
ASSESSING TEMPORAL BEHAVIOR IN LIDAR POINT CLOUDS OF URBAN
ENVIRONMENTS

J. Schachtschneider∗, A. Schlichting, C. Brenner

Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany - (julia.schachtschneider,
alexander.schlichting, claus.brenner)@ikg.uni-hannover.de

KEY WORDS: LiDAR, Mobile Mapping, Alignment, Strip Adjustment, Change Detection

ABSTRACT:

Self-driving cars and robots that run autonomously over long periods of time need high-precision and up-to-date models of the changing
environment. The main challenge for creating long term maps of dynamic environments is to identify changes and adapt the map
continuously. Changes can occur abruptly, gradually, or even periodically.
In this work, we investigate how dense mapping data of several epochs can be used to identify the temporal behavior of the environment.
This approach anticipates possible future scenarios where a large fleet of vehicles is equipped with sensors which continuously capture
the environment. This data is then being sent to a cloud based infrastructure, which aligns all datasets geometrically and subsequently
runs scene analysis on it, among these being the analysis for temporal changes of the environment.
Our experiments are based on a LiDAR mobile mapping dataset which consists of 150 scan strips (a total of about 1 billion points),
which were obtained in multiple epochs. Parts of the scene are covered by up to 28 scan strips. The time difference between the first and
last epoch is about one year. In order to process the data, the scan strips are aligned using an overall bundle adjustment, which estimates
the surface (about one billion surface element unknowns) as well as 270,000 unknowns for the adjustment of the exterior orientation
parameters. After this, the surface misalignment is usually below one centimeter. In the next step, we perform a segmentation of the
point clouds using a region growing algorithm. The segmented objects and the aligned data are then used to compute an occupancy
grid which is filled by tracing each individual LiDAR ray from the scan head to every point of a segment. As a result, we can assess the
behavior of each segment in the scene and remove voxels from temporal objects from the global occupancy grid.

1. INTRODUCTION

It is nowadays agreed upon that self-driving cars will need highly
accurate maps for their reliable operation. However, since the en-
vironment undergoes temporal changes, the usefulness of a map
is dependent not only on its geometric accuracy, but also on its
ability to represent the current state of the scene. Unfortunately,
many scene parts in the vicinity of roads change quite frequently.
For example, a new object may appear in the environment and
stay there permanently, like a new building, or it can stay only
temporally, like a parked car. Objects can move or change their
appearance, like open or closed gates or doors. Surfaces can wear
off and vegetation will continuously grow until it is cut back or
changed otherwise due to seasons.

One solution to this problem would be a very dense sampling
(in time) of the scene, so that all temporal changes are faithfully
represented in the map. As this approach is not economically
viable, one can instead rely on knowledge about the scene and
its temporal behavior, in order to assess its current state. This
is similar to the approach that humans take. For example, one
would usually expect buildings to be static, so they can be used
as landmarks. On the other hand, we would not include parked
cars when giving directions. In order to mimic this behavior, the
first step is to understand the different parts of a scene, in terms
of a classification into certain behavioral classes, which are then
attached to the map. As a result, a robotic system (such as a self-
driving car) which intends to interpret the scene contents with the
help of this map will be less ‘surprised’ by scene changes if they
are to be expected anyways.
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Reviews on recent methods for change detection and deformation
analysis, e.g. (Lindenbergh and Pietrzyk, 2015, Qin et al., 2016),
identify that most approaches for change detection in urban envi-
ronments are based on airborne data using Digital Surface Models
(DSMs). The traditional change detection methods (especially in
airborne laser scanning) compare point clouds themselves and do
not use the additional information of the sensors position during
measurement. (Girardeau-Montaut et al., 2005) compare popular
state-of-the-art distance based strategies. They identify that using
the Hausdorff distance leads to much better results than average
distance or using a best fitting plane.

(Kang and Lu, 2011) use the Hausdorff distance to detect changes
in point clouds of urban environments obtained by static terres-
trial laser scanners. They are motivated by disaster scenarios like
earthquakes or floods where the changes in densely populated
urban areas shall promptly be detected in order to speed up the
emergency response. Accordingly, they focus mainly on disap-
pearing changes in building models. They use the scale invari-
ant feature transform (SIFT) method to align point clouds from
multiple measurements and then use the Hausdorff distance to
compute changes between the different measurement epochs. In
order to analyze the resulting point segments marked as changed,
they compute planar surface areas and provide those for damage
estimation.

