using such a 
geosensor network as opposed to a centralized system is its scalability, its reliability and fault 
tolerance. 

The challenge is to devise algorithms that are able to operate locally and still achieve a 
common global solution. In the paper, an approach for identifying the boundary of a spatial 
phenomenon is presented. It starts from the assumption that sensors are dynamic and are able 
to move. The sensors try to sample and identify the boundary of the phenomenon by 
cooperatively covering the area. This is achieved using a Neural Network approach, a Self 
Organizing Map (SOM). 

Introduction and Overview 
Geosensor networks are composed of individual sensors with measuring, positioning and 
communication capabilities. Through cooperation of neighboring sensors the whole network 
is able to perform actions that go beyond an individual sensor’s capabilities. The advantages 
of geosensor networks lie in their scalability and also in their fault tolerance, as the role of 
individual sensors is not crucial - due to the high redundancy. These properties lead to a large 
number of applications of geosensor networks such as environmental monitoring or military 
applications. 

From a computational and geoinformatics point of view, the challenge is to devise algorithms 
that are able to work locally and still achieve a common global solution. There are many 
spatial algorithms that operate in a centralized manner, presuming access to all the 
information; however, in the case where a local processing unit only has a limited view of the 
surrounding information, existing algorithms have to be adapted or new ones have to be 
devised to achieve a decentralized processing. 



 

 

In the paper, an approach for identifying the boundary of a spatial phenomenon in a 
decentralized fashion using a geosensor network will be presented. The problem is e.g. that an 
oil spill has to be detected, or an area, which moves relative to its local environment, like a 
hill slide. The boundary information has to be derived through cooperative local processing of 
individual sensors that are able to measure the phenomenon. The boundary is characterized by 
a change in the value of the phenomenon, e.g. a binary value of presence or absence of the 
phenomenon. The approach starts with the assumption of having moving sensors. These 
sensors try to identify the boundary of the phenomenon by cooperatively covering the area. 
Each sensor is able to communicate to its neighboring sensors and to check if the measured 
phenomenon has a different value. If yes, the boundary of the phenomenon has to be in 
between the two sensors. In order to detect the true boundary, and at the same time be able to 
better delineate its possibly complex form, the area in the vicinity of the boundary has to be 
populated with more sensors. This is achieved using the approach of a Self Organizing Map 
(SOM), which goes back to Kohonen (1982). A SOM, a kind of Neural Network, is able to 
approximate a phenomenon by arranging a given distribution of neurons in a way that areas 
with high variability are being higher resolved than areas where not much happens. This is 
achieved by an iterative approximation. 

The paper is organized as follows. First, related work in the domain of geosensor networks is 
presented; then the background of SOM is briefly described. Following this, the new approach 
for approximating and delineating a phenomenon boundary in a decentralized approach is 
presented. Examples show the validity and the potential of the method. Finally, an outlook on 
future work is given. 

2 Related work 
A general overview of wireless sensor networks is given in (Akyildiz, Su, 
Sankarasubramaniam & Cayirci 2002). Geosensor networks for the observation and 
monitoring of environmental phenomena are a recent trend in GIScience. Traditional geodetic 
networks consist of a fixed set of dedicated sensors with a given configuration and 
measurement regime. The processing of the data is usually done in a centralized fashion. The 
advent of geosensor networks brings about the chance to move from a centralized approach to 
an approach using distributed sensors with computation and communication capabilities 
(Stefanidis & Nittel 2004). The basic advantages of the decentralized approach is its 
scalability and fault tolerance, as the whole system does not have to rely on a single sensor, 
which can easily be replaced by a neighboring one, due to the high redundancy. While 
geosensor networks can also be operated in a centralized way - which is often done in today’s 
approaches - the true challenge and potential lies in the decentralized processing. This way of 
data processing also takes into account the “first law of Geography” by Tobler (Tobler 1970), 
which states, that everything is related to everything else, but near things are more related 
than distant things. In this way, the immediate surroundings of a sensor is assumed to have the 
highest influence on the reaction of a sensor, and therefore can be evaluated locally and does 
not necessarily have to be transmitted to a central server for processing.  

Decentralized algorithms for geosensor networks have been investigated by several 
researchers and for different applications. Laube, Duckham & Wolle (2008) describe an 



 

 

algorithm to detect a moving point pattern, namely a so-called flock pattern. A flock is 
described as a group of objects that moves in a certain distance over a certain time. In a 
similar spirit, Laube & Duckham (2009) present a method for the detection of clusters in a 
decentralized way. Depending on the communication range, clusters of a certain size (radius) 
can be detected.  

