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ABSTRACT:

Collisions and safety are important concepts when dealing with urban designs like shared spaces. As pedestrians (especially the
elderly and disabled people) are more vulnerable to accidents, realising an intelligent mobility aid to avoid collisions is a direction
of research that could improve safety using a wearable device. Also, with the improvements in technologies for visualisation and
their capabilities to render 3D virtual content, AR devices could be used to realise virtual infrastructure and virtual traffic systems.
Such devices (e.g., Hololens) scan the environment using stereo and ToF (Time-of-Flight) sensors, which in principle can be used
to detect surrounding objects, including dynamic agents such as pedestrians. This can be used as basis to predict collisions. To
envision an AR device as a safety aid and demonstrate its 3D object detection capability (in particular: pedestrian detection), we
propose an improvement to the 3D object detection framework Frustum Pointnet with human pose and apply it on the data from an
AR device. Using the data from such a device in an indoor setting, we conducted a comparative study to investigate how high level
2D human pose features in our approach could help to improve the detection performance of orientated 3D pedestrian instances
over Frustum Pointnet.

1. INTRODUCTION

Pedestrian friendly urban designs like walkable cities and shared
spaces have recently gained a lot of attention. While the former
has focused more on pedestrian needs in urban and suburban
environments necessitating a pedestrian network as a criterion
for its successful design, the latter has emphasized more on pro-
moting walking by mixing different traffic modes (cars, cyc-
lists, and pedestrians) (Hamilton-Baillie, 2008) with no or re-
duced infrastructure. In either of these spaces, collisions are a
potential safety threat considering pedestrian-pedestrian inter-
actions (conflicts via congestion in pedestrian network (Wang et
al., 2016)) or when interactions with different road users (e.g.,
pedestrian-car collision).

The basic idea of shared spaces is to mix traffic participants to
create unclear situations to promote lower vehicle speed pro-
moting walkability; however, the elderly and disabled feel less
safe as they are expected to be more cautious. The inability
to anticipate an upcoming danger due to reduced cognition or
a confusion over priority while crossing paths could result in
collisions that is life-threatening. Therefore, possible wearable
conflict detection systems (e.g., intelligent mobility aids) need
to be explored to enhance safety for these vulnerable road users
(VRU). Conflict in this scope of work is inspired from (Javid
and Seneviratne, 1991). It is defined as a traffic event involving
one or more pedestrians and one or more vehicles, where both
perform actions, such as applying changes in direction or speed,
to avoid a collision.

Augmented Reality (AR) devices use perception sensors for
spatial mapping to place virtual 3D content aligned with the
real world space. They use RGBD sensors and can acquire
both RGB images and depth information in raw format. Cur-
rently such sensors are also used for 3D pedestrian detection, a
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fundamental component for follow-up motion prediction and
collision detection in autonomous driving. Using the sensor
capabilities of an AR device, if we can realise a collision de-
tection system where nearby pedestrian are detected and their
future motion are predicted; these head mounted headsets can
serve as safety aids and further the research along using 3D aug-
mentation. This can be used for realising virtual traffic lights to
follow rules (Kamalasanan and Sester, 2020) and hence traffic
behaviour in shared spaces.

However, current research in 3D pedestrian detection is mainly
applied to autonomous driving and robotics and there are fewer
studies of data from wearable devices that serve pedestrians
safety. As a first step in the direction of realising a wearable
safety detection system using an AR device, we did experiments
in an indoor environment with pedestrian motion, and collected
data from these wearable sensors.

In our work we emphasize that using extra orientation inform-
ation could improve 3D detection and propose to refine the 3D
orientation of people by including 2D human pose. Using the
device sensors and improved feature representation via our pro-
posed Pedestrian Pose enhanced Frustum PointNets architec-
ture (PPEF-PointNets), we realise a 3D pedestrian detection
system. Finally, we perform extensive experiments and show
that our approach achieves better results than F-PointNets for
pedestrian detection.

