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Abstract. Trajectory data often includes knowledge about the movement 
and the behavior of individuals, which is useful for analyzing problems in 
domains like animal migration or security. In this paper we present an ap-
proach to identify interesting places and determine unusual behavior of 
individuals from large amounts of trajectory data. 
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1. Introduction 

Understanding of space-time-patterns is relevant for many problems, e.g. 
animal migration, traffic analysis, security. This paper describes first stages 
of a framework for the interpretation of trajectory data with respect to spe-
cific patterns or dominant structures. There are several requirements con-
cerning the interpretation of such space-time-trajectories, which are also 
application dependent: The trajectories can have different sampling rates, 
they can contain additional attributes (besides position); they can be gener-
ated by the same individual or several individuals, which may or not be 
known beforehand. The goal can be to identify certain patterns, which can 
be discerned into individual patterns of the trajectory itself and group pat-
terns of several trajectories. A classification of space-time patterns is de-
scribed by Dodge, et al. (2008). Concerning the first issue, the way the 
space is traversed is relevant, e.g. in terms of straight lines, circles, zigzag; 
then methods described by Buchin et al. (2009) can be applied. Concerning 
the group patterns, dynamic patterns like flocks, and also static patterns 
like convergence or encounter (see e.g. Laube et al. (2008)) can be identi-
fied. Furthermore, also the issue of identifying regions of common space 
usage can be identified, a sort of linearly extended encounter. This latter 



pattern can also be used to identify the underlying path (network) of the 
moving objects (e.g. Krumm, et al. (2009)). 

In the paper, we will concentrate on a scenario with different individuals 
traveling through space and time. We are first of all looking for encounters 
in the sense of places, where the individuals recurrently appear. To this end, 
an incremental approach is presented. After the places of interest are iden-
tified, a graph can be constructed, consisting of the interesting places as 
nodes and the connecting track segments as edges. Further analysis is con-
ducted on these segments, with respect to movement type, as well as the 
possibility of aggregating nearby traces. Finally, general information about 
the connections in the graph is derived, which also include probabilities of 
paths through the network.  

In the following, a brief description of the algorithms is given, together with 
illustrative examples. The paper concludes with a summary and outlook on 
the next steps. 

2. Motivation 

2.1. Context of Problem 

This paper deals with the evaluation of trajectory data in an observation 
scenario. There the main focus lies on the identification and evaluation of 
movement patterns to detect critical behavior of observed individuals. Con-
sidering the fact that the developed technique shall operate on a low-
performance system, it has to work efficiently. 

2.2. Problem Definition and Description 

A major challenge of the project is to define critical behavior. Due to the fact 
the evaluation is based on trajectory data, the behavior itself is represented 
by the movement of an individual. Therefore critical actions are directly 
related to critical movement. Certainly, there are various criteria character-
izing movement as critical. These criteria heavily depend on the spatio-
temporal context, the individual is moving in. Thus, when looking for un-
common behavior, we are looking for uncommon trajectories in the data. 
Common trajectories are identified by looking for clusters of similar loca-
tions and paths. Deviations from these clusters are considered as abnormal. 
However, they do not have to be necessarily critical. After the detection of 
the requested movements further decisions have to be made to classify an 
abnormal one as critical. Critical has then to be defined within the context 
of an application.  



In summary we are looking for a method that separates common from spe-
cial movements according to their spatio-temporal context. 

2.3. Related Work 

This is not the first approach structuring and evaluating trajectory data in a 
spatial context. Ashbrook and Starner (2003) describe a way to learn signif-
icant locations and make predictions from GPS data. They structure the 
existing data by finding common places, where people stay for certain time. 
After that they use a k-mean-similar clustering to merge the found places, 
to reduce their data to an essential minimum. For each of those resulting 
clusters, called locations, a Markov model is created, which allows predict-
ing the people’s next target.  

Makris and Ellis (2001) have worked on identifying frequently used paths 
from video scenes. Thereby, they handle the spatial relationships among the 
trajectories by generating a graph from people’s appearing- (entry nodes) 
and disappearing-points (exit-nodes) and trajectory junctions the scene. 
Node-usage statistics provide a measure about the most probable exit-node, 
so the point, the individual leaves the scene.  

Another approach is presented by Baiget and Sommerlade (2008). They 
want to find trajectory prototypes to estimate subsequent trajectory shapes. 
To this end, they cluster the already obtained trajectories by their first and 
last points. After that, they create a trajectory prototype for each of those 
clusters by combining the contained segments. Those prototypes are used 
for predicting the most probable shape of following trajectories.  

