
Visual Interactive Exploration of Spatio-Temporal Patterns

Radoslaw Rudnicki, Monika Sester, Volker Paelke

Abstract

In many applications it is of high interest to analyze spa-
tio-temporal (ST) datasets for recurring patterns. In our
approach we examine spatio-temporal datasets for movement
patterns using efficient query techniques. In an iterative
process combining search and interaction an expert can
review search results and either draw direct conclusions and
annotate the pattern or refine the search pattern. In this way a
hierarchical visualization / generalization and interactive
analysis of large ST datasets becomes viable. The key feature
of the approach is that patterns are not specified in advance
(as meaningful semantic patterns) but established from the
data set.

1. Introduction
As more and better sensors become available to capture

movement data over time the search for spatio-temporal pat-
terns in large data sets becomes an increasingly relevant task
in many applications. While some established patterns for
moving objects exist and are widely agreed on (e.g. the
"Flock" pattern) in many applications the patterns of interest
are not known in advance or not well defined. To address this
problem where an a-priori definition of patterns is not feasible
or useful, we propose an experimental approach in which a
human expert marks patterns of potential interest in a visuali-
zation of "temporal aggregates" of the raw data. These tem-
poral aggregates can be viewed as proto-patterns - the human
expert uses his knowledge of the problem domain to identify
proto-patterns of potential interest. Similar "patterns" can then
be identified automatically by searching the dataset for similar
occurrences. The system is designed for interactive use in an
iterative process. After a search the expert can review the
results and either draw direct conclusions and annotate the
pattern (if the results are matching the requirements) or refine
the search pattern (if the results are not yet sufficient).

For the analysis of patterns it is first of all necessary to de-
fine the term "pattern". While there are some application
domains in which relevant patterns are known and can be
formally defined in advance (and thus searched for automati-
cally) this is not the case for all applications. For our purpose
we assume that patterns of interest are not known at the be-
ginning of the process. The central characteristic of a pattern
in our approach is that the same spatio-temporal formation of
data elements occurs multiple times. However, not every
coherent spatio-temporal data element is a pattern. Therefore
we name potentially interesting patterns "proto-patterns", , but
the importance of these patterns is a priori unknown. Finding
patterns of straight movement on a linear street might not be
as interesting as a criss cross trajectory in the same area. On
the other side in another application analyzing crowd behavior
in a stadium it could be more interesting to find the main

stream of trajectories which leave a stadium after a match than
some outliers.

Thus patterns in our sense are elementary parts and/or ag-
gregates of trajectories in a grid approach. Patterns occur,
when interesing constellations among these trajectories occur,
where interesting in our case is defined by an information
theoretic measure, namely the frequency of occurrence. The
approach is a follows. For each pattern a descriptor is calcu-
lated, which is used as characteristics to determine similarity.
This approach therefore presumes appropriate feature descrip-
tors and given measures to describe similarity. In our case we
use Fourier Descriptors to describe the shape of the patterns.

The paper is organized as follows: after a review of related
work, we start with the description of the raw data and initial
operations on it. Then we discuss how we handle large data-
sets and explain the problem of choosing the correct parame-
terization. After that we introduce two approaches to compare
patterns, which are based on Fourier Transform. In Section 4
we describe our implementation in more detail. A discussion
and an outlook on future work conclude the paper.

2. Related work
The interpretation of patterns is being investigated in different
research directions. There are approaches to simplify and
generalize patterns using a method adapted from graphic
generalization, e.g. Douglas Peucker Algorithm (Yiu, 2008,
[1]). Use of databases for spatio-temporal processing was
recommended for example in Wolfson et al. , (1999) [2]. P.
Laube et al., 2005 worked on discovering defined patterns,
e.g. the Flock and Encounter-Pattern in [3]. Lin & Su, 2006,
used space discretisation for similarity search of moving
objects [4].

