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ABSTRACT
Accurate predictions of how congestion propagates are essential
for mitigating its effects on traffic and the urban environment.
However, the vast majority of state-of-the-art traffic prediction
models focus on regular traffic scenarios and struggle to adapt to
the conditions following incidents. This is particularly problem-
atic since the irregular periods after incidents are arguably when
traffic predictions are most critical. Current traffic models struggle
with non-recurring congestion for two reasons: they lack inputs
alerting them an incident has happened, and traffic data containing
incident information is scarce. We create two new such datasets:
one by simulating incidents and their congestion in an open-source
microscopic simulator and another by fusing real-world traffic flow
data with incident reports. We then propose a framework that inte-
grates incident reports into deep learning models for congestion
propagation prediction. Our framework utilizes the recent traffic
flow data and fuses it with information from incident reports. We
perform a detailed empirical comparison between recurrent and
graph-based models utilizing incident reports against baselines.
Our study demonstrates that our framework significantly outper-
forms state-of-the-art graph-based models that do not account for
incident reports.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
Accurately predicting how traffic evolves is vital if we want to
make sure that our cities are sustainable, unpolluted, and pleasant
for travelers. These predictions are especially important during
congestions as these have a huge impact on the travel experience
and the urban environment. In fact, a daily 10 km car commute
through the London city center would yearly amount to 139 hours
of lost time, 282 kgs of𝐶𝑂2 emitted, and 200 GBP spent on fuel, just
from congestion alone [24]. As cities around the world continue
to grow in size and population density [18], the frequency and
severity of congestions will only increase. While personal vehicles
are responsible for a majority of traffic [25], other uses of the road
network such as public transport and freight are also affected. As
such mitigating the impact of congestion benefits not only car own-
ers but all travelers. Many drivers now rely on route planners for
accurate travel time predictions and congestion avoidance, while
traffic managers rely on the predictions to make sure that traffic
runs smoothly. This is made possible by the significant improve-
ments that modern deep learning methods have made in predicting
traffic flow during normal operations [12, 23]. These models excel
at capturing the spatial and recurring temporal patterns that govern
traffic flow. However, up to 50% of traffic congestion comes from
non-recurring incidents [17, c13-p28], and these congestions have
a huge impact on the traffic state. Since these impacts change the
traffic state suddenly, it is crucial that intelligent transport systems
react fast. However, although traffic flow prediction is a very ac-
tive research field with recent research focusing on, e.g., utilizing
auxiliary data [13, 19], recent advances in deep learning [4? ], or
newly available trajectory data [8], none of these studies considers
how incidents affect the traffic or how the models perform during
non-recurring congestion.

Since incidents happen for a multitude of reasons, it is unreason-
able to expect models to be able to predict the time and place of
incidents. Hence, for a machine learning model to predict the effects
of non-recurrent events like incidents, it first has to infer that an
incident has happened by looking at traffic flow data. This leads to
an unavoidable delay before the model can update its predictions.
One way to help models better deal with incidents is by giving them
more information through incident reports. In California, Sigalerts
has been used since the 1950s [2], and more recently,Waze has used
smartphones to bring incident reports to their users [1]. Given a
sufficiently high user penetration rate and as V2X communication
technologies evolve, we can assume that we can get an incident
report before the next prediction is needed. A key reason for the
lack of research using incident reports is that a large-scale dataset
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of incident reports combined with traffic flow data does not exist.
We remedy this by presenting two new datasets. First, we turn to
the research on microscopic simulation of traffic flow. Microscopic
traffic simulation has been a central topic in traffic research for a
long time [14]. It can approximate the aggregate traffic flow features
that a real-world induction loop traffic volume sensor gathers by
simulating how individual vehicles drive on a road network. Never-
theless, limited research has been focused on simulating incidents
on traffic networks. Therefore, we extend the well-known open-
source simulation tool SUMO with incident simulation capabilities,
thus allowing us to create a unique large-scale dataset of incidents
and subsequent traffic congestion that can foster traffic incident re-
search. Secondly, we fuse open-source traffic flow data from PEMS1
with the recent dataset of incident reports from [16]2 to create a
real-world dataset of incidents and their associated effects on con-
gestion. The immediate impact of an incident can be quantified
by analyzing its Spatio-temporal Impact Region (SIR) [3, 21]. By
predicting the SIR immediately after an incident, traffic planners
are better able to mitigate the negative effects of the congestion,
and route planners can select routes to avoid the congestion.

Apart from the datasets, we also propose a novel deep learning
framework for predicting the SIR after incidents. Our framework
utilizes the recent traffic flow and takes real-time incident reports
into account when predicting the spatio-temporal impact on traf-
fic congestion. We explore different recurrent and graph neural
network architectures in the framework. By comparing different
models on the abovementioned datasets, we empirically demon-
strate that adding incident reports and using more spatially-aware
models can dramatically improve congestion propagation predic-
tions. All code and data are made available online3.

In summary, our contributions are:

• We formulate the problem of traffic congestion propagation
prediction as a joint classification and regression task.

• We create a unique large-scale dataset for traffic incident
research by extending the SUMO microscopic simulator to
simulate incidents.

• We present a real-world dataset by combining PEMS traffic
flow data with the LSTW dataset of incident reports.

• We propose a deep learning framework using recurrent and
graph neural network-based spatio-temporal models with
incident information for congestion propagation predictions.

• We empirically demonstrate the significant positive effect
of adding incident information for congestion propagation
prediction, and we investigate the impact of different neural
architecture design choices in the quality of the predictions.