Kang et al. (2005) developed an algorithm for extracting significant places 
from a trace of coordinates. Instead of using GPS, they use WiFi to collect 
users’ locations. To extract the interesting places from the location data, 
they suggest a time-based clustering, which relies on a distance and a time 
threshold. 

2.4. Own Approach 

Since the behavior of an individual depends on its spatial-temporal context, 
our problem also demands a spatial structuring of the existing trajectory 
data. Otherwise we would not be able to compare and interpret the move-
ments. As in some of the related work, we have also decided to extract at-
tractive places. But, instead of clustering any locations found by longer 
stays of individuals, we identify interesting places in an incremental way by 
counting their visits by individuals. These places will later be used to derive 
clustered logical segments from the trajectory data. So the segments of 
within each cluster will share their own spatial context. 



After having clustered the trajectory segments we are able to evaluate the 
segments within the same environmental background. Subsequently, the 
aggregated trajectory segments will be clustered a second time using do-
main-specific parameters and analyzed with respect to their internal struc-
ture. 

Thus, we present a three step-approach: 

1. Extraction of attractive places 

2. Segmentation and clustering of trajectory data based on the found 
places 

3. Evaluation of segments within clusters of semantic trajectory seg-
ments 

Compared to the related work we mentioned above, the main difference, 
next to the way of finding attractive places, is the sequence of single steps 
applied for reaching our goal. 

3. A Three Step Approach 

3.1. Requirements, Assumptions and Definitions 

There are a few prerequisites and basic assumptions of our approach. The 
algorithm needs a sufficiently large amount of input data with a nearly con-
stant, but quite high sampling rate. The data augmentation of our algorithm 
is based on the Adrienkos’ basic concepts of movement data. So a trajectory 
  {           } is defined as a sequence of m measured tracking points 
            , which contain values for space and time Andrienko et al. 
(2008). 

We define a place to be attractive, if it has been visited several times by one 
or more individuals. Therefore, we define a necessary parameter n, the visit 
count of a place, for separating candidate places, visited n-1 times, from 
attractive ones. Reasonable values for n basically depend on the phenome-
non to be analyzed and on the spatial density of data. The higher the density 
the higher n should be. 

Furthermore, we define the size of a place’s geometry. The smaller the size 
is set, the more places and clusters may be found. 

Finally, we assume that individuals are getting slower or even stop at attrac-
tive places. In general, stopping can be identified by analyzing the velocity. 
In this work we use a fixed velocity threshold v between two consecutive 
tracking points. If additional knowledge about the objects or the scene is 
known which influence stopping, they can also be included. 



A more detailed evaluation of the influences of the parameters will be pre-
sented together with the discussion of the results. 

3.2. Step 1: Extraction of Attractive Place 

In generally, candidate places are found by examining movement data and 
stops of individuals. Those candidates will upgrade to “attractive places” if a 
threshold for the number of visits (n) is reached. Since our search for can-
didates works on every single tracked movement, the algorithm is operating 
incrementally. So it works at the runtime, which is important when using it 
in a surveillance system as described above. In the following paragraph we 
explain the extraction of attractive places in detail. 

For each pair of consecutive observations we decide, whether the observed 
individual/object has moved significantly. In this work we use the observed 
velocity, calculated from the travelled distance between two samples with 
known timestamps. This approach can be easily adapted for domains with 
high sampling-frequency by aggregation of more than two consecutive ob-
servations. If the calculated velocity fulfills certain stop-criteria, the ob-
served movement M is interpreted as a stop along the trajectory. M’s center 
O is tested for containment within an existing place. If this check fails, i.e. 
there is no existing place containing the movement’s location, a new candi-
date place (C) is created and added to the set. In the other case the found 
place’s (P’s) center will be adjusted. This correction consists of moving the 
current center towards O. The new center will be the mean of all previous 
movement centers contributing to P. Further, P’s visit count is increased. If 
the count reaches the predefined threshold n, P will be considered an at-
tractive place and put into the corresponding set. The following pseudo 
code describes the first step of the algorithm. 

Places = Ø, AttractivePlaces = Ø, Place P, Movement M, Location L 
FOREACH tracked movement 
 M = new tracked movemen 
 calculating parameters of M 
 O = center of M 
 IF M satisfying stop-criteria 
  FOREACH P ϵ Places 
   IF O inside P 
    Increase visit count of P 
    Correct center of P 
    IF visit count == n 
     Upgrade P to attractive place 
     AttractivePlaces = AttractivePlaces ∩ P 
    END IF 
   ELSE 
    Create new candidate place C 
    Places = Places ∩ C 
   END IF 
  END FOR 
 END IF 
END FOR 

 



3.3. Step 2: Segmentation and Clustering of Trajectory Data 

In our next step the clustering requires a segmentation of the existing tra-
jectories. Therefore the attractive places which have been found in the pre-
vious step are used. These are considered as the start and the end points of 
the segments, respectively. 

