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ABSTRACT 
In recent times the amount of spatial data being collected by 
voluntary users, e.g. as part of the OpenStreetMap project, is 
rapidly increasing. Due to the fact, that everyone can participate 
in this social collaboration, the completeness and accuracy of the 
data is very heterogeneous. Although a object catalogue exists as 
part of the OSM project, users are not restricted which attributes 
they set and to which detail. Therefore the geometry of a feature 
is more reliable than its attributes. However, in order to use the 
data for analysis purposes, knowledge about the semantic contents 
is of importance.  

In our work, we propose an approach to classify spatial data 
solely based on geometric and topologic characteristics. We use 
both building outlines and road network information. In the first 
step, topology errors are fixed in order to create a consistent 
dataset. In the second step, we use unsupervised classification to 
separate buildings into clusters sharing the same characteristics. 
Including expert knowledge by visual inspection and interaction, 
some of these clusters are grouped together and semantically 
enriched. In the third step, we transfer the derived information 
from individual buildings to city blocks that are enclosed by 
edges of the road network. We evaluate our approach with test 
datasets from OSM and available authoritative datasets. Our 
results show, that enrichment of user-generated data is possible 
based on geometric and topologic feature characteristics. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining; I.5.1 [Pattern Recognition]: Models – Geometric; I.5.3 
[Pattern Recognition]: Clustering – Algorithms. 

General Terms 
Algorithms, Measurement, Verification. 

Keywords 
Spatial Data Mining, Settlement Types, Generalization. 

1. INTRODUCTION 
In the past, the production of topographic maps was solely the 
task of national mapping agencies. Today, however, maps are 
excessively used and produced not merely by experts, like 
cartographers, but rather by non-experts, reinforced by numerous 
web applications and mobile devices (e.g. Google Maps and 
various location based services). For this reason, the 
OpenStreetMap (OSM) project was established in 2004 with the 
aim to create a free digital map of the world using data collected 
by volunteers. Due to the fact that everyone can participate in this 
social collaboration, the amount of spatial data is rapidly 
increasing. The collected data is also very heterogeneous 
compared to proprietary data. 

Several studies investigated OSM data regarding its completeness 
and accuracy. They conclude that data density and level of detail 
are much higher in larger cities than in rural areas, explained by 
the presence of more active project members [1, 2]. Though 
geometric uncertainties of the data can be explained by the use of 
various acquisition devices with different accuracies, the reason 
for the heterogeneity concerning semantic attributes are manifold. 
Although a map object catalogue exists, the users are not obliged 
to use the recommended tags for a precise description of the 
captured features. Often, attributes are assigned rather arbitrarily 
or are completely missing. Still, however, reliable semantics are 
very important for a correct interpretation of spatial data, and also 
a prerequisite for successful data integration, data analysis and 
map generalization, just to name a few. The additional 
information that a building represents, e.g. a church, can prevent 
its elimination during generalization. Equally important are 
semantic information at a higher level, such as the membership to 
a building alignment in order to preserve these implicit given 
patterns during a generalization process.  

This leads to two primary questions addressed by current 
cartographic research. First, how can we exploit the potentially 
rich content of freely available and frequently updated user-
generated data for spatial applications? Secondly, how can we 
automatically extract semantics of different detail by analyzing 
the geometry and topology of individual spatial features or by 
recognizing spatial patterns? 

In this paper, we present an approach which combines both 
objectives, that is, we use OSM data for the detection of different 
types of higher level settlement areas based on previous building 
classification, in order to distinguish e.g. residential areas from 
industrial areas. We analyze individual feature characteristics 
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based on several measures, which represent their geometrical 
properties and topological relations to neighboring features. 

Several works in literature have proposed solutions in recognizing 
patterns in spatial data. Heinzle [3] works on the detection of 
typical patterns in road networks. Steiniger et al. [4] propose an 
approach for recognizing island structures. However, in 
particular, the recognition of building patterns for generalization 
purposes are comprehensively investigated. While Christophe & 
Ruas [5] present a method for the detection of linear building 
alignments, Zhang et al. [6] extend the focus also on nonlinear 
structures, including grid-like and unstructured building patterns. 
All mentioned approaches use either geometric algorithms or 
statistical techniques for the detection of patterns.  

On the contrary Lüscher et al. [7, 8] use an ontology-driven 
approach for pattern recognition, by formalizing semantics of e.g. 
terraced houses in terms of geometrical and topological conditions 
in an ontology. The success in detecting features using this 
manually built model is highly dependent on the quality and 
completeness of the ontology. Furthermore, for each concept a 
complete ontology is necessary. 