Dodge, Weibel & Lautenschütz (2008) [5] proposed a tax-
onomy to classify and categorize movement patterns. Johnson
& Hogg (1995) [6] describe a method to use vector quantisa-
tion to learn tpical trajectories and ST events. In the domain of
information retrieval there are approaches to index large
collections of data using highly unique and invariant features.
A good example are SIFT features to describe scale invariant
features in digital images. In order to determine the similarity
of geometric features, appropriate measures have to be de-
vised. Popular methods are geometric moments. This is pro-
posed by Heinzle et al. (2006) [7], where it is used to define
the similarity of a shape with a circle in order to determine
circular roads in vector data. In order to determine the ocor-
rect parameters Data Mining tools there used (Witten &
Frank, 2000, [8]). In a similar way, Hild (2001), [9] used
affine invariant moments and Fourier Descriptors (Lee et al.
2004 [10], B. Srinivasa Reddy and B. N. Chatterji, 1996 [11])
to describe geometric features that are used as ground control
features for automatic image registration. Andrienko & An-
drienko (2008) [12] use aggregation of ST patterns mainly to

id: 1
t: 2:55:21

id: 2
t: 2:55:21

id: 2
t: 2:55:46

id: 2
t: 2:56:43

id: 2
t: 2:56:55

id: 1
t: 0

id: 1
t: 1

id: 1
t: 2

id: 1
t: 3

id: 2
t: 0

id: 2
t: 3

raw data resampled

id: 1
t: 2:56:55

id: 2
t: 1

id: 2
t: 2

id: 1
t: 2:56:34

enhance their visual inspection, especially when it comes to
handle large data sets.

3. Proposed Method for describing and
indexing ST-patterns

The base information in our application are trajectories.
Figure 1 gives an example of trail of playing children.

Figure 1. Example of trajectories

We are interested in patterns that arise at intersections of
trajectories at highest level of detail, as well as in more aggre-
gated generalizations of the data. Trajectories consist of coor-
dinates with timestamps. The coordinates can come from GPS
sensors, computer vision and other systems. Timestamps often
appear in irregular intervals and can be desynchronised be-
tween different observed objects. Therefore the first step is to
resample and align the data. The sampling rate determines the
level of detail of the trajectory. Of course there can only be an
approximation of the data between real measured points. The
goal is to resample the trajectories without changing their
characteristics.

For our use case, linear interpolation is a sufficient approx-
imation, because minor changes in the coordinates of a point
(at the scale of a few centimeters) do not have a significant
effect on the resulting patterns and are typically below the
threshold of the accuracy of the sensors used in the acquisition
of the trajectories. For practical purposes linear interpolation
has the benefit that it is easy to handle and lends itself to fast
implementation. Other interpolation techniques could be
substituted should the need arise.

Figure 2 shows a typical trajectory dataset resampled at a

rate of 1 point every 30 seconds. After the resampling the two
datasets are synchronized with identical time intervals. Such a
sysnchronized dataset simplifies the analysis of a situation at
an arbitrary point in time. The human operator should adjust
the resampling rate depending on the spatial and temporal
extent of the patterns of interest, taking the sampling theorem
into account.

In addition to synchronizing trajectory datasets the issues
of high data volume and noise in the measurements must be
addressed. Therefore, methods to simplify datastreams are
required. A simple and efficient approach that works well for

typical applications is to discretize the data not only in the
temporal domain (as in the resampling step) but also also in
the spatial domain.

From the original trajectory data, which only includes the
positions and timestamps, other information of the observed
objects like direction and speed can be derived at any time
step. Sometimes it is more useful to define patterns of interest
in this domain, therefore this option should be available to the
user. We therefore also support the selection of such derived
data sets in the following spatial discretization step. This
allows to aggregate the data inside a cell and simplifies the

following operations and calculations by reducing the size of
large datasets to manageable proportions. The aggregation
removes details and helps to focus on the essential characteris-
tics required to describe spatio temporal patterns. It is obvious
that the selection of an appropriate cell size by the user is
essential to achieve a suitable balance between data reduction
and the potential loss of information that is essential for the
following analysis.

To help users with the selection of a suitable
parameterisation for the discretization in space and time an
interface must be provided that makes it easy to adjust the
settings and provide feedback on the tradeoffs being made:
The smaller the cell size, the less the spatial data is aggregated
and the data cells provide a closer approximates the original
trajectory data. The bigger the cell size, the more trajectories
are integrated, which reduces the amount of data but also
brings about the possible loss of essential information so that
patters that were part of the original dataset can no longer be
detected.