2 RELATEDWORK
Deep learning is currently the state-of-the-art method for traffic pre-
diction during free-flow traffic or recurring congestion. As stated
in the survey paper [9], many different deep learning methods
have been used, with recent research focusing on applying graph
neural networks (GNN) to capture spatial dependencies. In [12],

1https://pems.dot.ca.gov/
2https://smoosavi.org/datasets/lstw
3https://github.com/MathiasNT/CongestionPropagationPrediction

the authors present the GNN-based Diffusion Convolutional Re-
current Neural Network (DCRNN) model that uses bi-directional
random walks to capture the spatial dependencies in the graph.
The authors also use modified Gated Recurrent Units (GRU) and
an encoder-decoder structure to capture the temporal dependen-
cies. The ASTGCN model presented in [6] instead uses attention
layers to model the spatio-temporal dependencies. In [30], the au-
thors also use attention layers, but they do so in the frequency
domain. Another recent thread of research has been on inferring
an adjacency matrix for the graph neural network instead of simply
relying on the road network as an adjacency matrix. For example,
the GraphWaveNet proposed in [28] generates an adjacency matrix
using node embeddings that can be learned from data end-to-end
while [29] learns a collection of higher-order spatial and tempo-
ral graphs to model them using higher-order GNNs. In [26], the
authors use a Neural Relational Inference (NRI) [10] structure to
infer a distribution of adjacency matrices from data during training.
The sampled adjacency matrix is then used in a Message-Passing
Neural Network with GRU cells to predict the traffic flow.

However, none of these papers focuses on how well the model
predicts non-recurring congestion following traffic incidents. In
this paper, we focus precisely on predicting the Spatio-temporal
Impacted Region (SIR) of incidents. Inference of SIR from observed
data is also an active research area. However, most research on
impact regions is often limited to small datasets with only a few
incident observations and on a small road network. Hence, the
models are usually limited to statistical models like in [3], where the
SIR is inferred by comparing traffic speed to the historical average
speeds, or in [15] where they use k-means clustering. The authors
[27] use a Graph Neural Network and have a larger dataset, but
they predict whether an incident leads to any congestion instead
of predicting the full SIR.

Due to the lack of large-scale datasets, researchers have used
microscopic simulation to create larger synthetic data sets. In [20],
the authors use a microscopic simulator of a highway corridor to
create a dataset of free-flow and incident scenarios for adaptation to
incident scenarios. In [22], the authors also use a microscopic simu-
lator to simulate non-recurring incidents and measure the average
impact on agents’ travel time. The authors of [5] also simulate inci-
dents and use the simulated flow and incident data to analyze how
including incident information improves the traffic flow predictions
in sequence-to-sequence models. They analyze how the conges-
tion spreads to the incident links immediate neighbors but do not
predict the full SIR. Similar to these papers, we use microscopic
simulation to generate a data set of traffic flows following incidents.
However, to the authors’ knowledge, this is the first paper to use
the simulated data to predict the SIR. Furthermore, we predict the
full SIR immediately following the incident using deep learning
models, whereas previous works either focus on improving short-
term traffic flow predictions or the aggregate impact on the entire
traffic system. Lastly, unlike previous works, we compare the same
methods on both simulated and real-world data, thus allowing for
novel insights on the discrepancies between those data sources.

https://smoosavi.org/datasets/lstw
https://github.com/MathiasNT/CongestionPropagationPrediction
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3 METHODOLOGY
3.1 Traffic Congestion Prediction.
The task of traffic incident propagation prediction is to predict
how the congestion following a non-recurring incident propagates
through the network. We refer to the area that was impacted during
the full run of congestion as the Spatio-temporal Impact Region
(SIR) [3]. Following the formulation in [21], the problem is finding
a function F that takes in historical traffic data𝑿traffic from the last
𝑞 timesteps, incident information data 𝑰 and network information
data𝑵 info , and outputs the predicted propagation of the congestion
𝒀 . We define the propagation of the congestion 𝒀 as an 𝐸×4matrix,
where 𝐸 is the number of traffic sensors:

𝒀 = [𝑳class,𝒚start,𝒚end,𝒚Δv], (1)

where 𝑳class ∈ {0, 1}𝐸 is a Boolean indicating whether or not the
link is affected by the incident at any point, 𝒚start ∈ R𝐸 and 𝒚end ∈
R𝐸 are the start and end time of the effect for each link and𝒚Δv ∈ R𝐸
is the change of traffic speed for each link. The SIR is visualized
in Figure 1 for a road network with three sensors, where Sensor 1
and Sensor 2 are congested. The incident propagation prediction
problem is hence finding F such that

[𝑿traffic
(𝑡𝑖−𝑞 : 𝑡𝑖 ) , 𝑰 ,𝑵info]

F−→ 𝒀 , (2)

where 𝑿 traffic ∈ R𝐸×𝑇×(𝐹traffic+𝐹time ) , 𝑰 ∈ R𝐹info , 𝑵 info ∈ 𝑹𝐸×𝐹net .
𝑇 is the number of timesteps before the incident. 𝐹traffic is the traffic
flow features from the sensors, such as flow, average occupancy,
and average speed. 𝐹time is temporal features such as time of day,
𝐹info is the incident report features such as location and severity,
and 𝐹net is the network features, specifying information about the
road network if available. Likewise, an uninformed model without
incident information can be formulated as follows:

[𝑿traffic
(𝑡𝑖−𝑞 : 𝑡𝑖 ) ] F−→ 𝒀 . (3)

The prediction problem in (2) is challenging because the model
both has to be able to infer the current state of the traffic network
from 𝑿 traffic and fuse it with the incident information in 𝑰 and
network information in 𝑵info. Since traffic has complex spatial and
temporal dependencies, this requires a model that can model both.
Furthermore, the congestion following an incident only affects a
localized upstream area of the incident. Hence, the model has to be
able to take the structure of the road network into account to be
able to predict this area precisely.

3.2 SIR prediction using Graph Recurrent
Neural Networks

Due to the complex spatio-temporal dependencies in traffic data
and the importance of utilizing the road structure in the predictions,
we propose the model framework in Figure 2. The framework uses a
spatio-temporal GNN that acts on the sensor locations as nodes and
embeds the historical traffic flow data 𝑿traffic to node embeddings
𝑯𝑿 ∈ R𝐸×𝐹𝑙1 with 𝐹𝑙1 features. The incident report is padded with
zeros for all non-incident sensors and merged with the network
information using a Multi-Layer Perceptron (MLP) to create a node
embedding 𝑯 𝐼 ∈ R𝐸×𝐹𝑙2 . The node embeddings 𝑯𝑰 and 𝑯𝑿 are
then fused using an MLP. The fused node embedding is passed
through a GNN to propagate the information through the network.