To overcome this disadvantage we propose a data-driven 
approach. Also Burghardt & Steiniger [9] describe types of 
settlements with respect to buildings. Based on the homogeneity 
evaluation of several geometrical and topological measures in 
building alignments, the settlement type regions (urban, sub-
urban, rural, inner city, commercial/industrial area) are defined 
manually. A similar approach has been taken by Meinel [10] who 
targets at the automatic delineation and interpretation of 
settlement classes from rasterized topographic maps. Sester [11] 
used a supervised Machine Learning approach to create decision 
trees for the description of topographic map features. 

In contrast, the approach that we propose uses unsupervised 
classification for the derivation of implicitly given knowledge in 
the data. Thereby, the fundamental problem is the definition of 
relevant feature characteristics, which allows a clear grouping of 
features with similar geometrical attributes and also semantic 
meaning. To what extent geometric similarity of data instances 
corresponds to semantic similarity was previously studied by 
Kieler [12].  

This paper is structured as follows. First the interpretation scheme 
based on an unsupervised classification is presented (Section 2). 
Then we describe the datasets that are used in this study and the 
preprocessing and enrichment steps that are necessary (Section 3). 
Subsequently the presentation and evaluation of the results 
obtained in our experimental tests are given in Section 4 and 5. 
Furthermore we propose a solution for integrating our results back 
into the original OSM data. Section 6 summarizes the 
achievements and gives an outlook on future work. 

2. WORKFLOW 
The overall workflow of our research is shown in Figure 1. 
Basically it consists of two parts. In the first part, buildings and 
city blocks from a training dataset are automatically separated 
into different clusters, based on their geometric and topologic 
characteristics. The results are judged by an expert who assigns 
the clusters to visually meaningful settlement classes. This visual 
inspection process is in the spirit of the discipline of Visual 
Analytics, which aims at integrating humans and machines and 

exploiting their relative benefits in cognition (human) and 
calculation (machine). After the training, in the second part, 
buildings and city blocks of test datasets can be automatically 
assigned to the respective clusters. 

The parts are described in more detail in the following. The 
buildings of the OSM training dataset have to be pre-processed in 
order to create a consistent dataset, especially concerning 
topology. Based on the shape, i.e. the geometry, and the relations, 
i.e. the topology, several characteristic measures are computed for 
each building. The enriched data is then processed by an 
unsupervised classification, which automatically determines 
clusters of buildings that are similar based on the calculated 
measures. Some of the clusters are then grouped together using 
expert knowledge to form similar building types. 

In our approach, we also seek for an interpretation of city blocks, 
which represent aggregations of individual buildings, again based 
on unsupervised clustering. City blocks are geometrically derived 
based on the road lines that enclose the blocks. Road lines refer 
here to any type of transport network, including e.g. motorways 
as well as pedestrian paths. The derived city blocks are used to 
delineate settlement areas and are also enriched by geometric 
measures. In addition, the cluster types of the buildings (from the 
first step) located inside a block are used as additional 
characteristics in the unsupervised classification of the city 
blocks.  

In the test phase, the learned model is subsequently applied to 
another OSM and a cadastral test dataset. The result of the 
clustering are buildings and city blocks with similar visual 
(primarily geometric and topologic) characteristics. As such, they 
do not have a dedicated semantics. In order evaluate the results, 
we compare them to settlement types given in a topographic 
dataset. 

For the presented approach we use Data Mining techniques. The 
term Data Mining refers to the process of discovering interesting, 
implicit, and previously unknown knowledge from large 
databases [13]. We apply a clustering process, in order to group 
objects with similar attributes into clusters, which are dissimilar 
to objects in other clusters. In general, four categories of 
clustering algorithms exist: hierarchical, density-based, grid-
based, and partitioning methods. For our approach we chose a 
partitioning algorithm. The K-Means-Algorithm would indeed be 
the simplest and fastest algorithm but a negative aspect is that the 
number of cluster centers k must be known in advance and the 
algorithm does not yield reliably the best solution. Also the 
results are not the same in each run, because it does depend on a 
great deal on the initial random assignments. There would have 
been many test runs needed to train the classifier for our specific 
task. For this reason we chose the Expectation Maximization 
algorithm (EM), because this algorithm organizes objects into k 
clusters, without a priori information neither on the number of 
clusters nor their composition, so that the total deviation of each 
object from a cluster distribution is minimized. That implies, that 
the EM algorithm yields for each run the same result, however the 
success of the algorithm depends strongly on the assumed 
probability distribution. For more details see [14, 15]. 