The segmentation algorithm iterates over the tracking points of each trajec-
tory and checks, if the current tracking point is contained inside any of the 
previously identified places (during the segmentation not only stops are 
considered, but also motion passing through a place). Whenever a trajecto-
ry point passes a place, the previous segment, if there is one, is closed and 
stored separately. A new segment starting at the previous trajectory seg-
ment’s end place is initialized. Trajectory points not inside any of the place 
models are added to the current segment. Segments at the start or end of 
trajectories not starting or ending at place models are discarded. The result 
of the algorithm is a set of trajectory segments, each associated with a pair 
of places it starts or ends at. 

Figure 1: Illustration of trajectory segmentation 



Trajectories = {T0..TN}, Trajectory T, TrackingPoint TP 
AttractivePlaces places = {P0..PM}, AttractivePlace P, AttractivePlace Pstart, 
Segments = Ø, Segment S = Ø 
FOR EACH T ϵ Trajectories 
 FOR EACH TP ϵ T 
  FOR EACH P ϵ places 
   IF TP inside P 
    IF S ≠ Ø 
     S = S ∩ TP 
     IF P ≠ Pstart OR T has been outside of Pstart 
      Segments = Segments ∩ S 
      S = Ø 
     END IF 
    ELSE 
     Create new Segment S = { } 
     S = S ∩ TP 
    END IF 
   ELSE 
    IF S ≠ Ø 
     S = S ∩ TP 
    END IF 
   END IF 
  END FOR 
 END FOR 
 S = Ø 
END FOR 

 

After the segmentation, we cluster the results. To this end, we use the places 
again. The clustering features are the start and end places of the trajectory 
parts, so that every cluster is defined by a pair of places. For the example in 
Figure 1, there will be every combination of the places P1, P2 and P3, with 
consideration of their order. The matrix in Figure 2 gives an impression, 
how the result looks like for the simple schematic example in Figure 1. 

Each entry of that matrix 
represents the number of 
segments belonging to one 
cluster. There can be entries 
also on the diagonal, which 
means that there are loops, 
so segments start and end at 
the same place. 

This matrix can also be re-
garded as a non-complete 
graph, where nodes are rep-
resented by the places (P1, P2, 
P3) and edges by entries 
greater than 0. This fact does not really matter for the current state of work, 
but it may be useful for future aspects. 

 P1 P2 P3 

P1 0 0 1 

P2 0 0 0 

P3 0 1 0 

Figure 2: The result of the clustering showed as 

a matrix 



3.4. Step 3: Evaluation of Segments within Clusters 

The segmentation presented above leads to a reduction of complexity of the 
collected data. Instead of one single trajectory per observed individual, we 
are now able to operate on trips between places. Those trips can be utilized 
for generating a model of typical migration behavior between places. In this 
work we present an approach based on clustering of spatial and geometric 
attributes generated by a single trajectory analysis by means of different 
strategies of getting from place A to place B. Depending on the domain of 
observation, different trajectory parameters play more or less important 
roles in distinguishing those place-crossing strategies and mapping them to 
semantic categories, e.g. spatial proximity and similar shape may implicate 
the use of similar routes in a street network, while the same properties 
would be less useful in domains without spatial restrictions on movement. 

Those strategies among trips can be identified utilizing prior domain 
knowledge to preselect trajectory parameters used for clustering like 

- spatial parameters 

o location 

- trajectory geometry parameters, e.g. 

o shape 

o curvature 

o sinuosity 

- temporal parameters  

o speed 

o time (of day) 

4. Experiments and Parameter Evaluation 

The first step of our algorithm, the places extraction step, requires three 
parameters. Reasonable values for the latter depend on the examined sce-
nario. They have to be adjusted to the trajectory density and sampling rate 
of the data. For that purpose, we use a scenario examplarily to show the 
influences of the parameters to the resulting number of candidate and 
attractive places. 

A large data set contains several trajectories of animals moving in an area of 
approx. 100 x 100 km, cf. Figure 3. 