Walkowski (2008) presents an approach for the optimal arrangement of geosensor nodes in 
order to correctly describe an underlying temporally varying phenomenon, like a toxic cloud. 
He assumes to have sensors that are able to move; however, the determination of the locations 
of lacking information has to be determined in a centralized fashion. Zou & Chakrabarty 
(2004) describe an approach to optimally cover an area with a given set of sensors. This 
approach tries to find an adequate spacing among the sensors; the influence of the 
environment can be modeled with attractive or repulsive forces. 

Density based spatial data approximation can be used in different applications. In Sester 
(2008) it has been used for the typification of buildings in generalization. 

3.  Fundamentals  of  Kohonen  Feature  Maps,  Self  Organizing  Maps 
(SOMs) 
Given an input space E of dimension m with stimuli x, and a map space A of dimension d 
with neurons. The dimension d is usually 1 or 2. Each neuron in map space is described by a 
tuple U = (w, p), i.e. a weight w from E and a position p from A. From the position p the 
neighbors of the neuron can be determined. The weight w indicates, to which stimulus the 
neuron reacts most. Often, the neuron positions are initially given on a regular equidistant 
grid, because usually no information about the underlying distribution of the phenomenon is 
available.  

 

Figure 1: Schematic description of role of stimuli and neurons. 

The algorithm is an iterative process and interplay of stimuli, which fire and thus attract 
neurons that react to them. It can be described as follows: 

• Fire: Random selection and firing of stimulus v. 

• Response: determination of neuron Uc with a weight that is most similar to the 
stimulus’ weight. Similarity is determined based on spatial proximity. It can be 



 

 

calculated with the Euclidean distance between stimulus and all other neuron weights; 
the neuron with the smallest distance is selected.  
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• Subsequently, the weights of the neuron and its neighbors are adapted in a way that 
they get more similar to the stimulus, i.e. move towards the stimulus. 
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This adaptation depends on the parameters learning rate η and influence range h (see 
below). 

• These learning steps are executed iteratively, until a termination criterion is reached. 

Figure 2 visualizes this situation using a one-dimensional situation: a stimulus (dark) fires and 
thus attracts the neighboring neurons. The middle neuron, whose weight (position) is closest 
to the stimulus, is adapted stronger than its neighboring neurons. In this way, there is a 
movement of the neurons in the vicinity of the stimulus towards it - however with different 
intensity, i.e. the closest one performs the largest moves and the more distant ones move less. 
The stimulus thus has the effect that the neuron chain is iteratively moving towards the 
stimulus.  

Figure 2: One-dimensional situation: stimulus (dark color) triggers a change of weights (position) of the 
neuron chain (in light color) and their neighbors; result of adaptation (right). 

In the course of the iterations, the moving possibilities of the neurons are reduced, with the 
aim of an increasing settlement to a final state. The corresponding control parameters are the 
learning rate η(t) and the influence range function h(dist, σ(t)), which describes the weighting 
of the winner neuron and its neighbors as a function of the neighborhood range dist and the 
number of iteration epochs t. 

As influence range function h(dist, σ) any function can be chosen that has its maximum at dist 
= 0 and converges to zero with large values of dist. In the simplest case this can be a 
piecewise constant function which yields the value 1 for x ≤ σ and 0 else. Another appropriate 
choice is the Gaussian function:  
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whereby the radius σ varies depending on training duration: in order to develop the coarse 
structure of the map, it should be high in the beginning; later however, it has to be reduced in 
order to develop the local fine structure. Thus, a function σ(t) should be chosen, which 



 

 

decreases with the number of iterations (learning steps t). The influence range of the function 
is therefore high in the beginning in order to allow for a coarse distribution of the neurons. 
With growing number of iterations the influence range reduces and thus has the effect that the 
changes are only local in the end and thus converge to a stable situation. 

4. Approach for Boundary detection and delineation 

4.1 Assumptions and prerequisites 
The proposed approach uses some general terms and starts with some general assumptions 
which are described in the following. The phenomenon is described as a spatial function, 
which takes the binary values 1 and 0, indicating the presence and absence of the 
phenomenon, respectively. This restriction to binary values can be extended easily to other 
values, as will be shown in the outlook. 

A set of sensors which are able to measure the phenomenon in the described way is 
distributed into the environment. The sensors are able to move. They measure the 
phenomenon at different locations and can communicate to their neighbors in a certain range. 

The geosensor network is modeled as a graph G = (V,E), where V is the set of vertices, in our 
case sensor nodes, and the edges E denote the communication between the nodes. Each sensor 
node has a given position (x,y) at a certain time. The graph of the sensor network is set up by 
the communication possibilities between the neighboring nodes. One approach is to assume 
that a communication is possible to all the nearest neighbors; in this case the graph can be 
constructed using a Delaunay triangulation. 