For our investigation we specially use the EM algorithm 
implementation of the WEKA Data Mining Software 
(http://www.cs.waikato.ac.nz/ml/weka). 
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Figure 1. Workflow; (B)uildings, (C)ity blocks 

 

3. DATASETS AND DATA ENRICHMENT 
3.1 Datasets and Pre-Processing 
We use datasets of two German cities for automatic interpretation 
of settlement areas. For both cities detailed building outlines and 
detailed road lines are used in the workflow. The dataset for the 
city of Dortmund covers about 38 km² and is taken solely from 
OSM (Figure 2). 

Although the OSM project started with mapping streets, it aims at 
creating a digital world map of everything. Its detail regarding 
transport networks is still one of its strengths. The dataset 
includes information about the complete road hierarchy, ranging 
from motorways to residential streets, cycle ways, and foot paths. 
But OSM also includes other feature types in some areas, such as 
buildings or land use. Detailed building polygons exist e.g. for 
Vienna (Austria), Grenoble (France), Prague (Czech Republic), 
and Cambridge (USA). Such detailed data is based on digitization 
of analogue maps or aerial photographs, donations by local 
authorities, or extensive mapping activities of volunteers. 

As already mentioned in the introduction, OSM data is captured 
mostly by non-experts. Therefore some pre-processing steps are 
necessary in order to gain a consistent dataset. Topological errors 
have to be fixed in the derived output. These errors are common 
to OSM data for two reasons. Firstly, OSM is aimed at creating 
maps, therefore duplicate features and small gaps or overlays of 
buildings do not change the map output significantly. Secondly, 
topology is often not common to non-experts. In the used dataset 

for the city of Dortmund, e.g. about 16% of all buildings do not 
comply to the rule that polygons must not overlap. Therefore all 
topological errors were fixed by using both automatic and manual 
tools. 

The second city we use in our work is Hanover. In contrast to the 
city of Dortmund, the building outlines and road lines for about 
21 km² of Hanover are taken from data captured by the national 
mapping agency. Detailed building outlines are provided by real 
estate cadastral data (ALK), whereas road lines and settlement 
area types are provided by topographic data (ATKIS).  

Unfortunately there are no further detailed attributes given, such 
as height information of the buildings. This information would 
improve the classification e.g. by distinguishing different building 
types with a similar outline, like detached houses from standalone 
high rise buildings.  

In Table 1, the total number of buildings and city blocks for the 
datasets are listed. In order to create a training and test dataset for 
unsupervised classification, OSM data of Dortmund is split into 
two partitions as shown in Figure 2. 

 
Table 1. Number of buildings and city blocks per dataset 

City # Buildings # City blocks 

Dortmund (training partition) 8413 626 

Dortmund (test partition) 10294 651 

Hanover 14520 556 

 

 

Figure 2. Partitions of the city of Dortmund 

3.2 Data Enrichment 
Before starting with the clustering process, several geometric and 
topologic measures have to be determined, that allow grouping of 
features in different classes. We first present the measures for the 
enrichment of buildings (Section 3.2.1) and then for city blocks 
(Section 3.2.2). 



3.2.1 Buildings 
The measures we chose for the enrichment of the building 
features are listed in Table 2. Beside the basic geometric attributes 
of a building like area and perimeter (BuildArea, BuildP), we also 
consider the minimum enclosing rectangle (Mer) with its 
parameters area (MerArea), length (Mer L) and width (Mer W). 

The complexity of a building can be expressed by the ratio of the 
building area to the area of its Mer (BuildMerRa). That is the 
more complex a building is, the lower the ratio becomes. The 
ratio (BuildMerEl) between length and width characterizes the 
elongation of the feature. The rectangularity (BuildRect) is based 
on the assumption that buildings generally have parallel borders 
and right angles. Here, we disregard all vertices of the building 
outline leading to an angle difference smaller than 10° to the 
previous vertex. By this approach errors caused by inaccurate 
digitization are ignored. The measure compactness relative to a 
square (BuildComp) also gives an indication for the shape 
complexity of the building. Furthermore, topological relations to 
neighboring features allow to draw inferences about the building 
type. That is, e.g. a terraced house has at least one but no more 
than two neighbors, whereas a semi-detached house has exactly 
one neighbor (BuildNeigh). To minimize the number of 
neighbors, we exclude building neighbor relations, which meet 
only in one point. If no adjacent neighbor exists, we compute the 
shortest distance to the next building (BuildDist). 