Sensor 1

Sensor 3

Sensor 2

Figure 1: Visualization of the spatio-temporal impact region.
The left-hand side shows a road with three sensors and a
crashed vehicle at the bottom. The right-hand side shows the
time series of measured traffic speeds by the sensors. Sensor
1 and sensor 2 are congested, while sensor 3 is not. For the
congested sensors the congestion start time, end time and
change in speed is depicted in the diagram.

The resulting embedding 𝑯𝑠 ∈ R𝐸×𝐹𝑙3 is then passed to four fully
connected layers to create the predictions 𝑳class,𝒚start,𝒚end and𝒚Δv.
The choice of GNN layers, shown in green in Figure 2, is flexible.
Here we use DCRNN [12] and NRI [10] layers. For purely recurrent
models, the same framework can be utilized on a per-node basis, and
for uninformed models, the incident embedding can be removed.

3.2.1 DCRNN. Given a graph G = (V, E, 𝐴) with node set V ,
edge set E and a directed weighted adjacency matrix𝐴 ∈ R𝐸×𝐸 , the
diffusion convolution of a graph signal with 𝑃 features 𝑿 ∈ R𝐸×𝑃
can be defined for the 𝑝th feature as

𝑿 :,𝑝 ★G 𝑓\ =

𝐾−1∑︁
𝑘=0

(
\𝑘,1 (𝑫−1

𝑂 𝑨)𝑘 + \𝑘,2 (𝑫−1
𝐼 𝑨⊤)𝑘

)
𝑿 :,𝑝 , (4)

where 𝜽 ∈ R𝐾×2 are the parameters for the filter 𝑓\ , 𝑫𝑂 is the
out-degree matrix, 𝑫𝐼 is the in-degree matrix and 𝐾 is the amount
of steps in the diffusion process. The diffusion convolution layer
going from 𝑃 dimensions to 𝑄 dimensions is then:

𝐻:𝑞 = 𝒂
©«
𝑃∑︁
𝑝=1

𝑿 :,𝑝 ★G 𝑓
𝚯𝑞,𝑝,:,:

ª®¬ for 𝑞 ∈ {1, . . . 𝑄}, (5)

where 𝚯 ∈ R𝑄×𝑃×𝐾×2 is the collection of all convolution filters
and 𝒂 is an activation function.

In order to extend the DCRNN layer to capture temporal dy-
namics, the layer utilizes Gated Recurrent Units (GRU). The layer
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Incident Report Module

Figure 2: The proposed model for SIR prediction using GNNs. The GNN layers, depicted with green, can be interchanged with
any GNN layer. For uninformed models, the Incident Report Module can be removed.

substitutes the matrix multiplications in the GRU with the diffusion
convolution layer in Equation (5).

3.2.2 NRI. The NRI model uses an encoder to predict a latent graph
structure and then a decoder to produce node embeddings. Both
the encoder and the decoder use Message Passing Neural Network
(MPNN) layers. The MPNN layer creates messages based on the
node features, passes themessage along the directed edges, and then
updates the node embeddings based on the aggregated messages.
The message going from node 𝑖 to node 𝑗 can be calculated as

�̃�(𝑖, 𝑗 ) = 𝑓𝑒 ( [𝒉𝑖 ,𝒉 𝑗 ,𝒉(𝑖, 𝑗 ) ] . (6)

The message can also be seen as an edge embedding of the directed
edge from node 𝑖 to 𝑗 . 𝒉𝑖 and 𝒉 𝑗 are the node embeddings for node
𝑖 and 𝑗 respectively and 𝒉(𝑖, 𝑗 ) is the previous edge embedding. The
aggregation of messages and update of the node embedding is then

�̃� 𝑗 = 𝑓𝑣
©«

∑︁
𝑖∈N𝑗

h(𝑖, 𝑗 ) , h𝑗

ª®¬ , (7)

where �̃� 𝑗 is the updated node embedding. N𝑗 denotes the set of
nodes with an edge going to node 𝑗 . 𝑓𝑒 and 𝑓𝑣 are small MLPs. The
encoder takes the node features𝑿 and uses a fully connected graph
to create edge embeddings for all possible directed edges:

h1𝑗 = 𝑓emb
(
x𝑗
)

h1(𝑖, 𝑗 ) = 𝑓
1
𝑒

( [
h1𝑖 , h

1
𝑗

] )
h2𝑗 = 𝑓

1
𝑣
©«
∑︁
𝑖∈N𝑗

h1(𝑖, 𝑗 )
ª®¬

h2(𝑖, 𝑗 ) = 𝑓
2
𝑒

( [
h2𝑖 , h

2
𝑗 , h

1
(𝑖, 𝑗 )

] )
.

(8)

We then define the edge posterior as 𝑞𝜙 (𝒛𝑖 𝑗 |𝑿 ) = softmax(𝒉2(𝑖, 𝑗 ) ).
This posterior graph distribution is then sampled from using the
Gumbel distribution:

z𝑖 𝑗 = softmax
((
h2(𝑖, 𝑗 ) + g

)
/𝜏
)
, (9)

where g is a vector of i.i.d samples from a Gumbel(0,1) distribution
and 𝜏 is a parameter to control the smoothing of the samples. The
resulting samples then denote an adjacency matrix 𝑨 s.t. 𝑨𝑖 𝑗 = 𝒛𝑖 𝑗 .
The decoder can then create node embeddings using the sampled
adjacency matrix. We include GRU cells in the decoder to capture

temporal dynamics. The decoder for timestep 𝑡 is then:

h̃𝑡(𝑖, 𝑗 ) = 𝑧𝑖 𝑗,𝑘 𝑓𝑒
( [
h̃𝑡𝑖 , h̃

𝑡
𝑗

] )
MSG𝑡𝑗 =

∑︁
𝑖≠𝑗

h̃𝑡(𝑖, 𝑗 )

h̃𝑡+1𝑗 = GRU
( [
MSG𝑡𝑗 , x

𝑡
𝑗

]
, h̃𝑡𝑗

)
𝒉𝑡+2𝑗 = x𝑡𝑗 + 𝑓out

(
h̃𝑡+1𝑗

)
.