Other recent approaches use occupancy grids, where the posi-
tion of the sensor head as well as the measured points are used
to determine the states of all traversed grid cells via ray tracing.
Occupancy grids have been widely used in probabilistic robotics
(Thrun et al., 2005). As introduced in 2D by (Moravec and Elfes,
1985), the cells of an occupancy grid can have three different
states: ‘unknown’, ‘empty’ and ‘occupied’.
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(Hebel et al., 2013) present a framework to compare current aerial
laser scan data of an urban environment to a reference on-the-fly.
After they align the actual measurement with the reference, the
resulting point cloud is analyzed pointwise using Bresenham’s
algorithm (Bresenham, 1965) for ray tracing. The space between
the sensor head and a reflecting point is determined as empty and
the unseen space behind this point is unknown as long as it is
not determined by another scan ray. In contrast to distance based
methods, this approach can handle occlusion. The transition be-
tween different states (empty to occupied, occupied to unknown)
is modeled smoothly by a belief assignment to points in the laser
beam. In order to avoid conflicts with rays crossing penetrable
objects, they pre-classify vegetation before alignment and model
it with different parameters.

The approach of (Xiao et al., 2015) applies the above mentioned
method to laser scan data from mobile mapping. They model the
laser beam as a cone in order to improve the ray tracing results. In
contrast to (Hebel et al., 2013) they do not use pre-classification,
but avoid conflicts with penetrable objects by combining their
method with a point-to-triangle distance based change detection.
As a result of their method they mark points as uncertain, con-
sistent and conflicting. In a comparison of different change de-
tection methods (occupancy-based, occupancy-based with point
normals, point-to-triangle-based, combination) they show that the
combined method takes advantages of both, distance-based meth-
ods and occupancy grids. It is robust with penetrable objects and
can deal with occlusions.

(Aijazi et al., 2013) use multi-temporal 3D data from mobile
mapping and presented an approach that not only detects but also
analyses changes in an urban environment. In order to deal with
occlusion, they first segment the point clouds and then classify
objects as permanent or temporal using geometrical models and
local descriptors. Afterwards they remove the temporal and all
unclassified objects from each point cloud of the single measure-
ments and then match the remaining points using the ICP (iter-
ative closest point) method. That way they fill holes caused by
occlusion from now removed temporal objects. They map the
resulting clouds into 3D evidence grids and compare those (al-
ways the actual versus the previous measurement) to update their
similarity map by using cognitive functions of similarity.

In contrast to existing approaches, we do not only want to de-
tect changes in the map but also classify them into distinct types,
according to their behavioral patterns.

2. DATA

For our experiments we used data acquired by a Riegl VMX-250
Mobile Mapping System, containing two laser scanners, a cam-
era system and a localization unit (figure 1).
The localization is provided by a highly accurate GNNS/INS sys-
tem combined with an external Distance Measurement Instru-
ment (DMI). The preprocessing step is made using proprietary
Riegl software and additional software for GNSS/INS process-
ing, using reference data from the Satellite Positioning Service
SAPOS. The resulting trajectory is within an accuracy of about 10
to 30 centimeters in height and 20 cm in position in urban areas.
Each scanner measures 100 scan lines per second with an over-
all scanning rate of 300,000 points per second (RIEGL VMX-
250, 2012). The measurement range is limited to 200 meters, the
ranging accuracy is ten millimeters. For this experiment, we used
data from six measurement campaigns in Hannover-Badenstedt

Figure 1. Riegl VMX-250 placed on a Mobile Mapping van.

Figure 2. Measurement area in Hannover-Badenstedt
(Germany). The scan points are colored by the maximum height

difference in every grid cell, from blue (0 cm) to red (2 cm).

