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Abstract 

In many applications it is of high interest to analyze spa-
tio-temporal (ST) datasets for recurring patterns. In our 
approach we examine spatio-temporal datasets for movement 
patterns using efficient query techniques. In an iterative 
process combining search and interaction an expert can 
review search results and either draw direct conclusions and 
annotate the pattern or refine the search pattern. In this way a 
hierarchical visualization / generalization and interactive 
analysis of large ST datasets becomes viable. The key feature 
of the approach is that patterns are not specified in advance 
(as meaningful semantic patterns) but established from the 
data set. 

1. Introduction 
As more and better sensors become available to capture 

movement data over time the search for spatio-temporal pat-
terns in large data sets becomes an increasingly relevant task 
in many applications. While some established patterns for 
moving objects exist and are widely agreed on (e.g. the 
"Flock" pattern) in many applications the patterns of interest 
are not known in advance or not well defined. To address this 
problem where an a-priori definition of patterns is not feasible 
or useful, we propose an experimental approach in which a 
human expert marks patterns of potential interest in a visuali-
zation of "temporal aggregates" of the raw data. These tem-
poral aggregates can be viewed as proto-patterns - the human 
expert uses his knowledge of the problem domain to identify 
proto-patterns of potential interest. Similar "patterns" can then 
be identified automatically by searching the dataset for similar 
occurrences. The system is designed for interactive use in an 
iterative process. After a search the expert can review the 
results and either draw direct conclusions and annotate the 
pattern (if the results are matching the requirements) or refine 
the search pattern (if the results are not yet sufficient).  

For the analysis of patterns it is first of all necessary to de-
fine the term "pattern". While there are some application 
domains in which relevant patterns are known and can be 
formally defined in advance (and thus searched for automati-
cally) this is not the case for all applications. For our purpose 
we assume that patterns of interest are not known at the be-
ginning of the process. The central characteristic of a pattern 
in our approach is that the same spatio-temporal formation of 
data elements occurs multiple times. However, not every 
coherent spatio-temporal data element is a pattern. Therefore 
we name potentially interesting patterns "proto-patterns", , but 
the importance of these patterns is a priori unknown. Finding 
patterns of straight movement on a linear street might not be 
as interesting as a criss cross trajectory in the same area. On 
the other side in another application analyzing crowd behavior 
in a stadium it could be more interesting to find the main 

stream of trajectories which leave a stadium after a match than 
some outliers.  

Thus patterns in our sense are elementary parts and/or ag-
gregates of  trajectories in a grid approach. Patterns occur, 
when interesing constellations among these trajectories occur, 
where interesting in our case is defined by an information 
theoretic measure, namely the frequency of occurrence. The 
approach is a follows. For each pattern a descriptor is calcu-
lated, which is used as characteristics to determine similarity. 
This approach therefore presumes appropriate feature descrip-
tors and given measures to describe similarity. In our case we 
use Fourier Descriptors to describe the shape of the patterns.  

The paper is organized as follows: after a review of related 
work, we start with the description of the raw data and initial 
operations on it. Then we discuss how we handle large data-
sets and explain the problem of choosing the correct parame-
terization. After that we introduce two approaches to compare 
patterns, which are based on Fourier Transform. In Section 4 
we describe our implementation in more detail. A discussion 
and an outlook on future work conclude the paper. 

2. Related work 
The interpretation of patterns is being investigated in different 
research directions. There are approaches to simplify and 
generalize patterns using a method adapted from graphic 
generalization, e.g. Douglas Peucker Algorithm (Yiu, 2008, 
[1]). Use of databases for spatio-temporal processing was 
recommended for example in Wolfson et al. , (1999) [2]. P. 
Laube et al., 2005 worked on discovering defined patterns, 
e.g. the Flock and Encounter-Pattern in [3]. Lin & Su, 2006, 
used space discretisation for similarity search of moving 
objects [4].  

Dodge, Weibel & Lautenschütz (2008) [5] proposed a tax-
onomy to classify and categorize movement patterns.  Johnson 
& Hogg (1995) [6] describe a method to use vector quantisa-
tion to learn tpical trajectories and ST events. In the domain of 
information retrieval there are approaches to index large 
collections of data using highly unique and invariant features. 
A good example are SIFT features to describe scale invariant 
features in digital images. In order to determine the similarity 
of geometric features, appropriate measures have to be de-
vised. Popular methods are geometric moments. This is pro-
posed by Heinzle et al. (2006) [7], where it is used to define 
the similarity of a shape with a circle in order to determine 
circular roads in vector data. In order to determine the ocor-
rect parameters Data Mining tools there used (Witten & 
Frank, 2000, [8]). In a similar way, Hild (2001), [9] used 
affine invariant moments and Fourier Descriptors (Lee et al. 
2004 [10], B. Srinivasa Reddy and B. N. Chatterji, 1996 [11]) 
to describe geometric features that are used as ground control 
features for automatic image registration. Andrienko & An-
drienko (2008) [12] use aggregation of ST patterns mainly to 
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enhance their visual inspection, especially when it comes to 
handle large data sets. 