(10)

where �̃�𝑡𝑖 is the node embedding from the previous timestep and
𝒙𝑡
𝑗
is the current node features.
The encoder and decoder can then be trained jointly. For details

in the training we refer to the original paper [10].

3.3 SIR inference from observed traffic flows.
We use an approach like in [3] to infer the SIR from the observed
traffic flows. First, we process the data such that all sensors have the
same number of lanes. In case of multiple lanes per traffic sensor,
all unused lanes are masked and padding lanes are added. Then,
a unique congestion threshold is calculated based on the average
speed of non-incident traffic for each traffic sensor, considering dis-
tinct weekdays and hours of the day. Let 𝑠𝑖,𝑑,ℎ be the average speed
of all non-incident traffic at sensor 𝑖 on weekday 𝑑 during hour ℎ
and 𝛿𝑖,𝑑,ℎ the corresponding standard deviation. The congestion
threshold is then defined as

𝑇𝑖,𝑑,ℎ = 𝑠𝑖,𝑑,ℎ − 𝛼𝛿𝑖,𝑑,ℎ (11)

where 𝛼 is a hyperparameter. Following an incident, a sensor at
a timestep is defined as affected if its speed is below the relevant
congestion threshold. Data from loop detectors can be prone to
noise if not aggregated over an extended period. Therefore, all
affected observations not part of a sequence of affected observations
longer than[ observations, where[ is a hyperparameter, are filtered
out. The hyperparameters 𝛼 and [ are optimized to identify affected
sensors deviating significantly from their historical average speed
while minimizing the deviation for unaffected sensors. Lastly, all
downstream affected links are filtered out as the SIR considers the
immediate congestion propagation directly following the incident.
Then 𝑳𝑐𝑙𝑎𝑠𝑠 is created by defining any road link with a sequence
of affected observations on any lane as affected. 𝒚𝑠𝑡𝑎𝑟𝑡 and 𝒚𝑒𝑛𝑑
are created by finding the timestep of the first and last affected
observation on the road links, and 𝒚Δ𝑣 by calculating the mean
difference between the observed speed on the affected link and the
historical average speed on the link between 𝒚𝑠𝑡𝑎𝑟𝑡 and 𝒚𝑒𝑛𝑑 .
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Figure 3: The road network in the Irish Motorway SUMO
scenario.

4 DATASETS
4.1 Simulated Irish Motorway
Currently, no large-scale datasets of incident reports and the corre-
sponding traffic congestion exist. However, microscopic simulators
like SUMO [14] have been used to simulate traffic flow on road
networks. Unfortunately, SUMO does not have the capability to
simulate incidents. Therefore, we extend the SUMO simulator to
create incidents by blocking road lanes and simulate the subsequent
congested traffic flows. Instead of creating a new simulation sce-
nario, we use the already calibrated Irish Motorway scenario from
[7]. As seen in Figure 3 the scenario contains a stretch of highway
and two intersections with ramps on and off the highway. The
simulated road links have between 1 and 6 lanes. We add simulated
loop detectors on all lanes at the middle of each road link totaling
147 sensors, and aggregate the observations in 30-second inter-
vals. Using the scenario, we run 10,000 simulations of the traffic
flow with and without incidents. We use the previous 10 timesteps
to create 𝑿traffic. The traffic features 𝐹traffic are the average occu-
pancy of the sensor, the average speed, and the total flow in the
30-second interval for each lane. The temporal features consist of
the trigonometric transformation of the time of day in seconds.

For incident reports, we use the index of the closest upstream
sensor, the number of blocked lanes, how fast cars are able to drive
past the incident, and the time until the incident is cleared. The
network features are indicator variables denoting the number of
lanes at each sensor location. We infer the SIR using the method
explained in 3.3. However, instead of creating a confidence interval
around the historical average of the observed speed, we instead cre-
ate it based on the counterfactual simulation without the incident.
This way, we utilize the simulation to get the best possible SIR. We
select an 𝛼 of 1.95 and an [ of 10. After simulation and inference,
we split the data into train, validation, and test sets using a 60/20/20
ratio. As the incidents are simulated independently, we do the split
randomly. We retain some of the sensors for the test set to have a
spatially out-of-distribution sub-set of the test set. This is done to
test the models’ ability to generalize to unseen incident locations.

4.2 LSTW PEMS (Real World)
To create a real-world data set of incidents and corresponding traffic
flow, we combine traffic flow data and incident reports from Los
Angeles, California. The traffic flow data is created by CalTrans
and is available from the PEMS system 4. We select five stretches

4http://pems.dot.ca.gov/

Figure 4: The location of the selected sensors in the PEMS
dataset. The colors indicate the direction of the road onwhich
the sensors are placed.

of intersecting highways with 215 sensors in the northern part of
LA and get the traffic data from the year 2017. The selected sensors
can be seen in Figure 4. The observations are aggregated in five-
minute intervals, and we use the last 12 timesteps for 𝑿traffic. The
traffic features 𝐹traffic are the average occupancy of the sensor, the
average speed, and the total flow in the five-minute interval. The
temporal features are the day of the week and the time of day in
seconds, resulting in four temporal features after trigonometric
transformation.

The incident data is from [16]. We extract the incidents on the
same five stretches from which we have traffic flow data. We then
match each incident with the corresponding time slice of the traffic
flow data and find the closes upstream sensor of the incident. We
create incident reports containing the index of the closest sensor, a
severity score between zero and four, a Traffic Message Channel 5
code with a more detailed description of the event and the reported
duration of the block. With this we can then run inference of the
SIR using the Frame Region method explained in 3.3 using an 𝛼 of
one and an [ of 2. After this, we end up with 1024 data points of
incidents with corresponding traffic flow and SIR. We again split
the data into train, validation, and test sets using a 60/20/20 ratio.
As the incidents are not overlapping, we do this split randomly.