(Germany), which took place on 4.7.2012, 30.1.2013, 4.4.2013,
18.4.2013, 2.7.2013, and 20.8.2013. From all campaigns, we
used only scan strips which overlap a small area of four blocks
of buildings, shown in the center of Figure 2. The horizontal ex-
tent of this figure is 1.4 km, the central part of the four blocks of
buildings has an area of about 0.5×0.5 km2. The resulting point
cloud consists of 1.48 billion points.

3. ALIGNMENT

In order to assess temporal changes between different measure-
ment campaigns, the data has to be in the same global coordi-
nate system. The absolute accuracy is governed by the position
and orientation determination of the van, which is tied to the
GNSS/IMU system. As mentioned above, depending on GNSS
conditions, errors in the range of several decimeters can be ob-
served. In contrast, the accuracy of the laser range measurement
as such is about one centimeter (with contemporary systems even
better, 5 mm accuracy, 3 mm precision), which is about two mag-
nitudes better.

In order to observe small changes in the data, one needs a more
accurate global positioning, in the range of the accuracy of the
laser scanner. This can be obtained using a field of control points,
measured in a separate campaign with a very high accuracy. For
example, in (Hofmann and Brenner, 2016), a geodetic network
was measured using a total station (0.6 mm + 1 ppm distance,
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0.1 mgon angle measurement accuracy), resulting in maximum
standard deviations of 1.1 mm in position and 1.3 mm in height
for the network points. Global referencing was done using a
GNSS survey (6.6 mm accuracy). Based on the geodetic network,
free stationing was used to determine the position and orientation
of a total station, which was in turn used to measure the final con-
trol points of the testfield (2 mm + 2 ppm distance, 0.3 mgon an-
gle accuracy). Overall, 4,000 individually chosen points on build-
ing facades and additional (automatically measured) profiles on
the road surface were measured. Such data can be used to align
scan data globally, however the effort to obtain it makes it not
practicable for larger areas.

Therefore, one has to settle for less costly methods, one of them
being the alignment of all scan data with each other. This is a very
well-known and well-researched topic. In case of aligning multi-
ple individual datasets, the iterative closest point algorithm (Besl
and McKay, 1992, Rusinkiewicz and Levoy, 2001, Segal et al.,
2009) is normally used to iteratively minimize the point or sur-
face distances. In case of measurements obtained from a moving
platform, the problem is known in robotics as SLAM (simultane-
ous localization and mapping, (Grisetti et al., 2010)), while, es-
pecially in the scanning literature, it is known as strip adjustment
(Kilian et al., 1996). For platforms which capture data continu-
ously, it is usually formulated in terms of a least squares adjust-
ment which estimates corrections for the position and orientation
at constant time or distance intervals along the trajectory (Glira
et al., 2015).

In simple cases, the adjustment can be formulated in terms of
minimizing the pairwise distance between scan strips. However,
when a lot of scan strips overlap (e.g. in our test area, there are up
to 28 scan strips at certain locations), forming all possible pairs
is not feasible, as this grows quadratically (in the number of scan
strips). Instead, the usual approach is to introduce the surface in
terms of additional unknowns, similar to using tie points in pho-
togrammetry. Then, the problem grows only linearly in the num-
ber of scan strips, however, at the cost of introducing a large num-
ber of unknowns required to describe the surface. The geometric
situation is depicted in figure 3, where blue and green are two
trajectories from different scan strips, a1, . . . , a3 and b1, . . . , b3
are anchor points where corrections to the exterior orientation are
estimated for the blue and green trajectory, respectively, and m is
a single surface element whose distance to the measured points is
observed.

b
b2 b3b1

a1
a2

a3

m

ACM GIS Drawings Claus Brenner | 1

Figure 3. Geometric situation for the example of two scan strips.
Blue and green curves are trajectories of the mapping van, red

lines are scan rays, ai and bi are anchor points (where
corrections for the exterior orientation are estimated), and m is
one single surface element, where scan points are assumed to

align.

In order to formulate this as a global adjustment model, three

equation types are needed:

1. Measured points (red rays in figure 3) which are assigned to
a surface element m shall coincide with the surface,

2. the original trajectories shall not be modified (forcing the
corrections in the anchor points to be zero), and

3. successive corrections in anchor points (e.g., from a1 to a2)
shall be the same,

where all these conditions are to be enforced with appropriate
weights. Then, adjustment can be used to minimize both, the an-
chor points and the surface model, in one global, monolithic min-
imization procedure. Unfortunately, the number of unknowns is
very large in this case. For example, for the Hannover-Badenstedt
test scene, there are 278,000 unknowns for the anchor points, but
almost one billion unknown surface elements (when a local sur-
face rasterization of 2 cm is used).