3. Proposed Method for describing and 
indexing ST-patterns 

The base information in our application are trajectories. 
Figure 1 gives an example of  trail of playing children.  
 

 

Figure 1. Example of trajectories 

We are interested in patterns that arise at intersections of 
trajectories at highest level of detail, as well as in more aggre-
gated generalizations of the data. Trajectories consist of coor-
dinates with timestamps. The coordinates can come from GPS 
sensors, computer vision and other systems. Timestamps often 
appear in irregular intervals and can be desynchronised be-
tween different observed objects. Therefore the first step is to 
resample and align the data. The sampling rate determines the 
level of detail of the trajectory. Of course there can only be an 
approximation of the data between real measured points. The 
goal is to resample the trajectories without changing their 
characteristics.  

For our use case, linear interpolation is a sufficient approx-
imation, because minor changes in the coordinates of a point 
(at the scale of a few centimeters) do not have a significant 
effect on the resulting patterns and are typically below the 
threshold of the accuracy of the sensors used in the acquisition 
of the trajectories. For practical purposes linear interpolation 
has the benefit that it is easy to handle and lends itself to fast 
implementation. Other interpolation techniques could be 
substituted should the need arise.  

 
Figure 2 shows a typical trajectory dataset resampled at a 

rate of 1 point every 30 seconds. After the resampling the two 
datasets are synchronized with identical time intervals. Such a 
sysnchronized dataset simplifies the analysis of a situation at 
an arbitrary point in time. The human operator should adjust 
the resampling rate depending on the spatial and temporal 
extent of the patterns of interest, taking the sampling theorem 
into account.  

In addition to synchronizing trajectory datasets the issues 
of high data volume and noise in the measurements must be 
addressed. Therefore, methods to simplify datastreams are 
required. A simple and efficient approach that works well for 

typical applications is to discretize the data not only in the 
temporal domain (as in the resampling step) but also also in 
the spatial domain.  

From the original trajectory data, which only includes the 
positions and timestamps, other information of the observed 
objects like direction and speed can be derived at any time 
step. Sometimes it is more useful to define patterns of interest 
in this domain, therefore this option should be available to the 
user. We therefore also support the selection of such derived 
data sets in the following spatial discretization step. This 
allows to aggregate the data inside a cell and simplifies the 

following operations and calculations by reducing the size of 
large datasets to manageable proportions. The aggregation 
removes details and helps to focus on the essential characteris-
tics required to describe spatio temporal patterns. It is obvious 
that the selection of an appropriate cell size by the user is 
essential to achieve a suitable balance between data reduction 
and the potential loss of information that is essential for the 
following analysis. 

To help users with the selection of a suitable 
parameterisation for the discretization in space and time an 
interface must be provided that makes it easy to adjust the 
settings and provide feedback on the tradeoffs being made: 
The smaller the cell size, the less the spatial data is aggregated 
and the data cells provide a closer approximates the original 
trajectory data. The bigger the cell size, the more trajectories 
are integrated, which reduces the amount of data but also 
brings about the possible loss of essential information so that 
patters that were part of the original dataset can no longer be 
detected.  

In very small time intervals the patterns are nearly the 
same, because in short time it is almost allways a short step 
straight forward. There is chance to build complex patterns. In 
very long time intervals the data becomes more chaotic, and it 

Figure 2. Comparison of feature similarity between 
original and rotated object with and without smooth-

ing 



is hard to find any structure in it. So, the best option is 
somewhere in between, depending on data and intention.  

 For each cell all crossing trajectories are considered and 
suitable aggreagates of speed, direction and density 
information within a given time interval are calculated and 
stored as attributes of the cells..    