5 EXPERIMENTS
In this section, we conduct a series of experiments analyzing the
effect of incident information, the size of the dataset, as well as
time-lagged traffic on congestion prediction.

5https://wiki.openstreetmap.org/wiki/TMC/Event_Code_List

https://wiki.openstreetmap.org/wiki/TMC/Event_Code_List
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Table 1: Classification performance of the different unin-
formed models on the full test set of the simulated data. The
mean of four runs is reported along with one standard devia-
tion.

Model Accuracy Precision Recall F1

MLP 0.640 ± 0.002 0.069 ± 0.000 0.705 ± 0.002 0.126 ± 0.000
LSTM 0.635 ± 0.018 0.069 ± 0.002 0.713 ± 0.011 0.126 ± 0.004
LSTM-A 0.605 ± 0.028 0.065 ± 0.003 0.729 ± 0.022 0.120 ± 0.005
TCN 0.642 ± 0.006 0.070 ± 0.001 0.708 ± 0.005 0.127 ± 0.001
DCRNN 0.663 ± 0.004 0.077 ± 0.000 0.744 ± 0.005 0.140 ± 0.001
NRI 0.640 ± 0.052 0.071 ± 0.005 0.722 ± 0.061 0.130 ± 0.007

5.1 Comparing informed and uninformed
models on simulated and real-world data

First, we compare different uninformed and informed models on the
simulated and real-word data sets. By uninformed, we mean that
the models receive no information about the incident and base their
predictions solely on the observed traffic flow before the incident,
i.e., 𝑿traffic, and by informed we mean models that also receive the
incident information 𝐼 . The models follow the framework presented
in Section 3.2, with the incident report module removed for the
uninformed models.

We compare our framework with six neural network architec-
tures that have been used for traffic flow prediction. First, we have
four models that create an embedding for each sensor location
independently:

• MLP : Uses a 3-layer MLP.
• LSTM: Uses the last hidden state from an LSTM layer.
• LSTM-A: Uses self-attention on the hidden states from an
LSTM layer.

• TCN : Uses a Temporal Convolution Layer [11].

Then we have two different GNN-based models:

• DCRNN : Uses a DCRNN layer to create the embedding. The
adjacency matrix used is the road network with the distance
between sensors as weights [12].

• NRI : Uses an NRI model to create the embedding. As the
encoder in the NRI uses a fully connected adjacency matrix,
no road network is added to the model [10].

We train all models until convergence and calculate the mean per-
formance over four runs using different random seeds.

5.1.1 Uninformed models. First, we look at how well uninformed
models are able to predict the congestion labels 𝑳𝑐𝑙𝑎𝑠𝑠 . The accuracy,
precision, recall, and F1 scores of the uninformed models’ classifi-
cations can be seen in Table 1. From the table, we can see that all
uninformed models perform poorly with low precision scores, with
the highest being DCRNNwith 0.077. The DCRNNmodel does have
a better recall of 0.744 but only achieves an F1 score of 0.140. The
uninformed models’ bad classifications are unsurprising as these
models lack information on which to base their predictions. They
only observe the pre-incident traffic flows and guess the impact of
the unknown incident. The graph-based DCRNN and NRI know or
infer a structure of the road network and are therefore able to make

Table 2: Classification performance of informed andnetwork-
informed models on the simulated dataset. We report the
scores on the full test set along with the scores on the out-of-
distribution subset. The mean of four runs is reported along
with one the standard deviation.

Model Accuracy Precision Recall F1

Fu
ll
te
st
se
t

HA 0.980 0.710 0.750 0.730
Inf-LSTM 0.729 ± 0.001 0.098 ± 0.000 0.778 ± 0.002 0.175 ± 0.001
Inf-LSTM-A 0.726 ± 0.003 0.097 ± 0.001 0.775 ± 0.002 0.173 ± 0.001
Inf-DCRNN 0.968 ± 0.000 0.842 ± 0.001 0.149 ± 0.000 0.253 ± 0.000
Inf-NRI 0.962 ± 0.005 0.512 ± 0.145 0.241 ± 0.063 0.314 ± 0.029
NetInf-LSTM 0.978 ± 0.001 0.657 ± 0.021 0.866 ± 0.030 0.747 ± 0.003
NetInf-LSTM-A 0.979 ± 0.001 0.667 ± 0.011 0.877 ± 0.017 0.758 ± 0.003
NetInf-DCRNN 0.975 ± 0.000 0.610 ± 0.002 0.867 ± 0.008 0.716 ± 0.002
NetInf-NRI 0.981 ± 0.003 0.669 ± 0.041 0.966 ± 0.013 0.789 ± 0.025

O
ut

of
di
st
rib

ut
io
n

HA 0.967 0.541 0.617 0.577
Inf-LSTM 0.697 ± 0.002 0.090 ± 0.001 0.817 ± 0.004 0.163 ± 0.001
Inf-LSTM-A 0.694 ± 0.003 0.089 ± 0.001 0.811 ± 0.003 0.160 ± 0.002
Inf-DCRNN 0.969 ± 0.000 0.840 ± 0.001 0.155 ± 0.000 0.262 ± 0.001
Inf-NRI 0.962 ± 0.006 0.508 ± 0.162 0.252 ± 0.059 0.321 ± 0.021
NetInf-LSTM 0.979 ± 0.001 0.652 ± 0.025 0.906 ± 0.027 0.758 ± 0.008
NetInf-LSTM-A 0.979 ± 0.001 0.651 ± 0.019 0.921 ± 0.016 0.763 ± 0.004
NetInf-DCRNN 0.976 ± 0.000 0.616 ± 0.002 0.876 ± 0.011 0.723 ± 0.004
NetInf-NRI 0.980 ± 0.003 0.646 ± 0.041 0.970 ± 0.013 0.775 ± 0.026

more coherent guesses. Hence these models have a slight advantage
in predicting the impact of the incident over the per-node models.