The boundary of a phenomenon is the location, where the presence of the phenomenon 
changes from true to false (i.e. 1 to 0) or vice versa.  

4.2 Boundaries in a well distributed and dense network 
A boundary between two neighboring nodes can be detected by checking, if the status of 
phenomenon presence changes. As there is no further information as to where this change 
takes place on the edge between two neighboring nodes, we assume that it is in the middle 
between them. The boundary then can be found by connecting all boundary nodes until the 
start node is reached again. This is visualized in Figure 3. The areal phenomenon together 
with the distribution of the sensors and their measurement is shown on the left, and the 
detected boundary using the strategy described is given in the middle; on the right the overlay 
of the detected boundary and the original phenomenon is given. 

It is obvious, that it is possible to detect the boundary using this approach. However, it 
depends on the distribution and density of the sensors. If they are both dense and adequately 
distributed over the whole phenomenon and especially along the boundary, then a more 
precise detection is possible. The accuracy will, however, always be limited to half the 
distance between two nodes. 



 

 

 

Figure 3: Detection of the boundary of a phenomenon: areal phenomenon with initial sensor distribution 
(left), boundary edges and approximate boundary points (stars) (middle), overlaid over phenomoneon 
(right). 

In order to improve the accuracy of the delineation of the boundary, in the following section 
an approach is presented which is able to better approximate the boundary by allowing the 
sensors to move into the direction of the boundary. The movement of the sensors will be 
controlled by the SOM. 

4.3 Iterative Adaptation of Boundary using SOM 
As a priori the location of the boundary is not known, the idea of the approach is to detect it 
by a cooperative effort of locally communicating sensors. The SOM offers the basis for this. 
Its basic ability is to sample a phenomenon by allocating more neurons to the sensitive areas 
indicated by a change in the presence of the phenomenon.  

In order to adapt the SOM to the given problem, the following prerequisites have to be given. 
First of all, it has to be determined, what are neurons and what are stimuli. Then the attraction 
range and the movement behavior of the neurons has to be described. In our case, all sensors 
act as neuron and as stimulus at the same time. This means, that a sensor A fires and attracts 
sensors N_A in its local neighborhood (see Figure 4). The type of attraction depends on the 
sensor measurement (which will be termed type of sensor t_A for brief) of the neighboring 
sensor:  

• If the neighbor is of a different type (t_A != t_B), then it will move towards the firing 
stimulus. 

• If the neighbor is of the same type, then it will perform the same movements as the 
firing stimulus. 

This behavior is motivated by the underlying assumption that the boundary is in between two 
sensors of different type. Thus, if two neighboring nodes of different type are detected, then 
they can approximate the boundary more exactly by moving towards each other. Therefore, 
not only neuron A moves into the direction of the closest neighbor of different type B 
(together with its neighbors of same type), but also neighbor B will walk towards neuron A - 
also together with its neighbors of same type. In this way, both neurons try to approximate the 
boundary by moving towards it. 

A special case has to be taken into account: if a neuron fires and does not find any neighbor 
which is of different type, then there is no stimulus to walk into any direction. In order to 



 

 

reach a status, where each sensor has at least one neighbor of a different type, there is the 
possibility of a random movement of this neuron into an arbitrary direction and with an 
arbitrary distance, in order to randomly explore the possible boundary. 

   

Figure 4: Neighborhood of firing neuron A: NA; closest neighboring sensor of different type B, with its 
neighbors NB. 

The pseudo-code of the approach is as follows: 

0) until convergence 

1) random selection of Neuron A, of type t_A 

2) neighbors of A: n_A 

3) select neighbor from n_A, which is of different type of A and 
closest to A: Neuron B and its neighbors n_B 

4) if there are no neighbors of different type -> goto case 1 (8) 

5) move A and its neighbors of same type from n_A towards B 

6) move B and its neighbors of same type from n_B towards A 

7) continue with 0 

8) case 1: move A and its neighbors in arbitrary direction in 
order to randomly explore the boundary 

9) continue with 0 

The movements of the neurons and their neighbors is illustrated in the Figure 5: neighbors of 
the same type of A are moving into the direction of B (left); neighbors of same type of B are 
moving towards A (middle); on the right both movements are shown. 



 

 

Figure 5: Movement of neurons A and B and their neighbors of same type NA (left) and NB (middle); 
right: both movements. 

After the convergence of the system (i.e. no more movements of the neurons) the boundary 
detection is finished. The boundary neurons are labeled and communicate their position to the 
central node. At this stage it is possible to use the interpolation from 4.2 to determine the 
position of the boundary in between two nodes. This is shown in Figure 6. 