2. RELATED WORK

This section briefly introduces the basic idea of mobility aids
and reviews recent work on 3D object detection using RGBD
data. In addition, the literature related to the fusion of human
pose information is summarized.



Figure 1. The whole proposed pedestrian pose based fusion approach incorporating the 2D pose features into the F-PointNets.

2.1 Intelligent mobility aids

Intelligent mobility aids for the elderly represent a class of as-
sistive devices that attempt to augment the user’s current abilit-
ies instead of replacing them and are supported by an array of
sensors for environmental perception. While a larger propor-
tion of research has focused on the white cane and wheelchair,
recent works have focused along wearable systems capable of
dynamically detecting obstacles (Poggi et al., 2015), with em-
phasis on real-time performance along with environmental per-
ception features (e.g., crosswalk detection). Inspired from so-
cial robots, some other works have taken into account the con-
text (Ito and Kamata, 2013) while predicting conflicts in pedes-
trians environment but are limited to a wheelchair approach and
lack the 3D perception system. Many of these systems use aud-
itory or haptic feedback to warn collisions and lack any visual
interfaces.

2.2 3D pedestrian detection using RGBD Data

Based on RGBD data, (Kollmitz et al., 2019) extended a Faster
R-CNN model (Ren et al., 2015) to regress the 3D centroids
of pedestrians. Meanwhile, (Linder et al., 2020) extended the
YOLO v3 model (Farhadi and Redmon, 2018) to regress the
3D centroids. In addition to the regression of 3D centroids,
Explanable YOLO (Takahashi et al., 2020) used the 4-channel
RGBD data directly as input to regress the 3D bounding box
of pedestrians using Darknet-53 (i.e., the backbone network
used in YOLOv3). When considering indoor depth images with
dense pixels values, an image-based CNN approach could be
considered. This is not the case when dealing with lower resol-
ution depth images (e.g., from wearable devices). The above-
mentioned method focuses mainly on the positions and dimen-
sions of the 3D pedestrians and does not take into account their
orientation. However, for the collision detection systems, the
orientations of the detected pedestrians play an important role -
especially for predicting the movement trajectory.

The orientation of 3D objects can be represented in three ways:
(1) treat the orientation estimation as a multi-class classification
task by discretizing the orientations into bins (Ozuysal et al.,
2009, Ghodrati et al., 2014), (2) apply direct regression (Geiger
et al., 2012), and (3) in more recent years, combine both by first
classifying orientation into bins and then regress the residual of
orientation within a bin for refinement (e.g., F-PointNets (Qi et
al., 2018)).

Frustum Pointnets (F-PointNets) (Qi et al., 2018) is a seminal
work which extracts features directly from point cloud data. It
first detects objects in 2D images and then extracts the fore-
ground points using Pointnets (Qi et al., 2017). These fore-
ground points are used to estimate the 3D bounding boxes. This
method was applied to the JRDB dataset collected from a social
robot (Shenoi et al., 2020). Multiple variations of F-PointNets
have been proposed to improve the performance of 3D object
detection. Frustum ConvNet (F-ConvNet) (Wang and Jia, 2019)
is an end-to-end network, which first generates a sequence of
frustums by sliding along the frustum axis with certain interval.
Then, it encodes each slice of the frustum with Pointnets and
encodes the sequence using a fully convolution network (FCN).
A high dimensional convolution operator capturing local fea-
tures enhanced with color and temporal information was pro-
posed in (Wang et al., 2020). The work uses an early fusion
approach directly on raw data from LiDAR, Camera and Radar
and uses a 7D frustum representation which includes the color
and precise time of the sequence. A plugin framework is de-
signed to extract radar point cloud features efficiently. This ar-
chitecture efficiently estimates the 3D bonding box along with
a predicted velocity along the x and y axis.