In very small time intervals the patterns are nearly the
same, because in short time it is almost allways a short step
straight forward. There is chance to build complex patterns. In
very long time intervals the data becomes more chaotic, and it

Figure 2. Comparison of feature similarity between
original and rotated object with and without smooth-

ing

is hard to find any structure in it. So, the best option is
somewhere in between, depending on data and intention.

 For each cell all crossing trajectories are considered and
suitable aggreagates of speed, direction and density
information within a given time interval are calculated and
stored as attributes of the cells..

 An aggregtion of neighboring filled cells defines proto-
patterns. The boundary of these aggregations describe the
spatial contour of the pattern. The movement information
(captured by the different aggreagates of speed, direction and
density) characterize the inside. To identify similar patterns, it
is important to define a measure of similarity. By working on
the cell based aggreagtes we can focus on geometric and
statistic similarity measures. We tried out two approaches for
similarity analysis. The first approach just uses geometric
properties of the data, and ignores the attributes speed, density
and direction. After observing that it was not possible to cover
all cases of similarity and dissimilarity that we assumed, we
tried a second approach which takes the available statistics
data into account.

In comparing such patterns it is typically useful to define
similarity measures that are independent of scale, specific
location and orientation. In the first approach, we
experimented with the one dimensional discrete fourier
transformation (1D DFT (see e.g. Lee et al. [10]). In order to
achieve invariance in shape, size and positioning all objects
contours are resized to a specific length and shifted to the
point of origin. By resampling the outline and interpreting the
x and y values as reel and imaginary part of a complex
number, it is possible to determine a vector which represents
this shape. After normalising the vectors the euclidian
distance represents a similarity measure similarity between
shapes.

This method produces results that comply with human
assessment of similarity if the cell size is small enough and
the speed, direction and density values can vary without
having influence on the importance of patterns. The problem
with the cell size is that a rotated shape can optically depart
from the original one, because the impact of discretization
becomes too strong. Therefore it is useful to smooth the
contours to keep rotation also invariant. Figure 3 illustrates the
problem with a simple shape (1.), which is rotated about 45°
(2.). It looses a lot in contour similarity. 3. Appears after
filling triangles in free space, where two sides are in touch
with the original shape and removing triangles without
neighbors. It looks more similar to 1. and the measure of 0.95
confirms this.

Another problem with this approach is, that not all shapes

can be differed reliably. Because of sampling the contour,
holes cannot be detected. The algorithms does not differ
shapes, if their outer contour is equal. And there can be some
deviations in similarity depending on the starting position for
sampling the contour and the sampling rate. Of course, the
sampling rate should be at least as double as high as the high-
est frequency in this shape (sampling theorem). But the higher
the rate, the longer the algorithm takes. With a relatively low
rate, the corners can not be represented correctly, which wor-
sens the result.

However, this first approach does not take all requirements

and options into account. Speed, direction and density have no
influence on the result. There are just filled and not filled cells
during a considered time interval. It is like a 2D-region of true
and false values from which the contour is extracted. To
improve the compliance of the requirements and to exploit the
underlying data in its richness, there is the need of bringing
the further available data into this approach. Therefore we
extend the 2D-regions from a binary representation (a cell is
intersected or not) to higher dimensional region including
more information, namely density, speed and direction. This
was developed in a second approach. The central idea is to use
the different features as multiple channels of overlapping
information, similar to color channels in a multicolor picture.
A pixel is represented by a cell, including different data chan-
nels. In our case we have the speed, direction and density as
“colors” of the picture instead of RGB. With this special view
on the data, a 2D discrete fourier transformation (DFT) can be
used. Just a 2D DFT on a picture is not invariant to rotation,
but this can be solved by an additional intermediate step in an
extension of the 2D DFT known as the Fourier Mellin trans-
form. The rotation invariance can be seen in Figure 4.

The first row shows two original data sets, a horizontal and a
vertical line. In the second row is their logarithmic visualiza-
tion of the frequency space after DFT. Due to the different
orientations, the visualization of the frequencies also is ro-
tated. The third row shows nearly the identical image, indicat-
ing the rotation invariance. This special way to represent DFT
data in polar coordinates is called “Fourier Mellin Transfor-
mation” (FMT).