Figure 3: A part of the data set and the places we were looking for showed in three 

different scales 

 

The parameter settings for the 
examination of 66149 tracking 
points are: n=2; r=5m and 
v=0.1m/s. The data set also 
contained ground truth in 
terms of known attractive plac-
es, which the individuals often 
visit. We use this list to verify 
our results. Our algorithm 
found more places than given in 
this list, but it did include the 
ground truth places as well. An 
example for the result is 
showed in Figure 4. There are 
small deviations, about 5-10m, 
between the given blue places 
and the red calculated ones, 
which mainly can be ex-
plained by the inaccuracy of 
GPS. 

 

 

Figure 4: Comparison between blue given places 

and red determined places 



In Table 1 experiments with different parameter settings are listed. We 
made three series of measurements varying one parameter each time. 

# Parameter setting Identified places Remark 

n[-] r[m] v[m/s] Candidates Attractives  

1 2 5 0.5 5201 356  

2 2 5 1 7969 373 

Changing 

the velocity 

threshold 

3 2 5 2 9939 414 

4 2 5 5 16507 430 

5 2 5 10 29103 458 

6 2 5 20 36346 465 

7 2 5 30 36354 465 

8 2 5 50 36359 465 

9 2 10 0.5 3940 277 

Changing 

the radius 

10 2 20 0.5 3040 233 

11 2 50 0.5 2093 228 

z12 2 100 0.5 1532 192 

13 2 200 0.5 1017 161 

14 2 500 0.5 557 171 

15 2 1000 0.5 299 174 

16 2 2500 0.5 87 121 

17 3 5 0.5 5356 201 

Changing 

the visit 

count 

18 4 5 0.5 5421 136 

19 5 5 0.5 5452 105 

20 7 5 0.5 5476 81 

21 10 5 0.5 5495 62 

Table 1: Different parameter settings show the influence to the resulting places 

Figure 5: Varying the velocity threshold parameter 
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Increasing the velocity threshold v (experiments 1-8) leads to an increase in 
the number of places as then also locations, when paths only geometrically 
cross without the individual stopping, are being considered. The criteria 
that determine an individual stays at a place are more often fulfilled. While 
the upper bound for the number of candidates is equal to the number of 
tracking points in the dataset, the upper bound for attractive places is calcu-
lated by                                    . Depending on the scenario and 
the quality of data v has to be adjusted (compare to example 1 and 2 of next 
chapter). 

Figure 6: Varying the radius of a place 

Varying the size of a place by increasing the radius r (experiments 9-16), 
decreases the number of candidate and attractive places. The larger the ra-
dius becomes the more movements fall into an already existing place and 
the less candidates are created. Small and adjacent places coincide and are 
treated as one, especially in areas where the concentration is high. Similar 
to the velocity threshold, r has to be adjusted to the data as well. 

 

 

 

 

 

 

 

 

Figure 7: Varying the required visit count parameter 
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Increasing the count parameter n decreases the number of attractive places 
(experiments 17-21). If the density of data is low, the decrease will be high-
er, because the probability that several individuals visit a faraway place is 
quite low. This parameter has to be adjusted to the density of the dataset. 

The previous result and parameter studies refer to the places-extraction 
step of the algorithm. The following concerns the second and third steps 
and shows what the results after those steps may look like. The 
segmentation results can easily be visualized by a graph structure. To this 
end, we choose another example and present the corresponding 
segmentation matrix and graph (cf. Figure 8). 

 

  

Figure 8: Example for the results after the segmentation step 

 



Figure 9 shows simple examples for the last step of the algorithm, with and 
without an evaluation of segments of several clusters. There, clustering is 
applied using the Hausdorff-distances between each segment. The resulting 
clusters are symbolized by the colors red and blue. In this case some indi-
viduals (in red) have used a quite different way to traverse from one to an-
other place. Due to this fact and this small given context, we can consider 
this movement to be a special one. This may change when there will be 
more segments within this cluster after a longer observation time. 

  

  

 
 

Figure 9: Examples for evaluation step with (right) and without (left) recognition 

of unusual movements by clustering the trajectory segments 



5. Transferability to Other Scenarios 

The presented algorithm can be applied to trajectory data provided by dif-
ferent sources like GPS or video tracking. Therefore, we are going to show 
further examples of the examination of various data types and scenarios. 
While the first two examples are based on GPS data the last example uses 
data recorded by video cameras. 

In the first example the data (212 trajectories) have been collected by em-
ployees of the Institute of Cartography and Geoinformatics while traveling 
in Hannover, Germany, during a time period of approximately two month. 
Using the parameters n=2, r=15m and v=0.3m/s leads to 13 attractive plac-
es found. Those can be visually inspected and assigned to existing, semanti-
cally meaningful places. For this purpose an extract from Google Maps is 
presented, where the attractive places are marked. Two of them represent 
tram stops (C, D), one is a crosswalk with traffic lights (B) and another one 
is the building the institute is located in (A). 