5.1.2 Informed models. Next, we extend the models also to take
information from the incident reports as input. We do this in two
ways. First, we add the incident information 𝑰 and zero pad it
for the non-incident sensors. Models with this additional input are
specified as Inf models. Furthermore, we extend the Boolean feature
to be a fraction that describes how far upstream the sensor is of the
incident. We do this by adding an exponential decay upstream by

𝑖upstream = 𝑒−0.25 𝑙 (12)

where 𝑙 is the number of links the node is upstream from the in-
cident. We add this feature to the zero-padded incident report of
the Inf models. Models with the extended upstream feature are
specified as NetInf models. We also create a Historical Average
(HA) model based on the incident report. The HA model uses the
incident report to find the most similar incident in the training set
and copy its SIR as the prediction.

The classification results of the Inf, NetInf, and HAmodels on the
full test set and the out-of-distribution subset can be seen in Table
2. As seen from the table, adding the incident report improves the
classification of the impact area of the models. For the Inf-LSTM
and the Inf-LSTM-A, the F1 scores go from 0.126 to 0.173 and 0.175,
respectively. However, it is worth noting that they both still achieve
a precision of less than 0.1. If we look at the graph-based Inf-DCRNN
and Inf-NRI, we can see that the inclusion of the incident report has
a more significant impact on the performance of these models, with
the models achieving F1 scores of 0.253 and 0.314, respectively. The
Inf-LSTM and Inf-LSTM-A do not improve as much as the graph-
based models because even though the models receive information
about where the incident happened, they have no knowledge of
the structure of the road network. Therefore, the incident report
only helps predict the impact of the incident sensor itself, not any
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road links to which the congestion can propagate. The Inf-DCRNN
and Inf-NRI models have an adjacency with the road structure or
an inferred equivalent. Hence they can use the incident report also
to find the local upstream area that the congestion can spread to.
This enables the models to achieve higher precision scores of 0.842
for Inf-DCRNN and 0.512 for NRI.

Looking at the NetInf models, we can see that adding the indica-
tor variable further improves the predictions. The NetInf models
achieve an F1 score over 0.71, with NetInf-NRI being the best with
0.789. The NetInf-LSTM and the NetInf-LSTM-A also achieve high
F1 scores with 0.746 and 0.758, respectively, outperforming NetInf-
DCRNN, which only reaches 0.716. Also note that the HA model
achieves an F1 score of 0.730, beating the DCRNN model. It is clear
that by adding the upstream indicator variable, 𝑖upstream, all models
get the structure of the upstream area of the incident, which dra-
matically improves the NetInf models’ performance. Furthermore,
the difference between the graph-based models and the models
operating on each sensor separately is diminished. This shows
that, for congestion propagation prediction, the inclusion of an
upstream indicator is more important than an advanced graphical
model. From the results of the out-of-distribution subset of the test
set, we can see that the HA model has a big drip in performance,
only achieving an F1 score of 0.577. However, all the Inf and NetInf
models perform similarly to how they did on the full test set. This
means that these models are able to generalize to incidents on road
links with no previous incident history, which is paramount for an
application in a real-world scenario with limited data.

The regression tasks of the temporal predictions and the effect
on traffic speed can be seen in Table 3 for the full test set and Table
4 for the out-of-distribution subset. In the tables, we show the mean
absolute error (MAE) and the masked mean absolute percentage
error (MMAPE). We mask the mean absolute percentage error to
the affected sensors to get more interpretable results. For the full
test set, we see that the HA model consistently achieves a lower
MMAPE than the other methods and is only beaten on the MAE of
the start time prediction by NetInf-NRI. The HA model performs
especially well in MMAPE for speed in the predicted area, with a
score of only 0.08. It is worth noting that on the predicted impact
area, the MMAPE becomes all of the correctly classified road links.
So, in cases where the HA model correctly classifies something as
affected, the historical change in speed that the HA model uses is
also a good prediction for the change in speed. The NetInf models
all achieve similar results, with the NetInf-NRI being slightly better
for the start time and change in speed predictions but slightly worse
in the end time prediction. Generally, we can see that the NetInf
models achieve MMAPES between 0.399 and 0.498. For the out-of-
distribution subset, we can see that the HA model again struggles
to generalize while the NetInf models are much better. The NetInf-
LSTM-A model is the best model on the true SIR, achieving an
MMAPE of 0.433, 0.404, and 0.338 on the start time, end time, and
change in speed, respectively. NetInf-LSTM-A also achieves the
best MAEs on the predicted SIR, while the HA model still gets
better MMAPE scores. However, again note that the MMAPE on
the predicted SIR is the MAPE of the sensors where the models
correctly classify congestion.

Next, we also compare the informed models on the real-world
dataset. The classification results can be seen in Table 5. In line

Figure 5: F1 scores of NetInf-DCRNN and NetInf-NRI when
trained with varying training set sizes on the simulated data.

with the results of the simulated data, the Inf-LSTM-A and Inf-
LSTM models are the worst-performing models, with F1 scores of
0.085 and 0.087, respectively. NetInf-DCRNN achieves the best F1
score with 0.227 beating the other NetInf models. However, NetInf-
DCRNN achieves the lowest recall of the NetInf models with 0.601
but gets a significantly better precision with 0.140. The HA model
achieves a precision of 0.153 but has a low recall of only 0.170.
This shows that the findings from the simulated data carry over
to the real world. Adding in the 𝑖upstream vastly improves the mod-
els. However, here NetInf-DCRNN beats the other NetInf models.
NetInf-DCRNN achieves the lowest recall of the NetInf models but
gets significantly better precision. Similar to the out-of-distribution
test on the simulated data, the HA model does not achieve the same
performance as the NetInf models, showing how important gen-
eralizability is for a real-world application. The regression results
on the real-world dataset can be seen in Table 6. As seen from the
table, for the true SIR, the NetInf-LSTM-A model has the best start
and end time predictions, while the NetInf-LSTM model has the
best predictions of the change in speed. It is also worth noting
that all NetInf models perform better than HA. For the predicted
SIR, we can see that the NetInf-LSTM-A and NetInf-LSTM models
have better MAE scores, while the NetInf-DCRNN and NetInf-NRI
models have better MMAPE scores, except for the MMAPE of the
change in speed where HA is again performing well.