 An aggregtion of neighboring filled cells defines proto-
patterns. The boundary of these aggregations describe the 
spatial contour of the pattern. The movement information 
(captured by the different aggreagates of speed, direction and 
density) characterize the inside. To identify similar patterns, it 
is important to define a measure of similarity. By working on 
the cell based aggreagtes we can focus on geometric and 
statistic similarity measures. We tried out two approaches for 
similarity analysis. The first approach just uses geometric  
properties of the data, and ignores the attributes speed, density 
and direction. After observing that it was not possible to cover 
all cases of similarity and dissimilarity that we assumed, we 
tried a second approach which takes the available statistics 
data into account. 

In comparing such patterns it is typically useful to define 
similarity measures that are independent of scale, specific 
location and orientation. In the first approach, we 
experimented with the one dimensional discrete fourier 
transformation (1D DFT (see e.g. Lee et al. [10]). In order to 
achieve invariance in shape, size and positioning all objects 
contours are resized to a specific length and shifted to the 
point of origin. By resampling the outline and interpreting the 
x and y values as reel and imaginary part of a complex 
number, it is possible to determine a vector which represents 
this shape. After normalising the vectors the euclidian 
distance represents a similarity measure similarity between 
shapes.   

This method produces results that comply with human 
assessment of similarity if the cell size is small enough and 
the speed, direction and density values can vary without 
having influence on the importance of patterns. The problem 
with the cell size is that a rotated shape can optically depart 
from the original one, because the impact of discretization 
becomes too strong. Therefore it is useful to smooth the 
contours to keep rotation also invariant. Figure 3 illustrates the 
problem with a simple shape (1.), which is rotated about 45° 
(2.). It looses a lot in contour similarity. 3. Appears after 
filling triangles in free space, where two sides are in touch 
with the original shape and removing triangles without 
neighbors. It looks more similar to 1. and the measure of 0.95 
confirms this. 

 
Another problem with this approach is, that not all shapes 

can be differed reliably. Because of sampling the contour, 
holes cannot be detected. The algorithms does not differ 
shapes, if their outer contour is equal. And there can be some 
deviations in similarity depending on the starting position for 
sampling the contour and the sampling rate. Of course, the 
sampling rate should be at least as double as high as the high-
est frequency in this shape (sampling theorem). But the higher 
the rate, the longer the algorithm takes. With a relatively low 
rate, the corners can not be represented correctly, which wor-
sens the result.  

 
However, this first approach does not take all requirements  

and options into account. Speed, direction and density have no 
influence on the result. There are just filled and not filled cells 
during a considered time interval. It is like a 2D-region of true 
and false values from which the contour is extracted. To 
improve the compliance of the requirements and to exploit the 
underlying data in its richness, there is the need of bringing 
the further available data into this approach. Therefore we 
extend the 2D-regions from a binary representation (a cell is 
intersected or not) to higher dimensional region including 
more information, namely density, speed and direction. This 
was developed in a second approach. The central idea is to use 
the different features as multiple channels of overlapping 
information, similar to color channels in a multicolor picture. 
A pixel is represented by a cell, including different data chan-
nels. In our case we have the speed, direction and density as 
“colors” of the picture instead of RGB. With this special view 
on the data, a 2D discrete fourier transformation (DFT) can be 
used. Just a 2D DFT on a picture is not invariant to rotation, 
but this can be solved by an additional intermediate step in an 
extension of the 2D DFT known as the Fourier Mellin trans-
form. The rotation invariance can be seen in Figure 4.  

 
The first row shows two original data sets, a horizontal and a 
vertical line. In the second row is their logarithmic visualiza-
tion of the frequency space after DFT. Due to the different 
orientations, the visualization of the frequencies also is ro-
tated. The third row shows nearly the identical  image, indicat-
ing the rotation invariance. This special way to represent DFT 
data in polar coordinates is called “Fourier Mellin Transfor-
mation” (FMT).  

This second approach  includes all requirements: the simi-
larity measure is invariant to changes in scale, position and 
orientation, and all characteristics of speed, direction and 
density are taken into account. A key improvement is that a 
distinction of patterns that are of similar shape in their spatial 
aggregates can be made between those with and without holes.  
If the cell size is small enough this approach produces promis-
ing results. For bigger cells, there is still the need to smooth 
the contours.  
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Figure 3. Comparison with 
and without smoothing 



 

Figure 4. Steps of a Fourier Mellin 
Transformation 

To do a similarity  measurement , the two dimensional data 
is filled up to have a 2௡ ൈ 2௠, ݊,݉  א Գ  image, which is 
converted to a one dimensional vector. This allows the use of 
a fast fourier transformation (FFT) algorithm. Thereafter the 
vector is reconverted to a 2௡ ൈ 2௠ matrix. Then the values are 
reorganised into polar representation.  