This second approach includes all requirements: the simi-
larity measure is invariant to changes in scale, position and
orientation, and all characteristics of speed, direction and
density are taken into account. A key improvement is that a
distinction of patterns that are of similar shape in their spatial
aggregates can be made between those with and without holes.
If the cell size is small enough this approach produces promis-
ing results. For bigger cells, there is still the need to smooth
the contours.

2.

similarity: 82,5% similarity: 95% orginal

1. 3.

Figure 3. Comparison with
and without smoothing

Figure 4. Steps of a Fourier Mellin
Transformation

To do a similarity measurement , the two dimensional data
is filled up to have a 2௡ ൈ 2௠, ݊,݉ א Գ image, which is
converted to a one dimensional vector. This allows the use of
a fast fourier transformation (FFT) algorithm. Thereafter the
vector is reconverted to a 2௡ ൈ 2௠ matrix. Then the values are
reorganised into polar representation.

These representations are used to calculate the differences
between different proto-patterns. Therewith the closest
matches of a pattern can be found.

4. Implementation
In this chapter we describe how the approach was imple-

mented as a working system consisting of components for
resampling, spatial discretization into cells, similarity meas-
ures for cell constructs and a user interface that allows to
search for patterns using an interactive visualization of de-
tected proto patterns.

The resampling of the trajectories is relatively easy. As-
sume that we have a starting point ݌௜ , two positions ݌௡ and
 ௡ାଵ and the next synchronizedݐ ௡ andݐ ௡ାଵ with timestamps݌
timestep ݐ௔ is between these both, a new synchronised point is
created by

௡௘௪݌ ൌ ୧݌ ൅ ݐ௔ · ൫݌௡ାଵ – ݌௡൯, ݊ ൒ 0, 0 ൑ ௔ݐ ൑ 1.
௜݌ ൌ ௡݌

For an efficent implementation of resampling, it is useful

to have quick access to data belonging to a certain trajectory
at a requested timestamp. Because of typically large datasets a
method is needed which allows to work on it without keeping
it all in RAM. Reading the data from simple files allows to
use the full diskspace, but is relatively slow. Therefore a
MySQL database is used. It allows to use index structures to
read data, saves the data efficently and may use more space

than RAM allows. So, a table trajectory with attributes id,
position_x, position_y, timestamp with the id as primary key
and a BTree index on timestamp, position_x and position_y is
created. A table trajectory_sampled, with the same attributes
and indexes keeps the resampled data also efficient
accessable.

To find passed through grid cells intersection points with
the trajectories were calculated. In a further table grid with
attributes x, y, time_step, trajectory_id, speed and direction
the intersected cells are saved including the time step
information. x and y do not represent the position itself, but
the grid cell. Indexes are used on x, y and time_step. That
accelerates the next steps in processing the data.

Knowing when which grid cell is intersected by which

trajectory, enables the aggregation inside the cells. Therefore
the speed and direction information of different trajectories
inside a cell are averaged. To average the direction, the vector
of movement during the considered time interval is
transformed to polar coordinates and reduced to its angle α.
But there is an exception while averaging the angles. If the
difference ݀ଵ between two angles become bigger than π the
smaller angle ݀ଶ ൌ ߨ2 െ ݀ଵ has to be considered to take the
mean.

ଵߙ ൐ ,ଶߙ ܽଵ െ ܽଶ ൐ ߨ

then

ଷߙ ൌ ቆ
ሺߙଶ ൅ ߨ2 െ ߙଵሻ

2 ൅ ଵቇߙ ߨ2 ݀݋݉

The averaged angle has to be between 0ߨ and 2ߨ .

Therefore a modulo is used. The following example in Figure
5 should help to understand this special case. The red arrow
symbolises the arithmetic mean, the green one the correct
value.