Based on a correlation analysis we identified the measures, that 
are not correlated. In Table 3 the correlation matrix is shown. The 
matrix is symmetric and rows and columns contain the measures 
of Table 2 in the same order. There is a strong correlation (values 
higher than 0.75 marked by gray fields) between BuildArea, 
BuildP, MerArea, Mer L and Mer W. Therefore we only consider 
the bold marked measures in Table 2 for the building clustering 
process. 

Most of these measures are part of a software component, which 
is used for checking the data integrity of spatial datasets. Werder 
[17] gives a detailed overview about spatial constraints, as well as 
their formalization. 

Table 2. Building measures 

Measure Description / Formula Figure 

BuildArea 
BuildP 

Area of the building outline 
Perimeter of the building  

MerArea 
Mer L 
Mer W 

Area of the minimum enclosing 
rectangle (Mer)  
Length (L) and Width (W) of 
Mer  

BuildMerRa 
MerArea

BuildArea
BuildMerRa   

 

BuildMerEl 
WMer

LMer
BuildMerEl   

 
       1.3     4.2 

BuildRect 

Rectangularity of the building 
(threshold 10 °) 

BuildRect

2

2
1

1





n

n

i i 


  

n number of polygon points 
 angle 

 

BuildComp 

Compactness relative to a square 

2

2

4


BuildArea

BuildP
BuildComp   

1         2.2 

BuildNeigh 
Number of neighbors except  
single point contacts 

BuildDist 
Shortest distance between 
neighboring buildings 

 

Table 3. Correlation matrix; high correlated values are marked by gray fields 

BuildArea 1           

BuildP 0.82 1          

MerArea 0.90 0.80 1         

Mer L 0.79 0.95 0.75 1        

Mer W 0.82 0.91 0.78 0.82 1       

BuildMerRa -0.26 -0.53 -0.31 -0.49 -0.56 1      

BuildMerEl 0.10 0.27 0.07 0.46 -0.01 -0.05 1     

BuildRect -0.13 -0.18 -0.11 -0.19 -0.22 0.42 -0.01 1    

BuildComp 0.33 0.73 0.41 0.68 0.53 -0.67 0.46 -0.13 1   

BuildNeigh -0.07 -0.05 -0.07 -0.05 -0.02 -0.08 -0.02 -0.13 -0.03 1  

BuildDist 0.12 0.18 0.10 0.18 0.17 -0.08 0.07 -0.01 0.13 -0.43 1 



3.2.2 City Blocks 
In order to enrich a city block feature we calculate the measures 
listed in Table 4. For this purpose some of the buildings measures 
can be reused, e.g. the area (BlockArea) and compactness 
(BlockComp). Additionally we introduce the spatial relation 
containment by determining the number of buildings lying within 
one city block (BlockNbrBuildGi), though differentiated by the 
grouped building clusters from the first step of the process. Based 
on the mixture of different building types in a city block, the land 
use type can be distinguished. Due to strong varieties during the 
building modeling process, we aggregate adjacent buildings with 
the same type to a single feature (see third row in Table 4). 
Furthermore, the rate of the built-over area is a measure for the 
density in a city block and consequently for the settlement type 
(BlockDensBuildGi). 

 
Table 4. City block measures 

Measure Description / Formula Figure 

BlockArea Area of the city block 

See Table 2. BlockComp 
Compactness relative to 
a square 

BlockNbrBuildGi 

Number of buildings for 
each type Gi within a  
city block (bottom: after 
aggregation) 

 

ToAreaGi 
Total area for each 
building type within a 
city block 

 

BlockDensBuildGi 

BlockArea

ToAreaG

uildGBlockDensB

i

i 
 

 

 

4. EXPERIMENTAL RESULTS 
4.1 Building Classification 
We use a two step approach for building classification. In the first 
step, clusters are automatically determined by an unsupervised 
classification. It is based on the measures presented in the 
previous section. In the second step, clusters are grouped together 
in order to reduce the number of building clusters. This is done by 
visual inspection and is a manual step based on expert knowledge 
about settlement patterns. If buildings from two or more clusters 
dominantly fall into the same settlement pattern, these clusters are 
grouped together to form a single, more homogeneous, cluster. 

4.1.1 Unsupervised Classification 
Using the uncorrelated measures from Section 3.2.1, unsupervised 
classification of the training partition of Dortmund results in ten 
building clusters. The relative distribution of total 8413 buildings 
among these clusters (C1 ... C10) is shown in Figure 3. 

 

Figure 3. Relative distribution of buildings among clusters 
[%] 

 
Due to clarity reasons, the individual values for the defined 
building measures of each of the ten clusters are not listed. 
Instead, the minimum and maximum values calculated over all 
clusters are shown in Table 5. The table also includes the 
minimum and maximum standard deviations. 