These representations are used to calculate the differences 
between different proto-patterns. Therewith the closest 
matches of a pattern can be found. 

 

4. Implementation 
In this chapter we describe how the approach was imple-

mented as a working system consisting of components for 
resampling, spatial discretization into cells, similarity meas-
ures for cell constructs and a user interface that allows to 
search for patterns using an interactive visualization of de-
tected proto patterns.   

The resampling of the trajectories is relatively easy. As-
sume that we have a starting point ݌௜ , two positions ݌௡  and 
 ௡ାଵ and the next synchronizedݐ ௡ andݐ ௡ାଵ with timestamps݌
timestep ݐ௔ is between these both, a new synchronised point is 
created by  

௡௘௪݌ ൌ ୧݌  ൅ ݐ௔ · ൫݌௡ାଵ – ݌௡൯, ݊ ൒ 0, 0  ൑ ௔ݐ ൑ 1. 
௜݌ ൌ  ௡݌

 
For an efficent implementation of resampling, it is useful 

to have quick access to data belonging to a certain trajectory 
at a requested timestamp. Because of typically large datasets a 
method is needed which allows to work on it without keeping 
it all in RAM. Reading the data from simple files allows to 
use the full diskspace, but is relatively slow. Therefore a 
MySQL database is used. It allows to use index structures to 
read data, saves the data efficently and may use more space 

than RAM allows. So, a table trajectory with attributes id, 
position_x, position_y, timestamp with the id as primary key 
and a BTree index on  timestamp, position_x and position_y is 
created. A table trajectory_sampled, with the same attributes 
and indexes keeps the resampled data also efficient 
accessable. 

To find passed through grid cells intersection points with 
the trajectories were calculated. In a further table grid with 
attributes x, y, time_step, trajectory_id, speed and direction 
the intersected cells are saved including the time step 
information. x and y do not represent the position itself, but 
the grid cell. Indexes are used on x, y and time_step. That 
accelerates the next steps in processing the data.  

 
Knowing when which grid cell is intersected by which 

trajectory, enables the aggregation inside the cells. Therefore 
the speed and direction information of different trajectories 
inside a cell are averaged. To average the direction, the vector  
of movement during the considered time interval is 
transformed to polar coordinates and reduced to its angle α. 
But there is an exception while averaging the angles. If the 
difference ݀ଵ between two angles become bigger than π the 
smaller angle ݀ଶ ൌ ߨ2 െ ݀ଵ has to be considered to take the 
mean.  

 
ଵߙ ൐ ,ଶߙ   ܽଵ െ ܽଶ ൐   ߨ 

 
then 

 

ଷߙ ൌ ቆ
ሺߙଶ ൅ ߨ2  െ ߙଵሻ

2 ൅ ଵቇߙ  ߨ2 ݀݋݉ 

 
The averaged angle has to be between 0ߨ  and 2ߨ . 

Therefore a modulo is used. The following example in Figure 
5 should help to understand this special case. The red arrow 
symbolises the arithmetic mean, the green one the correct 
value. 

 
The arithmetic mean would be 0.9ߨ, but the right direction 

is represented as angle ߙଷ ൌ ߨ1.9 . Speed can be averaged 

ߨ
2 

ଶߙ ൌ  ߨ0.2

3
 ߨ2

 ߨ

ଵߙ ൌ  ߨ1.6

Figure 5. average direction 



easily. The result of this last step are saved in a table 
aggregated_data. As additional new information, the density 
of trajectories inside a cell is added. So we have the attributes 
x and y representing the cell, angle, speed, density and 
time_step. 

 
 To identify which intersected grid cells at a time step ݐ௡ 

belong together to form a shape, a random intersected grid cell 
is taken from the table grid and examined, with respect to its  
neighbours (N8-neighborhood) which are also marked as 
intersected at this moment or time interval, respectively. All 
localised new cells again examine their neighbours, 
recursivley, in a region growing fashing. In this way the 
composition of cells, that form a pattern can be found. This is 
repeated until all intersected cells from the database are 
allocated to a proto-pattern. Because of the indexes on the 
attributes x, y and time_step the neighbours can be checked 
very efficently. That accelerates the detection of marked 
neighbours a lot. To check, if a cell is already allocated to a 
pattern is also supported by the database indexes. Combined 
with the content from aggregated_data a new table pattern is 
filled. It is the first table, that uses aggregated data for inside 
the cells and knows, which cells belong to a proto-pattern at 
which time step. Following from that, the attributes are 
pattern_id, x, y, speed, angle, density and time_step. 