2.3 Fusion of human pose information

Human pose estimation on 2D images are nowadays a well-
developed research area. Many existing software can help re-
searchers to easily estimate human body keypoints and gener-
ate skeletons of the people, e.g., OpenPose (Cao et al., 2019),
AlphaPose (Xiu et al., 2018). Merely estimating is often not
enough, hence it becomes important to make further use of this
information. One of the most common application scenarios
is action recognition. Handcrafted features are most frequently
used. (Li et al., 2020) utilized such high level features to clas-
sify pedestrian motion state (i.e., walking and standing). Dif-
ferent features have been considered, e.g., positions of body
keypoints reduced to neck location as origin and then normal-
ized by the bounding box’s height. In recent years, the skelet-
ons were also encoded using Recurrent Neural Network (RNN),
Convolutional Neural Network (CNN), or Graph Convolutional
Network (GCN) for action recognition (Ren et al., 2020). Fur-
thermore, such high level features have also been used for wa-
ter level estimation when people are submerged in flood water,
e.g., positions of body points (Bischke et al., 2019) and distance
between certain keypoints (Feng et al., 2020).

In addition to the applications above, human pose can also be



used as a clue to better estimate the orientation of the pedestri-
ans. Pedestrians in different orientations show a different ap-
pearance. However, this information is rarely considered in the
current research.

Accurate calibration between image and 3D information is im-
portant to fuse semantic information from images as in (Vora et
al., 2020). When dealing with a loosely calibrated commercial-
grade devices (e.g., a wearable) it would be advantages to con-
sider higher level image feature information . In this work, we
propose to introduce the 2D pose information to the 3D pedes-
trian detection task. This is also a very early investigation on
the data collected from wearable devices. The data from such
device deserve special treatment because of their typically low
sampling rates and weak computing power.

3. DATA

Augmented Reality (AR) devices which can render 3D content
in the real world are capable of sensing the surrounding envir-
onment. In this research, the Hololens 2 is used as a data cap-
ture device by exploiting its raw sensor streams. The wearable
mixed reality device (Figure 2) offers 2D and 3D data describ-
ing its surrounding environment, which have been made avail-
able with the release of the Research Mode API (Ungureanu et
al., 2020).

The far-depth sensor, which runs at lower frames of 1 to 5
fps, can be used to create 3D maps. The RGB streams from
the Hololens PV (PhotoVideo) camera, along with the above-
mentioned depth sensor streams, can be captured, stored, and
downloaded to create RGBD datasets. This has been used to
create ego pedestrian detection dataset.

Figure 2. The Hololens 2 research mode sensors including RGB
and far-depth cameras (Ungureanu et al., 2020)

3.1 The Simulated Shared Space (SSS) Dataset

An indoor experiment was conducted with a stationary Hololens
user watching an open space with social interactions and pedes-
trian motion. In the experiment, the device captured the RGBD
data of the scene. The scene recording included pedestrian en-
counter, dispersal, and random walk in the space of dimensions
7m x 7m.

The dataset hereby called the Simulated Shared Space dataset
(SSS Dataset) records the ego view of a pedestrian wearing the
sensing aid. We hypothesize that this dataset is suitable for ped-
estrian detection research for wearable mobility aids. The com-
plete dataset includes 430 pedestrian frames, with each frame
containing a maximum of three pedestrians. The pedestrians
perform arbitrary movements and interactions in all directions

within the Field of View (FoV) of the device during the experi-
ment.

For a given RGB and its corresponding depth image, using
the known calibration between the sensors, RGB information
can be projected to the depth information and vice versa, ex-
ploiting the multi-sensor information for multimodal detection-
based approaches.

Figure 3. The RGB (left) and depth (right) data captured by ego
pedestrian in the interaction space.

3.2 Annotation

The captured dataset was annotated using a semi-automated an-
notation procedure. As the 2D person detection in images is a
well-studied problem, we used the well-known person detec-
tion, YOLO (Farhadi and Redmon, 2018), as they perform well
in most cases. To obtain the 3D bounding box, region growing
on the projected depth points of 2D image detection followed by
box estimation was used to create ground truth automatically.
This step was followed by a 3D orientation and manual error
correction of pedestrians using LabelCloud (Sager et al., 2021).
A total of 855 pedestrian instances (3D bounding boxes) were
annotated using the above mentioned procedure with the pedes-
trian orientation distribution shown in Figure 4 for the complete
dataset. Orientation 0 indicates that people are walking from
left to right from the Hololens perspective (Figure 3).