 
Table 5. Min. and max. values for building measures 

Measure Minimum Maximum 

mean std.dev. mean std.dev. 

BuildArea 94.17 57.64 4305.50 6112.34 

BuildMerRa 0.44 0.00 1.00 0.14 

BuildMerEl 1.36 0.27 3.47 2.56 

BuildRect 0.75 0.00 1.00 0.22 

BuildComp 1.04 0.04 3.89 1.76 

BuildNeigh 0.01 0.11 2.65 1.58 

BuildDist 0.00 0.01 21.75 77.83 
 

The partly high standard deviations, as well as the differences 
between minimum and maximum values, can be traced back to 
the variety of building geometries in the training dataset. It ranges 
from small, strictly rectangular building geometries in plot 
gardens to large and geometrically complex industrial buildings. 

4.1.2 Visual Inspection and Grouping 
Although the unsupervised classification in exactly ten clusters is 
statistically sound, neighboring buildings of roughly the same 
shape may fall into different clusters. As shown in Figure 4, the 
individual buildings forming a building block are assigned to 
different clusters. Nevertheless, from a semantic viewpoint, the 
small deviations in the shape of buildings in a single row of the 
block are negligible. 

From the perspective of interpretation of settlement areas, these 
buildings share the same settlement type, namely block structure. 
Therefore it is reasonable to group the building clusters, in this 
case C4, C5, and C6, into a single cluster G2. This process is 
guided by expert knowledge as well as by comparing the values 
of the defined building measures. In order to illustrate this 
decision, the calculated measures for this largest building group 
G2 are summarized in Table 6. The measures that characterize 



this group are BuildArea, BuildNeigh, and BuildDist. As can be 
also seen in Figure 4, clusters C4 and C5 cover smaller buildings, 
whereas C6 covers slightly larger buildings. Buildings of this 
group have a mean number of neighbors that is between one and 
three, which is also reflected in the value for the measure 
BuildDist. The values of all other measures differ between the 
three clusters, e.g. buildings in C6 are often elongated, whereas 
buildings in C4 and C5 correspond more to the form of a square. 

 

Figure 4. Block structure 

Table 6. Grouping of clusters C4, C5, and C6 to G2 

Measure 

  

Cluster 

C4 C5 C6 

BuildArea mean 189.86 122.69 590.53 

std.dev. 106.95 57.64 477.47 

BuildMerRa mean 0.83 0.99 0.93 

std.dev. 0.09 0.02 0.06 

BuildMerEl mean 1.42 1.36 3.18 

std.dev. 0.37 0.27 1.27 

BuildRect mean 0.79 0.99 0.97 

std.dev. 0.09 0.01 0.04 

BuildComp mean 1.16 1.04 1.5 

std.dev. 0.16 0.04 0.32 

BuildNeigh mean 1.89 1.46 2.65 

std.dev. 0.69 0.75 1.44 

BuildDist mean 0.01 0.29 0.00 

std.dev. 0.09 1.05 0.01 
 

In this way, starting with ten clusters from unsupervised 
classification, these are grouped into a total of five clusters being 
more closely related to settlement types. The following 
descriptions for the grouped clusters cover the majority of the 
buildings, however also individual buildings fall into these 
groups, that differ from the group characteristics. The grouped 
cluster G1 (C1, C2, C3) includes smaller, standalone, and 
rectangular buildings. G2 (C4, C5, C6) combines homogenous 
building blocks or rows. G3 actually corresponds to the single 
building cluster C7, because this cluster is already homogeneous. 
Its buildings are in most cases large and complex, i.e. having a 

small value for the BuildRect measure. The grouped cluster G4 
(C8, C9) consists of buildings that mainly have the shape of the 
letters I, L, T, or U. It includes buildings with a wide range of 
area sizes, starting from single family detached houses to large 
buildings. The last building group, G5, corresponds to C10 and is 
characterized by maximum values for the measures BuildComp 
and BuildMerRa, which are based on the complexity of buildings 
in this cluster. In Figure 5 exemplary buildings are shown for 
each of the grouped clusters. 

 

Figure 5. Building examples for grouped clusters 

 

4.2 City Block Classification 
City blocks are classified based on two measure types. The first 
measure type describes the shape of the block and includes area 
and compactness. The second measure type is based on the 
building classification from Section 4.1. Both the number of 
aggregated buildings as well as their occupancy of the city block 
are used as input for the classification. By this approach, the 
classification result is transferred from individual aggregated 
buildings to the enclosing city blocks, which represent a coverage. 
Therefore, this step can also be seen as a generalization to a 
smaller map scale.  