Figure 10: Extraction of interesting places in GPS data set presented in different 

scales (1-3). An extract of Google Maps for assigning the found places to existing 

ones (4) 



A GPS-game, in which several groups of students participated, provides the 
data for another example. The results shown in Figure 11 are achieved by 
using n=2, r=15m and v=0.1m/s as input parameters of the algorithm. Alt-
hough this example also contains GPS-data, the velocity threshold can be 
set lower than in the example before, because it is priory known that the 
students were walking. The starting point of this game was in the left cen-
ter. Higher densities of trajectories and of interesting places can be recog-
nized there. Most of the places represent either meetings of different groups 
or road junctions, where the participants stayed for a certain time to plan 
where to go next. 

 

Figure 11: Interesting places found in a data set provided by a GPS-game 

Another example originates from a video tracked handball match. One team 
has been tracked over a period of ten minutes, leading to 7 trajectories with 
104993 sample points. This time the following parameters are used: visit 
count: 3, region radius: 0.5m, velocity threshold: 0.1m/s. Figure 12 (left) 
shows a snapshot of the court, the seven players of the tracked team (gray 
dots) and the 14 identified places (green dots) at a certain time. Considering 
the facts that the tracked team defends on the left and uses a specific de-
fense formation, which is strongly kept by the players, the found places are 
reasonable. Those places can be interpreted and explained by visual inspec-
tion. The places 1 and 2 are places the goal keeper often stands at. The plac-



es 3 to 9 can be assigned to positions of a typical defense formation (cf. Fig-
ure 12, right). At the place in the center of the court (12) the throw-offs take 
place. Places 13 and 14 are offensive positions of the left wingman, at places 
10 and 11 the right wingman has to wait for the throw off before entering 
the opposite half of the court. 

  

Figure 12: Examination of trajectory data provided by a video tracked handball 

match. Left: one snapshot with overlaid found interesting places, right: one typical 

defence formation during a handball match 

6. Summary and Outlook 

In this paper, we presented a first approach to detect abnormal movements 
of individuals depending on their environment. The results showed that the 
method we are using can be the first step to reach our overall goal. After 
finding typical behavior, we will be able to determine the deviations thereof, 
which we consider as abnormal. 

This approach minimizes the data volume and computational costs by gen-
erating spatial models of movement behavior and incrementally updating 
with observed movements. The update mechanism does not require any re-
processing of data from previous observations. The unique processing, 
which consists of storing the extracted information in a more general mod-
el, reduces the amount of data. This way, for computation of a single obser-
vation we achieve a favorable runtime complexity based solely on the size of 
our model, making the algorithm suitable for real-time application. Given 
the spatial characteristics of the used model, a further speed-up of the used 
algorithm is possible e.g. by using spatial indexing structures. 

As the interpretation of the trajectories is organized in an incremental fash-
ion, it can also be designed in a decentralized way to achieve scalability with 



respect to the number of objects to track and interpret. This decentralize 
the algorithms is one of our main topics. 

Another topic of ongoing work is to analyze and evaluate the migration 
graph structure. While doing this, the nodes can be classified by character-
istics of entering and exiting trip edges. Next to solving typical tasks like 
finding the shortest or most favorite paths, many well-known concepts from 
graph theory can be directly applied to classify parts of the graph. We may 
identify places that act similar to sources and sinks (many ingoing/outgoing 
trips, only one outgoing/ingoing trip respectively), hubs (many ingoing and 
outgoing trips), loops (trips starting and ending at the same place) and so 
on. The graph structure can also be used for movement prediction. To this 
end, probabilities of possible target nodes can be calculated by including 
several factors like relative frequency of edge usage or target distances. 

The approach is general enough to be used in several kinds of applications. 
In the context of LBS or pedestrian navigation, with this method popular 
places and frequent routes can be identified. Typical routes are also of in-
terest for several planning purposes, e.g. city planning or traffic planning 
(see e.g. van der Spek, et al. (2009)). 

Since in some parts of our method values have to be set a priori, it is not 
able to handle different scenarios automatically. It also does not adjust to 
varying situations. Therefore, an auto-fitting or learning technique to de-
termine the three parameters would be very helpful. 

Besides further things we are planning to deal with, the consideration of the 
temporal domain is important, e.g. to distinguish between trips common at 
typical times of day (see Makris and Ellis (2002)). 
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