Figure 4 shows the Bayes network resulting from the situation in
figure 3 and the equation types (1)-(3). The global minimization
would require to compute

Â, M̂ = arg max
A,M

Ω (A,M) (1)

where A and M denote the unknown anchor points (in the exam-
ple, a1, a2, a3, b1, b2, b3) and surface elements (m), respectively,
and Ω is the target function, usually formulated in terms of a least
squares error. However, a naı̈ve implementation leads to equation
systems of intractable size, which grow mainly with the overall
size of the scene.

b b b

q1 q2 q3

b1 b2 b3

v1 v2

u2 u3

m

a1 a2 a3

p1 p2 p3
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Figure 4. Bayes network for the situation in figure 3. ai, bi and
m are the unknowns for the anchor points and surface elements,
respectively, ui, vi are the observed distances from the measured

points to their assigned surface element (equation type 1), and
pi, qi are the observed exterior orientations (equation type 2).

Equation type 3 results in conditions between successive
unknowns (ai, ai+1 and bi, bi+1).

Using a partition of the Bayes network in figure 4 leads to a
tractable solution. The key observation is that if m is observed,
the chain of dependencies is broken, and trajectories (anchor
points) a1, a2, a3 and b1, b2, b3 form independent linear chains,
for which it is well known that optimization is linear in the num-
ber of unknowns to be estimated (i.e., the length of the trajecto-
ries). Conversely, if the trajectories are observed, then all map
elements m are independent and can be estimated individually,
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which is even more simple. This leads to the following alternate
least squares approach, which, instead of optimizing eq. 1, alter-
nates the two steps

Â = arg max
A

Ω (A,M) and

M̂ = arg max
M

Ω (A,M) .

In (Brenner, 2016), this approach is described in more detail and
the mapping of the computational process to a standard ‘big data’
MapReduce approach is shown. The global adjustment leads
to standard deviations below one centimeter for the surface el-
ements. After adjustment of all anchor points, the point cloud
is recomputed globally, which then forms the input to the subse-
quent change detection.

4. CHANGE DETECTION

Changes in urban environments may be caused by several rea-
sons: pedestrians on the sidewalk, moving or parked cars, con-
struction sites or even changing vegetation. We do not only want
to detect these dynamics in the data but also analyze the various
behaviors of different objects in the environment.

Our change detection method consists of four main steps (see fig-
ure 5): First, all measurements are aligned into a reference point
cloud. Second, all point clouds from different measurement runs
are segmented. Afterwards, all points of the reference point cloud
are accumulated into an occupancy grid. Finally, the occupancy
grid is combined with the segmentation results and stored as a
reference grid.

3D-data 
from 
multiple 
measure-
ments

Reference 
point cloud

Segmentation

Change analysis

Change 
detection 
(ray tracing)

Reference 
occupancy grid
with static/ 
dynamic
objects classified

Alignment

Segmented 
point cloud

Occupancy
grid

Figure 5. The four main steps of our change detection method:
alignment, segmentation, change detection and change analysis.

After the alignment described in the previous section, we seg-
mented the occurring objects in the point clouds. We used a re-
gion growing algorithm (Adams and Bischof, 1994) to remove
the ground. After choosing n seed points, which in this case are

the points with the lowest height values, we compared the neigh-
bouring points using the distance to the current region and the
local normal vectors and removed the corresponding points from
the point cloud. In a further step, we again used a region grow-
ing algorithm, applied to the remaining points, to find connected
objects. An example result can be seen in figure 6.

Figure 6. Result of the region growing algorithm. Each
connected object is assigned a random color.