Unsupervised classification of the city blocks, using the 
previously presented measures, reveals six clusters. For the 
626 city blocks of the training area the relative distribution into 
these clusters is shown in Figure 6. The values for the other 
datasets are discussed in detail in Section 4.3. 

 

Figure 6. City block clusters for all datasets [%] 



In contrast to the two step approach of building clustering and 
cluster grouping, the automatically determined city block clusters 
show already distinctive characteristics, thus no subsequent 
grouping step is needed. The values of the three important 
measures BlockArea, BlockComp, and the summarized 
BlockDensBuild for all building clusters, are shown in Figure 7. 
All values are normalized to [0,1] based on minimum and 
maximum value for a measure among all clusters, e.g. BlockComp 
has a minimum value of 1.29 (C1) and a maximum value of 2.45 
(C2). 

 

Figure 7. Selected measures for city block clusters [%] 

 
City block cluster C1 is characterized by minimum values for the 
measures BlockArea and BlockComp. From the 29% summarized 
building density over all grouped clusters, about 25% is solely 
contributed by building group G2, which represents building 
block structure. BlockComp has the minimum value of 1.29, 
leading to compact polygons for the city blocks. Therefore C1 can 
be labeled as block structure, which may be closed but also 
consist of building rows. 

Cluster C2 has the maximum values for both BlockArea and 
BlockComp. It also has a low value for the building density. 
However, the total density of 17% is distributed between all 
building groups leading to an heterogeneous building structure 
inside the city block. 

An open structure is also characteristic for cluster C3. It is made 
up of a combination of building clusters G1 and G4, which 
include smaller and standalone as well as letter-shaped buildings. 

The value of 29% for the overall building density of cluster C4 
can be traced back to about 24% solely from building group G3. 
This group combines both complex and large buildings. 

City block cluster C5 is dominated by buildings in block structure 
(G2), that can be also found in C1. In contrast, the block structure 
shows more gaps between individual buildings and also has in 
most cases a regular structure. 

For the overall building density of 29% for cluster C6, building 
group G5 contributes about 23%. Having maximum values for 
BuildComp and BuildMerRa, C6 is made up of complex shaped 
buildings. In contrast, the measure BlockComp for the city block 
cluster has a rather low value. Therefore C6 can be characterized 
as non-compact buildings in compact city blocks. 

Figure 8 presents a part of the training data showing both building 
groups and city block clusters. 

 

Figure 8. Area from training dataset with building groups  
(G1 ... G5) and city block clusters (C1 ... C6) 

 

4.3 Evaluation of Clustering Results 
In the approach, several configurations with different geometric 
and topologic measures have been tested. The result presented in 
this paper reflects the solution after an appropriate filtering of 
correlated measures. However, it was possible to extract and 
combine clusters that geometrically and visually correspond to 
different building and city block types also for configurations 
having correlated or insignificant measures. 

As most important part of the evaluation, the transferability of the 
obtained clusters from training to test data was investigated. 
Firstly, the results were applied to training data of the same city 
and same data provider, namely the OSM project. Secondly, they 
were applied to data of a different city from a different data 
provider, namely data obtained from cadastre and topography. 

In Figure 9 the distribution of the five grouped building clusters is 
shown for each scenario. Using the model from the training 
dataset for clustering test datasets reveals their individual 
characteristics but also differences to the training dataset. 

The OSM test dataset of the city of Dortmund reflects the actual 
settlement area types pretty well. East of the city center, the 
dominance of building blocks (G2) is partly exchanged for single 
family detached houses (G1). Also more large buildings, 



representing industrial sites (G3), are located in the test dataset. 
Finally, covering more the geometric aspect of building outlines, 
building group G4 brings in additional letter-shaped buildings in 
the Dortmund test dataset. 

The second test dataset, cadastral data of the city of Hanover, 
proves the transferability of the derived clusters also to a more 
dense city center area. Little standalone buildings exist in the 
dataset (G1). Instead, the settlement structure is clearly dominated 
by building group G2, representing homogeneous block or row 
structure, as the value of 77% indicates in Figure 9. 

 

 

Figure 9. Building groups for all datasets [%] 

 
These changes in settlement types are also reflected in the 
distribution of the city blocks for the test dataset, which can be 
seen in Figure 6. 

For the OSM test dataset the differences are most significant for 
city block clusters C3 and C5. Blocks with smaller and standalone 
buildings (C3) decreased by 6%, whereas open block structures 
(C5) increased by 10%. This is due to the fact that, upon visual 
inspection, the test area covers more suburbs with multifamily 
houses instead of single family houses. 