The arithmetic mean would be 0.9ߨ, but the right direction

is represented as angle ߙଷ ൌ ߨ1.9 . Speed can be averaged

ߨ
2

ଶߙ ൌ ߨ0.2

3
 ߨ2

 ߨ

ଵߙ ൌ ߨ1.6

Figure 5. average direction

easily. The result of this last step are saved in a table
aggregated_data. As additional new information, the density
of trajectories inside a cell is added. So we have the attributes
x and y representing the cell, angle, speed, density and
time_step.

 To identify which intersected grid cells at a time step ݐ௡

belong together to form a shape, a random intersected grid cell
is taken from the table grid and examined, with respect to its
neighbours (N8-neighborhood) which are also marked as
intersected at this moment or time interval, respectively. All
localised new cells again examine their neighbours,
recursivley, in a region growing fashing. In this way the
composition of cells, that form a pattern can be found. This is
repeated until all intersected cells from the database are
allocated to a proto-pattern. Because of the indexes on the
attributes x, y and time_step the neighbours can be checked
very efficently. That accelerates the detection of marked
neighbours a lot. To check, if a cell is already allocated to a
pattern is also supported by the database indexes. Combined
with the content from aggregated_data a new table pattern is
filled. It is the first table, that uses aggregated data for inside
the cells and knows, which cells belong to a proto-pattern at
which time step. Following from that, the attributes are
pattern_id, x, y, speed, angle, density and time_step.

The concept is implemented as a prototype written in Java.

It allows to load the raw information and do the processing on
the database. Additionally, it allows to have the data animated
by incrementing the time step. Because of the indexes used in
the database just the current viewed data is written into RAM
for each step. The time interval and the grid size can be easily
controlled with sliders. To visualize the different components
of a cell, the density of the trajectories are visualized using the
saturation of their background color. The direction of the
aggregated data is shown by an arrow. The size of this arrow
shows the average speed inside this cell. Thus all information
is visible at the same time.
The software also allows to have a look at all proto-patterns
and by clicking them to jump to the time step in which they
appeared. After chosing a proto-pattern there is the option in
the software to find most similar patterns.
The screenshot in Figure 6 shows the GUI of the software
prototype. The main panel shows a part of the considered
andby cells subdevided area. In the bottom there are controller
to set up cell size, the time inverval and the speed of
animation. The right side informs about proto-patterns. It lists
all available proto-patterns which were found during
processing and allows the user to select them for further
analysis. The user can compare the selected pattern with other
patterns and order them by similarity. By users decision from
which pattern the similarity is too bad, a threshold is set up.
The number of similar proto-patterns shows, if this data
composition appears many times or is an exception.

5. Observations and Discussion
The use of the database and especially its index structure

proved to be a good backend of the implementation. Besides
the efficient disk space use and quick return of requested data,
more efficient use of multi-core processors is made. While
one core works on processing the data, another core is appro-
priated for reading and writing the database. Import and ex-
port of data works faster as well. Also workload of RAM can
be reduced, because it is not necessary to keep everything in
it. Alternatively it is possible to create own index structures
adjust on this problem. But the database worked good with
our dataset.

In the two approaches, different ways of using the fre-
quency space were described. The first approach works with
the contour of a shape. The second idea, to consider the data
matrix as picture is more complex and needs additional proce-
dures to keep rotation invariant, but can differ proto-patterns
more precise as Figure 7 shows. The first row of this figure
shows the different behavior of the first and second approach,
by analyzing shapes with and without holes. The first ap-
proach is blind for holes, because it just considers the outline.
The second row demonstrates how the algorithms evaluate
same shapes with different aggregated information about i.e.
direction. Again the first approach does not react on this
significant difference.

The first approach therefore works faster. The main idea is
based on a 1D DFT. In the second approach the two dimen-
sional data is transformed to a one dimensional vector to use a
fast fourier implementation as well. The transforming from
2D to 1D and back to 2D and the mellin transformation pro-
duces additional processing costs.

Figure 6. Visualisation

One important observation when comparing patterns with
Fourier Descriptors and differences in their representive

vectors of the coefficents is that there is no value which can be
used as threshold for similarity. In some datasets a value of
87% seems to indicate high similarity, in other it does not.
The range of values isn’t fully exploited because, there is
always any kind of similarity. In our special case the smalles
common shape is a box which can be found in every pattern.
Typically we had similarities between 75% and 100% in our
dataset. A person is still needed to decide from which value on
there is no adequate similarity given anymore.