Figure 4. Orientation distribution for SSS dataset distributed into
18 bins with a bin size 20°.

4. PEDESTRIAN POSE ENHANCED FRUSTUM
POINTNETS (PPEF-POINTNETS)

Given a dataset from a body worn sensor system, the aim of our
work is to output 3D bounding boxes and detect people in the
RGBD frames. Our framework (Figure 1) aims at improving
the 3D pedestrian detection pipeline F-PointNets by including
2D human pose as additional features.



4.1 2D Pose and Hand Crafted Features

Pedestrians with different orientations will be projected as dif-
ferent shapes on a 2D image. This difference can provide ad-
ditional clues to estimate the orientation of a pedestrian. Al-
though this information is implicitly encoded in the local deep
feature of the detected 2d pedestrians, it is not sensitive to small
orientation changes. In order to explicitly encode and utilize
this information, we use 2D human pose estimation and incor-
porate this information into the learning process.

OpenPose (Cao et al., 2019) for example, is a state-of-the-art
2D pose detection framework that can identify 25 landmark
points(keypoints) of the human pose skeleton using the body-
251 model. Once the 2D keypoints of different body parts are
extracted with the framework, small variations of pixel distances
between keypoints can well represent significant 3D pose in-
formation.

Even when the model detects 25 landmark points of the human
body, not every keypoint can contribute to 3D pedestrian de-
tection. For example, facial keypoints would be less accurately
detected at a distance.

Hence in our work we focus along a few dominant keypoints
(Figure 5) including: the shoulder (keypoint 2, 5), hip (key-
point 9, 12), knee (keypoint 10, 13), ankle (keypoint 11, 14),
elbow (keypoint 3, 6), wrist (keypoint 4, 7) and neck (keypoint
1). We ignore the keypoints of the face because the distances
between the keypoints are relatively short and demonstrate only
little information for orientation estimation.

For the above-mentioned dominant keypoints and with an iter-
ative feature selection and representation, we hypothesize that
handcrafted pose features Fpose could improve the feature rep-
resentation of pedestrians in the F-PointNets (Qi et al., 2018)
framework. As pedestrians would appear in different distances
from the camera when captured from an image source, these
handcrafted features should be less sensitive to scale changes.
A scale factor (SF) is introduced as a solution to this problem
in our framework. SF is the distance between the shoulder and
hip joints, which is used for feature normalisation:

SF = |Jointhip − Jointshoulder| (1)

We have developed the following feature representations to be
combined with the deep features from F-PointNet:

Distance Ratio (DR) : From the given set of 13 keypoint fea-
tures 2D pose features, the euclidean distance between the shoulder
joints and hip joints were calculated.

SN =
|Keypoint(5) −Keypoint(2)|

SF
(2)

HN =
|Keypoint(12) −Keypoint(9)|

SF
(3)

Both distances were normalized with the scale factor SF as in
Equation (1). They were then applied to the network as pose
features Fpose.

1 https://github.com/CMU-Perceptual-Computing-Lab/openpose

Fpose = {SN , HN}

Optimised Distance Ratio (ODR) : The distance ratios calcu-
lated in the previous step are mostly values in the range between
0 and 1 for standing pedestrians. Smaller values correspond to
people facing the camera sideways, larger values correspond to
people facing the camera frontally or from behind. Very small
differences in pedestrian orientations can not be well represen-
ted by simply calculating these distance ratios. Therefore we
applied a negative log transformation to these ratios to exagger-
ate the small orientation differences to better encode the orient-
ation information.

Fpose = {−log(SN ),−log(HN )}

Optimised Distance with Keypoint Position and Distances
(ODPD) : Inspired from the recent works in applying high-level
2D pose features (Li et al., 2020), along with the Optimised
Distance Ratio, we include the normalised position and distance
for all other joints, as depicted in Figure 5.