The high density of buildings in the cadastral dataset is also 
reflected in the distribution of its city blocks, as can be seen in 
Figure 6. Block structures, mainly summed up in city block 
clusters C1 and C5, dominate the visual perception of the city 
center area. This in turn reduces drastically the number of blocks 
with an open structure amalgamated in class C3, which drops 
from 21% for the training dataset to only 3% in the cadastral test 
dataset. 

The evaluation of the transferability of both building and city 
block clusters to training datasets performed well. As the 
identified clusters cover settlement characteristics from dense city 
centers to the open structure of suburbs, they are also likely 
transferable to other settlement areas. 

5. COMPARISON WITH KNOWN 
SEMANTIC CLASSES 
Up to know, clusters have been derived, which are visually 
plausible, but do not have a clear semantics attached to it. In the 
following, these clusters are linked and compared to existing 
semantic classes using two different data sources. 

5.1 OpenStreetMap Road Lines 
The road network in OSM data is modeled in high detail. The 
map object catalogue [16] lists more than 25 values for the tag 
"highway". Because the city blocks we use in our approach are 
directly derived from the OSM road network, we are able to 
compare the cluster of a city block with the type of roads that 
enclose the block. 

We group the road types from OSM into the following five 
categories: Highway (Motorway, Primary, Trunk), DistrictRoad 
(Secondary, Tertiary, Road, Unclassified), Residential (Living 
street, Residential), Service and Pedestrian (Footway, Path, 
Pedestrian, Steps, Track, Cycle way). For the comparison, we 
summarize the line lengths of all roads enclosing the city blocks 
and normalize the results to [0,1] by dividing the obtained value 
through the sum of all city block perimeters. The resulting 
statistic is shown in Table 7. 

 
Table 7. City block clusters to OSM road lines [%] 

Road type City Block Cluster 

C1 C2 C3 C4 C5 C6 

Highway 2 2 0 4 1 2 

DistrictRoad 12 20 6 16 10 12 

Residential 64 28 22 15 56 47 

Service 4 7 7 20 6 13 

Pedestrian 17 21 50 22 20 22 

 

The semantic of the road types can then be compared to the city 
blocks they enclose. Cluster C1 and C5 are dominated by 
Residential roads, which indicate residential settlement areas. 
Both clusters are characterized by a block structure, either closed 
or in row, as shown in Figure 8. This actually shows a high 
conformance to the structure of residential areas in German city 
centers. 

City block clusters C2 and C4 do not have clear dominant road 
types. This complies to the already described fact, that C2 
describes a heterogeneous building structure. C4 is composed of 
large and complex buildings. When inspected visually, these two 
clusters include both residential and industrial areas. Especially 
cluster C4 covers mainly industrial sites, which is also confirmed 
by high values for the road types Highway and Service. 

Pedestrian areas make up more than half of the road types of city 
block cluster C3. When compared to the OSM data, mainly plot 
gardens fall into this cluster, which shows a fairly good separation 
of this settlement area type. 

From the values of the road types for cluster C6, it can be also 
characterized as mainly residential. However, this cluster cannot 
be clearly assigned to a single settlement area type, because it is 
solely defined by the compactness of both city block and building 
polygons. 

At this point, we also want to answer the question of how to 
integrate our results back into OSM in order to improve and 
enrich the data. The most obvious way is to use the calculated 
measures from Section 3.2 to detect geometric and topologic 



errors or outliers, e.g. buildings having an area smaller than 10m² 
or a distance to neighboring buildings smaller than 1m. For the 
semantic enrichment, the cluster type can be introduced to the 
OSM map object catalogue [16] as a new tag for buildings or 
instead of the "yes" value for the tag "building". As city blocks 
are not yet considered in the map object catalogue, they can be 
added to the schema as a new polygon type with respective 
attribute-value pairs. However, for each change in the enclosing 
road lines also the update of the respective city blocks has to be 
triggered automatically. 

5.2 ATKIS Settlement Areas 
For the comparison of the derived city block classification of 
Section 4.2 with the settlement types of ATKIS we first present 
the existing settlement types along with short textual object 
catalogue descriptions. In order to avoid the complete 
presentation of all available object classes [18], we only consider 
the following five main classes: 

1) Residential Area: Area with buildings, predominantly or 
solely used for residential purposes. Besides these residential 
buildings also shops to supply this area, non-disturbing craft 
producers, facilities for religious, cultural, social and sanitary 
purposes are permitted. 