Comparing the performance of the models on the simulated
data versus the real-world data, we can see that the models are
better on the simulated data. There could be several reasons for
this. The spatial size of the real-world data set is much larger than
the simulated data, has more intersections, and has long distances
between sensors. Hence, the spatial dependencies of the real-world
data are harder to detect from the data. Another point is that the
incident reports in the simulation are more precise. They contain
the number of blocked lanes, while the real-world incident reports
only have the severity level and TMC codes, which do not directly
say how much of the traffic is blocked by the incident.

5.2 Dataset size’s impact on performance
We investigate how the classification performance of NetInf-DCRNN
and the NetInf-NRI vary depending on dataset size. We keep the
test data set fixed and vary the size of the train data set. We then
calculate the F1 scores of the models’ classifications. The results
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Table 3: MAE and MMAPE of the models’ predictions of the start time, end time, and change in speed. The metrics are calculated
both on the true affected area and the models’ predicted affected area for the full test set of the simulated dataset. Note that the
MMAPE on the predicted SIR corresponds to the MAPE on correctly classified congested sensors.

Start time (sec) End time (sec) 𝚫 Speed (km/h)

Area Model MAE MMAPE MAE MMAPE MAE MMAPE

Tr
ue

SI
R

HA model 11.082 0.446 28.851 0.435 6.700 0.310
NetInf-LSTM-A 11.875 ± 0.519 0.479 ± 0.025 31.847 ± 0.812 0.469 ± 0.017 8.184 ± 0.275 0.387 ± 0.014
NetInf-DCRNN 12.403 ± 0.013 0.478 ± 0.004 31.874 ± 0.122 0.469 ± 0.005 9.076 ± 0.077 0.421 ± 0.003
NetInf-LSTM 12.037 ± 0.816 0.489 ± 0.065 32.006 ± 0.800 0.470 ± 0.019 8.496 ± 0.324 0.399 ± 0.013
NetInf-NRI 10.991 ± 0.201 0.463 ± 0.017 31.416 ± 1.152 0.498 ± 0.045 6.978 ± 0.439 0.357 ± 0.012

Pr
ed
ic
te
d
SI
R HA 11.484 0.262 30.113 0.247 7.349 0.080

NetInf-LSTM-A 10.247 ± 0.139 0.406 ± 0.018 31.571 ± 0.701 0.395 ± 0.019 8.263 ± 0.180 0.302 ± 0.005
NetInf-DCRNN 11.105 ± 0.053 0.398 ± 0.004 33.174 ± 0.236 0.387 ± 0.010 9.173 ± 0.042 0.333 ± 0.003
NetInf-LSTM 10.411 ± 0.073 0.412 ± 0.057 31.749 ± 0.454 0.387 ± 0.015 8.338 ± 0.226 0.306 ± 0.010
NetInf-NRI 11.288 ± 0.557 0.444 ± 0.019 33.611 ± 1.791 0.48 ± 0.047 8.973 ± 0.350 0.334 ± 0.005

Table 4: MAE and MMAPE of the models’ predictions of the start time, end time, and change in speed. The metrics are calculated
both on the true affected area and the models’ predicted affected area for the out-of-distribution subset of the simulated datasets
test set. Note that the MMAPE on the predicted SIR corresponds to the MAPE on correctly classified congested sensors.

Start time (sec) End time (sec) 𝚫Speed (km/h)

Area Model MAE MMAPE MAE MMAPE MAE MMAPE

Tr
ue

SI
R

HA 12.517 0.581 33.419 0.555 9.7732 0.436
NetInf-LSTM-A 10.268 ± 0.531 0.433 ± 0.019 24.808 ± 0.889 0.404 ± 0.018 7.124 ± 0.294 0.338 ± 0.015
NetInf-DCRNN 11.671 ± 0.064 0.469 ± 0.004 28.326 ± 0.265 0.447 ± 0.007 8.736 ± 0.063 0.406 ± 0.003
NetInf-LSTM 10.398 ± 0.723 0.442 ± 0.066 25.003 ± 1.115 0.405 ± 0.021 7.516 ± 0.373 0.352 ± 0.015
NetInf-NRI 10.447 ± 0.212 0.464 ± 0.019 27.108 ± 1.307 0.480 ± 0.044 7.461 ± 0.437 0.389 ± 0.012

Pr
ed
ic
te
d
SI
R HA 13.719 0.322 36.148 0.279 11.098 0.086

NetInf-LSTM-A 10.635 ± 0.390 0.385 ± 0.011 29.715 ± 0.339 0.353 ± 0.021 8.375 ± 0.204 0.281 ± 0.005
NetInf-DCRNN 11.72 ± 0.124 0.394 ± 0.006 32.758 ± 0.412 0.369 ± 0.013 9.530 ± 0.037 0.322 ± 0.006
NetInf-LSTM 10.692 ± 0.235 0.386 ± 0.057 29.795 ± 0.854 0.343 ± 0.015 8.432 ± 0.218 0.285 ± 0.008
NetInf-NRI 11.655 ± 0.502 0.448 ± 0.019 32.261 ± 1.806 0.463 ± 0.045 9.662 ± 0.300 0.369 ± 0.008

Table 5: Classification performance of HA, Inf, and NetInf
models on the real world dataset. The mean of four runs is
reported along with one standard deviation.