This is why in our approach the human operator is in the
loop to identify similarities of patterns. Based on this, the
corresponding similarity values can be calculated and used as
thresholds in subsequent processes.

6. Summary and Outlook
 The basic idea of our approach is to identify “interesting”

patterns in trajectories and store and index them in a database.
From the frequency of occurrence of a pattern applications
dependent inferences can be drawn: when looking for domi-
nant patterns, the ones with a high frequency of occurrence
are chosen; when looking for non-conform patterns, e.g.
unusal movement patterns in a large crowd, then the most
seldom patterns are important.

Our concept of aggregating information in a grid naturally
leads to a hierarchical representation and processing of the
data. In this way it is possible to identify similar patterns in
different aggregation levels, e.g. the intersection of two trajec-
tories on a high level is similar to the small scale intersection
of larger collections of objects.

It remains to be seen, if the ranking of all patterns agree
with human evaluation in detail. Therefore tests with some
experts are necessary.

7. References
[1] H. J. M. L. Yiu, X. Zhou, C. S. Jensen, H. T. Shen

(2008): Discovery of convoys in trajectory data-
bases, in: Proceedings of the VLDB Endowment
Volume 1 , Issue 1 (August 2008)

[2] Ouri Wolfson, Prasad Sistla, Bo Xu, Jutai Zhou,
Sam Chamberlain, (1999): “DOMINO: Databases
fOr MovINg Objects tracking”, ACM SIGMOD
Record Volume 28, 547 – 549

[3] Laube, P., Imfeld, S., & Weibel, R. (2005). “Dis-
covering relative motion patterns in groups of
moving point objects”, International Journal of
Geographical Information Science, 19(6), 639–
668.

[4] Bin Lin, Jianwen Su, (2007): “One way Distance:
For Shape based Similarity Search of Moving Ob-
ject Trajectories“, GeoInformatica, Springer Neth-
erlands, 1384-6175 (Print) 1573-7624 (Online),
117-142

[5] Dodge, S., R. Weibel & A.-K. Lautenschütz
(2008): “Towards a taxonomy of movement pat-
terns. Information Visualization“, 7, 240-252.

[6] Johnson, N. & D. Hogg (1995), “Learning the
Distribution of Object Trajectories for Event
Recognition”, Proc. British Machine Vision Conf.,
D. Pycock, ed., pp. 583-592, Sept. 1995.

[7] F. Heinzle, K.-H. Anders and M. Sester, (2006):
 “Pattern Recognition in Road Networks on the

Example of Circular Road Detection”, Geo-
graphic Information Science , no. 4197 , p. 253-
267 , Münster

[8] Witten I.H., Frank E., (2000): “Data Mining,
Practical Machine Learning Tools and Tech-
niques with Java Implementations.” Morgan
Kaufmann Publishers.

[9] Hild, H.: Automatic Image-To-Map-Registration
of Remote Sensing Data, in: D. Fritsch & R. Spil-
ler, eds, 'Photogrammetric Week '01', Herbert
Wichmann Verlag, Heidelberg, pp. 13–23. 2001

 [10] D.J. Lee, S.Antani and L. R. Long, (2004): “Si-
milarity Measurement Using Polygon Curve Re-
presentation and Fourier Descriptors for Shape-
based Vertebral Image Retrieval”

[11] B. Srinivasa Reddy and B. N. Chatterji (1996):
“An FFT-Based Technique for Translation, Rota-
tion, and Scale-Invariant Image Registration,
IEEE TRANSACTIONS ON IMAGE
PROCESSING, VOL. 5, No. 8

 [12] Andrienko, G., & Andrienko, N.: “Spatio-
temporal aggregation for visual analysis of
movements”, In Proceedings of IEEE Symposium
on Visual Analytics Science and Technology
(VAST 2008), IEEE Computer Society Press,
2008, pp.51-58.

ൌ

Approach 1

്

Approach 2

ൌ ്

Figure 7. Advantage of Fourier Mellin Transforma-
tion compared to 1D Fourier Transformation