 

Figure 6: Detection of the boundary of a phenomenon: areal phenomenon and initial sensor distribution 
(left), sensor distribution after convergence of SOM (middle), approximate boundary points (stars) (right). 

5 Examples and Results 
In the following, some examples with a first implementation of this concept are shown. Given 
are a spatial phenomenon and a set of n sensors that is distributed randomly over the 
hypothesized area of the phenomenon. All the examples are calculated with the same 
parameters: 

• the number of neurons (sensors) is n =40 
• the neighborhood is determined using a Delaunay Triangulation 
• a one-hop neighborhood is used, which is additionally limited at a distance threshold 

of max. 400 m, i.e. neighboring sensors beyond this value are not considered 
• the movement of the sensors is increasingly reduced with growing number of 

iterations (function h) 
• the number of iterations is 4  n, i.e. each sensor can fire in average four times 



 

 

The first example shows a standard situation. Figure 7 presents the initial situation on the left, 
the movement of the sensors in the middle, and the position of the sensors after the adaptation 
on the right. The color of the sensor points indicate their position: in yellow are sensors that 
are located on the boundary; in blue are sensors inside the phenomenon, in red are sensors 
outside the boundary of the phenomenon. Initially some sensors lie outside and some inside 
the phenomenon. The partially large random movement of some sensors has the positive 
effect that also in areas where no sensor was located initially the boundary can be delineated. 
Not all the sensors were able to capture the boundary. Some “stranded” in the middle of the 
phenomenon and were not able to recover by being dragged by another neighboring sensor. 
However, the majority of the sensors is distributed along the boundary. A drawback is that 
some of the sensors cluster at certain places on the boundary - instead of being evenly 
distributed along the boundary. 
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Figure 7: Detection of the boundary of a phenomenon: areal phenomenon and initial sensor distribution 
(left), movement of neurons (middle) approximate boundary points in yellow (right). 

The following example in Figure 8 shows a situation, where the distribution of sensors in the 
beginning was unequal, i.e. did not fully cover the phenomenon, namely the lower right 
corner. Still, however, the system is able to capture and delineate the boundary. 

  

Figure 8: Detection of the boundary of a phenomenon with unequal initial distribution of sensors (lower 
right is not covered): areal phenomenon and initial sensor distribution (left), movement of neurons 
(middle) approximate boundary points in yellow (right). 



 

 

The next example in Figure 9 shows a concave phenomenon. The example clearly 
demonstrates that also a boundary of this shape can be delineated by the sensors. Also here, 
the distribution of the sensors is not equal in the beginning: there are no sensors to the right 
and up of the phenomenon. The exploratory character of the SOM, however, leads to the 
coverage of the phenomenon and the delineation of its boundary. 
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Figure 9: Detection of the boundary of a phenomenon: areal phenomenon and initial sensor distribution 
(left), movement of neurons (middle) and approximate boundary points in yellow (right). 

5.1 Discussion and outlook on future work 
The first implementation using the parameters described above show the feasibility of the 
approach. After applying the SOM, the boundary of the phenomena can be better delineated. 
There are, however, also some investigations that are needed in order to improve the results 
and also evaluate and analyze them thoroughly with respect to performance characteristics.  

Parameters: The experiments have been conducted with a fixed set of parameters and 
functions. Other parameters, e.g. concerning number of iterations and learning rate and 
influence range function should be tested. 

Dependency on communication range: In the current implementation, only the nearest 
neighbors have been used, corresponding to a single hop communication. Test should show if 
the results could be improved when a higher communication range is used. 

Clustering of Sensors: The fact that sensors on opposite sides of the boundary move towards 
each other leads to the phenomenon that they have the tendency to cluster at boundary points. 
As an improvement, a concentration of sensors on one point in space has to be prohibited 
leading to a more even distribution along the boundary. 

Evaluation of resources: An important issue in geosensor networks is the efficient 
management of the available resources. The different resources of the sensors have to be 
evaluated against each other: communication, computation and movement. Larger movement 
rates may lead to a higher probability of better coverage of the phenomenon, however, also to 
a higher consumption of resources.  



 

 

Selection of initial neuron distribution: In the proposed concept, the initial distribution is a 
two-dimensional irregular grid. As the phenomenon to be detected is a linear structure (the 
boundary), another possible approach could be to use a linear chain of neurons. 

Binary vs. continuous phenomenon measurements: In this approach there was the 
assumption that the phenomenon is binary. If it is of continuous nature, then appropriate 
measures for the change in phenomenon have to be found, i.e. threshold values, which define 
that two measurements are dissimilar. Such thresholds for gradients could be calculated in the 
local environment of the sensors. Values which are sufficiently different from mean values 
are candidates for changes in the phenomenon. Such thresholds could also be propagated 
through the network and thus be used collaboratively. 
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