For the normalised position (Np), as in (Li et al., 2020), the
coordinates are first translated to a coordinate system with the
neck as the origin. The position of the keypoints of the arms
(2-7) and legs (9-14) are normalised with the SF.

Normalised distance (Nd) computes the Euclidean distance of
the keypoints on the arms and legs. For the legs, four distance
features would include the distance between left hip and left
knee, left knee and left ankle, and the same for the right legs.
While for the arms, the four features include distances between
the left elbow and left shoulder, left elbow and left wrist, and
corresponding features from the right arm. In total, 8 features
would be normalised by the SF.

Fpose = {−log(SN ),−log(HN ), Np, Nd}

4.2 Proposed PPEF-PointNets Pipeline

The handcrafted features Fpose, are introduced into the frame-
work F-PointNets (Qi et al., 2018) by adding an off-the-shelf
2D pose detector and feature selection to the existing pipeline
when detecting pedestrians. In this section, we explain our
PPEF-PointNets and how we fuse the additional 2D pose to it.

A raw point cloud is obtained from RGBD scans using calib-
ration data and depth re-projection. The raw point cloud and
RGB images are inputs to the network.

Firstly, 2D pedestrians are detected in the RGB images using
deep learning based 2D detections (e.g., YOLO). The 2D bound-
ing box in RGB images is geometrically extruded to extract the
corresponding frustum point cloud containing points from the
point cloud that lie inside the 2D box when projected into the
image plane, following the steps for frustum proposal genera-
tion as in F-PointNets.

Secondly, the RGB images are also passed to the pose detector
followed by the handcrafted feature extraction Fpose as described
in the previous section.



Methods AP0.3 AP0.5 AP0.7 AOS
Baseline F-PointNets 0.8910 0.4957 0.0108 0.6596
PPEF-PointNets (Distance Ratio) 0.8770 0.5004 0.0303 0.5878
PPEF-PointNets (Optimized Distance Ratio) 0.8688 0.6470 0.0660 0.7477
PPEF-PointNets (Optimised Distance Ratio with Keypoint Position and Distances) 0.8093 0.6358 0.0587 0.6599

Table 1. PPEF-PointNets with alternative feature selection using high level pose information

Figure 5. Pedestrian poses as detected by OpenPose (Cao et al.,
2019) with the dominant keypoint features considered in our

work

Thirdly, the instance segmentation module as proposed in F-
PointNets applies PointNets (Qi et al., 2017) to all points con-
tained inside the entire proposed frustum to extract features. As
the features pass from the segmentation module to the amodal
box estimation modules, points are transformed from the cam-
era coordinate system to the local object coordinate system.

Figure 6. Bounding box estimation module with pose fusion

The 3D amodal bounding box estimation module uses these ex-
tracted point features along with the Fpose and applies a T-Net
(Figure 6) to infer the coordinates of the 3D bounding box of
the object. The loss functions used in the network are the same
as proposed in F-PointNets.

5. EXPERIMENTS

With the proposed method in Section 4, we experimented with
the different strategies of pose fusion in PPEF-PointNets with
our SSS dataset collected with wearable sensors.

For the experimental evaluation, we have used state-of-the-art

pre-trained models. While image detection using YOLOv3 pre-
trained on COCO was used to detect pedestrians in the frustum
proposal step, OpenPose was used to extract poses from the
SSS Dataset. As the pose estimation with this multidetector
works by detecting poses for multiple pedestrians occupying a
single frame in one shot, a post-processing step was included to
map the 2D bounding box detections to their corresponding 2D
poses. With the detected poses, the handcrafted features Dis-
tance Ratio,Optimised Distance Ratio and Optimised Distance
with Keypoint Position and Distances were computed. Hence
each pedestrian for an RGB image in the SSS Dataset is char-
acterised by a 2D bounding box and hand crafted features from
the pose.