In the next step, we computed 3D occupancy grid maps from
the point clouds. We divided the space into voxels with an edge
length of ten centimeters. The analysis principle can be seen in
figure 7. As we know the trajectory of each laser scanner head,
we can trace the laser beam for every single measured point. We
used the voxel traversal algorithm presented by Amanatidis and
Woo (Amanatides et al., 1987). A voxel is free, if it does not con-
tain any reflecting points and the laser beam passes through the
voxel on its way from the laser scanner head to an occupied voxel.
If on the other hand at least one reflecting point falls into a voxel,
it is marked as occupied. Voxels which are never crossed and
contain no points are marked as unseen. This analysis is done for
every point cloud of several measurement runs and the status of
every voxel is stored in the occupancy grid of the corresponding
run. In the following, the three possible voxel states are encoded
as “free” (0), “occupied” (1), and “unseen” (2). For each single
voxel, the sequence of measurement runs results in a sequence of
such codes, which represent the behavior pattern of each voxel.
E.g. if a static object is permanently part of the scene, its behav-
ior pattern will constantly have the state “occupied” and an object
that disappears after some time will have a falling edge from “oc-
cupied” to “free” in its state sequence. Using this state sequence,
the behavior of every voxel can be evaluated in the final change
analysis step.

Before we started to define a method to determine the final states
of the segments, we analyzed typical state sequences for different
kinds of objects in a scene. For example, in the scene shown in
figure 8, there are static objects like a lantern, some vegetation
and the facades, but also temporary objects like parked cars, bi-
cycles and pedestrians. In total, ten different objects from two
different scenes were selected (see table 1, figures 11–15 show
plots for selected objects). Each object covers a certain number
of voxels, each of which has been assigned a state sequence, or
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(c) 8th run.

Figure 7. Illustration of voxel counting. On its way along the trajectory, the laser scanner (red) on the vehicle (yellow) permanently
scans its environment. If the laser beam is reflected by an object, e.g. a building facade (green), the corresponding voxel count in the
occupancy grid increases. The first value in the voxels indicates how often the laser beam hits the voxel, the second value how often
the voxel was visible (i.e., the laser beam hits or crosses the voxel). The pedestrians (orange) have only been seen once. The parked

cars (blue) on the street have been seen in three or six of eight measurements. Voxels to the right of the red beam are yet to be scanned.

pattern, in the previous step. Counting unique patterns results in
the “number of patterns” column in table 1.

Figure 8. Point cloud consisting of multiple scans, using a
random color for each scan.

Figure 9 shows a histogram of the patterns of the lantern, which
covers 152 voxels, resulting in 89 unique patterns (sorted in as-
cending frequency). The shape of the histogram is quite common
to all objects and shows that only a few patterns occur most fre-
quently and define the overall behavior of an object. Thus, for
further analysis, we keep only voxels which exhibit patterns that
occur at least five times (in the respective object). The distri-
bution of the (remaining) patterns over all scans are shown in
figures 11a – 15a (notice that the measurements are not equally
distributed in time). Here, the horizontal axis enumerates all (28)
scans, the vertical axis is the state (0, 1, 2, encoding “free”, “oc-
cupied”, and “unseen”), and the size of the markers encodes the
frequency.

The patterns show that the state of the voxels in static objects (like
the facade, the lantern and the bush) are almost constantly occu-
pied. While for a relatively small and geometrical simple object

Observed objects No. of No. of Final
voxels patterns state

facade 6484 5168 p
lantern 152 89 p
bush 5693 4894 p/ t
hedge 446 414 p/ t
parked vehicle 1 733 463 t
parked vehicle 2 665 384 t
parked vehicle 3 358 266 t
motorbike 421 301 t
pedestrian 1 97 57 t
pedestrian 2 106 36 t

Table 1. Observed objects for state pattern analysis, final state
expected to be permanent (p) or temporal (t).

like a lantern, only a few false detections of free voxels occur,
for larger and more complex objects like the facade, this propor-
tion is larger. For vegetation, like the bush, the state toggles even
more often between occupied and (false) free. As mentioned be-
fore, this behavior of vegetation can have different reasons like
growth, seasonal changes, human intervention, and the penetra-
bility of the object. The car appeared in the scene at the 5th mea-
surement and stayed there until the end. The pedestrian was only
scanned once in measurement run 24.