 
The concept is implemented as a prototype written in Java. 

It allows to load the raw information and do the processing on 
the database. Additionally, it allows to have the data animated 
by incrementing the time step. Because of the indexes used in 
the database just the current viewed data is written into RAM 
for each step. The time interval and the grid size can be easily 
controlled with sliders. To visualize the different components 
of a cell, the density of the trajectories are visualized using the 
saturation of their background color. The direction of the 
aggregated data is shown by an arrow. The size of this arrow 
shows the average speed inside this cell. Thus all information 
is visible at the same time.  
The software also allows to have a look at all proto-patterns 
and by clicking them to jump to the time step in which they 
appeared. After chosing a proto-pattern there is the option in 
the software to find most similar patterns. 
The screenshot in Figure 6 shows the GUI of the software 
prototype. The main panel shows a part of the considered 
andby cells subdevided area. In the bottom there are controller 
to set up cell size, the time inverval and the speed of 
animation. The right side informs about proto-patterns. It lists 
all available proto-patterns which were found during 
processing and allows the user to select them for further 
analysis. The user can compare the selected pattern with other 
patterns and order them by similarity. By users decision from 
which pattern the similarity is too bad, a threshold is set up. 
The number of similar proto-patterns shows, if this data 
composition appears many times or is an exception.  

 

 

5. Observations and Discussion 
The use of the database and especially its index structure 

proved to be a good backend of the implementation. Besides 
the efficient disk space use and quick return of requested data, 
more efficient use of multi-core processors is made. While 
one core works on processing the data, another core is appro-
priated for reading and writing the database. Import and ex-
port of data works faster as well. Also workload of RAM can 
be reduced, because it is not necessary to keep everything in 
it. Alternatively it is possible to create own index structures 
adjust on this problem. But the database worked good with 
our dataset.  

In the two approaches, different ways of using the fre-
quency space were described. The first approach works with 
the contour of a shape. The second idea, to consider the data 
matrix as picture is more complex and needs additional proce-
dures to keep rotation invariant, but can differ proto-patterns 
more precise as Figure 7 shows. The first row of this figure 
shows the different behavior of the first and second approach, 
by analyzing shapes with and without holes. The first ap-
proach is blind for holes, because it just considers the outline. 
The second row demonstrates how the algorithms evaluate 
same shapes with different aggregated information about i.e. 
direction. Again the first approach does not react on this 
significant difference. 
 

The first approach therefore works faster. The main idea is 
based on a 1D DFT. In the second approach the two dimen-
sional data is transformed to a one dimensional vector to use a 
fast fourier implementation as well. The transforming from 
2D to 1D and back to 2D and the mellin transformation pro-
duces additional processing costs.  

 

Figure 6. Visualisation 



One important observation when comparing patterns with 
Fourier Descriptors and differences in their representive 

vectors of the coefficents is that there is no value which can be 
used as threshold for similarity. In some datasets a value of 
87% seems to indicate high similarity, in other it does not. 
The range of values isn’t fully exploited because, there is 
always any kind of similarity. In our special case the smalles 
common shape is a box which can be found in every pattern. 
Typically we had similarities between 75% and 100% in our 
dataset. A person is still needed to decide from which value on 
there is no adequate similarity given anymore.  

This is why in our approach the human operator is in the 
loop to identify similarities of patterns. Based on this, the 
corresponding similarity values can be calculated and used as 
thresholds in subsequent processes.  

6. Summary and Outlook 
 The basic idea of our approach is to identify “interesting” 

patterns in trajectories and store and index them in a database. 
From the frequency of occurrence of a pattern applications 
dependent inferences can be drawn: when looking for domi-
nant patterns, the ones with a high frequency of occurrence 
are chosen; when looking for non-conform patterns, e.g. 
unusal movement patterns in a large crowd, then the most 
seldom patterns are important.  

Our concept of aggregating information in a grid naturally 
leads to a hierarchical representation and processing of the 
data. In this way it is possible to identify similar patterns in 
different aggregation levels, e.g. the intersection of two trajec-
tories on a high level is similar to the small scale intersection 
of larger collections of objects.  

It  remains to be seen, if the ranking of all patterns agree 
with human evaluation in detail. Therefore tests with some 
experts are necessary. 
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Figure 7. Advantage of Fourier Mellin Transforma-
tion compared to 1D Fourier Transformation 