2) Industrial Area: Area with buildings, predominantly or solely 
used for industrial or craft producing purposes. This includes, 
e.g. shopping malls, warehouses/depots, large-scale 
commercial farms, processing and disposal plants and trade 
fair facilities. 

3) Mixed Area: Area with buildings without a typical purpose. 
This includes especially areas with a rural character, e.g. 
agricultural or forestry companies, residential buildings and 
central areas in a city with commercial buildings and vital 
economic and administrative facilities. 

4) Area of Special Usage: Area with buildings of certain 
purposes. This includes purposes of administration, health and 
social affairs, education, research, culture, safety and order, 
vacation or weekend homes and national defense.  

5) Green Area: Area with green spaces and sport grounds. 

These class descriptions are very detailed, but in our opinion this 
strict distinction cannot be determined solely from visual 
characteristics, e.g. the dominant functional usage of a settlement 
area cannot be solely seen from an aerial image. For this reason 
we expect that our derived city block classification differs from 
the semantics used in the ATKIS object catalogue.  

For the evaluation we calculated the intersection between both 
classifications. In Figure 10 the distribution of the settlement 
areas of ATKIS in the city block clusters of our approach is 
shown. 

By analyzing these values we first reveal that the class Mixed 
Area has the largest proportion in four of the six city block 
clusters. One reason could be, like the name implies, that the 
settlement type comprises a large variety of buildings and 
therefore a clear assignment to one specific cluster is not possible. 
Furthermore, it is obvious that Residential Area and Mixed Area 
predominantly occur together in the same range in city block 
cluster C1 and C5. In addition, C5 is dominated by Areas of 
Special Usage, noting that the settlement type has the highest 
ratio related to the overall area of the clusters. However, that 

confirms our assumption, that both clusters C1 and C5 represent 
residential areas, and therefore semantic similarities between the 
different class definitions exist. 

Green Areas are also present in each city block cluster, e.g. parks 
for recreation purposes located in each residential area. In cluster 
C2 all ATKIS settlement types are present at a similar level, 
backing our interpretation of a very heterogeneous building 
structure in this cluster. Furthermore, the ratio of the industrial 
areas related to the overall size of this cluster (16%) is higher 
compared to the other five clusters.  

In conclusion, we observe, that the derived semantic annotations 
for our city block clusters fit more to the OSM data (Section 5.1) 
than to the ATKIS settlement areas (Section 5.2).  This result can 
be explained by the classification of the OSM road line data, 
finally forming our city blocks, that is more detailed and strongly 
influenced by the visual characteristics and structure of the 
individual buildings. For example for volunteers it is easier to 
recognize road lines which are only used by pedestrians or road 
lines in a residential area. Thus our building blocks form a 
settlement characteristics; in contrast, ATKIS more refers to a 
general land use characteristics, which also includes functional 
parameters not visible in geometric structures (like area of special 
usage). 

 

 

Figure 10. Area distribution of ATKIS settlement types into 
the derived city block clusters [km²] 

 

6. CONCLUSION AND OUTLOOK 
The volunteered geographic information of the OpenStreetMap 
project offer a large amount of data, but the data may be 
incomplete or unequally distributed and therefore cannot replace 
systematically acquired official data, especially if a consistent 
coverage is required. Semantic annotation of this data, however, 
makes it more valuable and also more usable for different 
purposes. Examples are data integration, data analysis and map 
generalization. 

We have presented an approach for deriving semantic annotations 
for building and city block features based on the analyses of 
geometric and topologic characteristics. The advantage of the 
approach is that it is based on an unsupervised method, which 
avoid the often times-consuming and difficult generation of 
appropriate training data. Our results are visually convincing and 



provide additional information, which can be exploited in various 
ways, especially for applications where the individual 
classification is not of highest relevance and a more general 
summative information is needed. One such application is the 
determination of a settlement typology which can be used for 
spatial disaggregation of statistical parameters regarding 
population, housing, economics and infrastructure. Examples for 
its usage are a better estimation of the spatial distribution of 
inhabitants over an area or the demand for infrastructure (e.g. 
heating [19]), or better monitoring of settlement and open space 
development [10]. The information about building structures can 
be used for cartographic generalization and visualization. 

There are several issues that give rise to further research. On the 
one hand, additional measures could be determined, e.g. the 
maximum width of a building or shape complexity based on 
Fourier analysis. Also, an Bayesian interpretation scheme as 
proposed by Lüscher et al. [9] could be beneficial, as it also takes 
the probabilities of the characteristics into account and thus is 
able to model uncertainties and also interdependencies.  
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