Figures 11b – 15b show how many voxels are occupied in every
scan of an object. These match the behavior patterns in figure
11a – 15a. They show that for vegetation, in total less voxels are
occupied over the scans than in the other static objects. Further-
more, vegetation has a lot more state changes over the different
measurement runs than other static objects, as shown in figure
11c – 15c .

After the state pattern analysis, we implemented a method to au-
tomatically determine the final state for each segment. As a first
approach, we wanted to find a threshold to distinguish between
objects that are static and permanent and objects that only tem-
porarily appear in the scene. Therefore we took into account the
number of voxels that are rated as occupied and their frequency
in the measurements (compare to figures 11 – 15). Considering
all ten analyzed objects, we estimated the following threshold: If
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Figure 9. Frequency of the behavior patterns of a static object
(lantern).

Figure 10. Point cloud after change detection; blue: permanently
occupied, red: temporarily occupied

at least 25% of all voxels in a segment are occupied in at least
70% of all measurements, the object is assumed to be permanent.

Based on this threshold we started to define the final states of
the objects. We considered three different states: “permanently
occupied”, “temporarily occupied”, and “free”. Typical objects
for the expected states are shown in table 1.

All voxels of a segment are rated as permanently occupied if at
least 25% of all voxels in that segment are occupied in at least
70% of all measurement runs and rated as temporarily occupied
if less than 25% of all voxels in that segment are occupied in
70% of all measurement runs. The rest of the seen voxels is rated
as free. Once the final states of all objects are determined, the
corresponding voxels in the global grid are updated. As a result,
we obtained a voxel grid with a defined final state for each voxel.
Figure 10 shows the result of the change detection and analysis
in a typical street scene.

5. RESULTS AND DISCUSSION

As shown in figure 10, permanent static objects like facades,
lanterns and parts of the vegetation are separated from objects that
appear only temporarily like pedestrians and parked cars. How-
ever, some parts of vegetation are also considered as temporarily
and some pedestrians are considered as permanent. These false
permanent detected pedestrians may be caused by a too coarse
segmentation where the pedestrians are merged with some static
parts of the environment into one object. Since the pedestrians are
represented by relatively few points, their proportion in a false-
merged segment is relatively low, and the static part of the merged
segment will dominate. This could be avoided by a finer segmen-
tation. Or, since we take into account multi-temporal measure-
ments, we can avoid this by comparing the extent and overlapping
of different segments from different timestamps. Vegetation is
sometimes considered as temporal because of two main reasons,
one is its permeability and the other one is that it changes over
time (due to growth, seasonal changes or human interventions).
For a more accurate change detection the behaviour patterns of
vegetation from a wider change analysis could be considered or
vegetation could be classified in advanced.

Another drawback of our method is that we classify the states
by counting the occupied voxels and calculate their proportion of
space (segment) and time (measurement runs). This means we
would still detect an object that has been part of the environment
for a long time and was recently removed as permanent. This
could be avoided by taking into account the state patterns of the
temporal objects and e.g. detect a falling or rising edge for objects
that are added or removed.

6. CONCLUSION AND OUTLOOK

In the future, we want to analyze the change patterns of different
objects more precisely and classify changes in more detail, e.g.
take into account the lifetime of an object and detect falling or
rising edges in their state patterns, so we can add or remove them
from the reference grid. In addition, we want to classify objects
by their typical behavior in order to estimate their “probability to
change” and add these information to the global map. Therefore,
we want to add a classification step to improve the interpretation
of temporal changes. For example, a tree changes its shape fre-
quently, dependent on the weather (e.g. wind), seasons or human
interventions.

Another point that we did not handle so far is that the alignment
process does not use scene knowledge. Even though it uses a
pre-segmentation and a robust surface assignment (for details,
see (Brenner, 2016)), it may happen that wrong correspondences
may lead to a wrong alignment, which in turn will result in an er-
roneous change detection. For example, parked cars which have
moved just slightly may lead to wrong correspondences. We plan
to improve this by incorporation scene classification results into
the alignment process.
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Figure 11. Pattern distribution for a building facade.
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Figure 12. Pattern distribution for a lantern.
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Figure 13. Pattern distribution for vegetation (a bush).
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Figure 14. Pattern distribution for a parked car.
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Figure 15. Pattern distribution for a pedestrian.
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