To test our network, we train our PPEF-PointNets with the three
different feature sets as introduced in Section 4.1. We train for
150 epochs with a batch size of 32 and a learning rate of 0.001.
The training was completed on a Nvidia 1080Ti GPU machine
with the dataset randomly split into training (80%) and test sets
(20%).

For comparison, we trained a F-PointNets v1 model with the
SSS Dataset. This model served as the baseline for the follow-
up comparison. The performance of the network was measured
with the AP and AOS as used in the KITTI benchmark (Gei-
ger et al., 2012) to indicate whether the pose feature fusion was
beneficial for pedestrian 3D object detection. AP is the Av-
erage Precision often used for evaluating object detectors and
AOS is the Average Orientation Similarity proposed in KITTI
for evaluating 3D orientations. The quantitative evaluation is
summarized in Table 1.

As can be seen from the results, the optimised distance features
improves (except IoU=0.3) over the baseline in overall 3D ped-
estrian detection performance. In contrast to the expectations
and also as in other works (Yu et al., 2019) where the position
and distance of keypoints were used, adding them in ODPD did
not show further improvements. This may be due to the fact
that such features do not cope well with changes in perspective
and different poses of people.

In further, the AP and AOS at different IoU thresholds are visu-
alized in Figure 8. The model using 2D pose information achieved
better performance for almost all the IoU thresholds.

To further evaluate the improvement in accuracy, an IoU of 0.1
was set, and all the true positives detected in Optimised Dis-
tance (ODR) were compared with the baseline. It can be noted
that 63% of the True Positives detected show improved 3D IoU
when the pose is added, with a mean improvement of 13%. We
consider this as clear evidences for the benefits of integrating
2D handcrafted pose features, as done by our approach. Lever-
aging reliable 2D pose estimates yields a higher performance
for 3D detection. Furthermore, we also achieve a lower error
for the orientation estimation.

Qualitative results are presented in Figure 7. The results of the
model with the best performance are compared with the res-
ults of the baseline approach. From the visualization in 3D, the



Figure 7. Qualitative comparison of pedestrian 3D detection results using baseline (red bounding boxes on the left) and our proposed
approach using ODR features (green bounding boxes on the right). The white bounding boxes are the manually annotated ground

truth.



Figure 8. The AP and AOS for different values of IoU threshold for ODR compared against Baseline F-PointNets

Figure 9. Qualitative comparison of pedestrian 3D detection results in bird eye view using baseline (red bounding boxes) and our
proposed approach using ODR features (green bounding boxes). The black bounding boxes are the manually annotated ground truth.

The edge in cyan color indicate the frontal orientation of the pedestrian.

orientations of the 3D bounding boxes are better estimated (ac-
cording to the examples in the first three rows). The proposed
model also performs better for estimating the pedestrian dimen-
sions (see the last row).

In order to present the localization performance of pedestrian
detection, examples of 3D pedestrian detection are visualized
in bird’s eye views as in Figure 9. A better performance has
been achieved by the proposed method.

6. CONCLUSIONS AND OUTLOOK

In this paper, we realised 3D pedestrian detection on data col-
lected from wearable sensors. F-PointNet was fused with ex-
tra high-level 2D human pose information via experimenting
with three types of handcrafted features. The newly proposed
pipeline demonstrated a better performance compared to the
original F-PointNet.

However, our framework has only been tested with a dataset
collected from wearable Hololens device with less complicated
indoor scenarios. Investigation of the performance of our ap-
proach on newly published indoor pedestrian detection datasets
(Shenoi et al., 2020) could be a direction for future work. Also
as the 3D detection system is intended for AR device, its real
time performance and efficiency has to be evaluated in a next
step.

While detection is an important component in collision detec-
tion, realising other components of a detection pipeline (e.g.,
3D tracking) by including the improved orientation estimates
and motion prediction (Cheng et al., 2020) need to be addressed
in the near future. Combining this collision detection system
with a 3D interface via a wearable device could leverage the
power of perception and visualisation and hence controlling the
walking behaviour of pedestrians in shared spaces.
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