Model Accuracy Precision Recall F1

HA 0.949 0.153 0.170 0.162
Inf-LSTM-A 0.704 ± 0.011 0.047 ± 0.001 0.474 ± 0.024 0.085 ± 0.002
Inf-LSTM 0.724 ± 0.034 0.048 ± 0.001 0.456 ± 0.065 0.087 ± 0.002
NetInf-LSTM 0.772 ± 0.004 0.113 ± 0.001 0.998 ± 0.004 0.203 ± 0.002
NetInf-LSTM-A 0.771 ± 0.001 0.112 ± 0.000 0.999 ± 0.002 0.202 ± 0.000
NetInf-DCRNN 0.881 ± 0.007 0.140 ± 0.003 0.601 ± 0.034 0.227 ± 0.003
NetInf-NRI 0.833 ± 0.007 0.117 ± 0.001 0.726 ± 0.024 0.202 ± 0.001

on the simulated data set can be seen in Figure 5, and the results
on the real-world data can be seen in Figure 6. As can be seen
from both figures, NetInf-NRI is harder to train, leading to higher
variance between runs than NetInf-DCRNN, and struggles to con-
verge for lower training set sizes. Hence, for training set sizes lower
than 400 observations, NetInf-NRI begins to fail to converge on the
simulated data. It can also be seen in the figures that NetInf-NRI
improves more with more data than NetInf-DCRNN, suggesting

Figure 6: F1 scores of NetInf-DCRNN and NetInf-NRI when
trained with varying training set sizes on the PEMS data.

that for extensive datasets, NetInf-NRI could achieve better perfor-
mance. However, this shows how selecting simpler models can be
beneficial for real-world applications where data is scarce.
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Table 6: MAE and MMAPE of the HA and NetInf models’ predictions of the start time, end time, and change in speed on the
real-world dataset. The metrics are calculated both on the true affected area and the models’ predicted affected area. Note that
the MMAPE on the predicted SIR corresponds to the MAPE on correctly classified congested sensors.

Start time (sec) End time (sec) 𝚫Speed (km/h)

Area Model MAE MMAPE MAE MMAPE MAE MMAPE

Tr
ue

SI
R

HA 22.984 1.085 32.889 1.002 20.442 0.940
NetInf-LSTM-A 21.504 ± 0.172 0.837 ± 0.013 31.06 ± 0.775 0.807 ± 0.034 20.062 ± 1.213 0.826 ± 0.068
NetInf-DCRNN 22.247 ± 0.112 0.891 ± 0.006 32.423 ± 0.232 0.866 ± 0.01 20.374 ± 0.135 0.863 ± 0.009
NetInf-LSTM 21.741 ± 0.154 0.841 ± 0.016 31.298 ± 0.856 0.816 ± 0.037 19.812 (± 0.323) 0.801 (± 0.011)
NetInf-NRI 22.105 ± 0.016 0.872 ± 0.004 32.11 ± 0.343 0.844 ± 0.014 20.265 (± 0.067) 0.829 (± 0.005)

Pr
ed
ic
te
d
SI
R HA 21.163 1.514 30.948 1.010 22.037 0.649

NetInf-LSTM-A 5.204 ± 0.264 0.836 ± 0.013 7.304 ± 0.426 0.807 ± 0.034 4.698 ± 0.226 0.826 ± 0.06)
NetInf-DCRNN 5.855 ± 0.271 0.817 ± 0.002 8.668 ± 0.254 0.778 ± 0.008 6.102 ± 0.162 0.773 ± 0.002
NetInf-LSTM 4.905 ± 0.236 0.841 ± 0.016 7.306 ± 0.323 0.815 ± 0.038 4.755 ± 0.124 0.800 ± 0.012
NetInf-NRI 5.379 ± 0.179 0.82 ± 0.003 7.837 ± 0.328 0.785 ± 0.019 5.328 ± 0.038 0.764 ± 0.004

Figure 7: F1 scores for NRI, NetInf-NRI, LSTM-A, and NetInf-
LSTM-A for varying numbers of timesteps after the incident
before prediction on the full test set of the simulated dataset.

5.3 Impact of observing congestion before
prediction

A reasonable argument against the importance of using incident
reports in traffic predictions is that modern machine-learning meth-
ods are great at adapting to the current state of traffic. As such
methods should be able to infer that an incident has occurred from
the first congested observations and update the predictions accord-
ingly. To test if this hypothesis is true, we trained models that used
later observations to predict the impact of the incident. I.e., we
slide the window of observed traffic flow data to later timesteps by
varying 𝑆 in

𝑿traffic
(𝑡𝑖−𝑞+𝑆 :𝑡𝑖+𝑆 ) (13)

We apply this method to both the uninformed NRI and NetInf-
NRI models, as well as the uninformed LSTM-A and NetInf-LSTM-A
models. The results can be seen in Fig. 7. As can be seen from the
figure, the F1 score of the uninformed models is low for predictions
immediately after the incident happens. As the models then observe
data from after the incident happens, the F1 score improves. With
the data from after the incident, themodels can infer that an incident

has occurred and update the predictions accordingly. It can also be
seen that the NRI model improves more with the later observations
than the LSTM-A model. This is probably because the NRI model
infers a graph that the model can use to better predict how the
congestion will spread spatially, while the LSTM-A model can only
infer which edges the congestion will spread to after the congestion
starts affecting an edge. Looking at the NetInf models, we can
see that with the addition of the incident report, the immediate
predictions are much better. The immediate predictions from the
NetInf models are much better than those from uninformed models
for any value of 𝑠 . Hence, including incident reports in the models
not only leads to better immediate predictions but also leads to
better predictions overall.

6 CONCLUSION
In this paper, we have shown how including incident reports in
models for congestion propagation prediction can vastly improve
predictive performance. We proposed a novel framework utiliz-
ing deep neural networks that predicts the spatio-temporal impact
region of incidents based on historical traffic flow and incident
reports. We created two new datasets for congestion propagation
prediction. First, we extended the SUMO microscopic traffic simu-
lator to simulate incidents and simulated a large-scale dataset of
incidents and their following congestion. Next, we took real-world
incident reports and combined them with traffic flow data from
PEMS. While the proposed simulated and real-world datasets are
great first benchmarks, they have some limitations that should be
considered. First, the simulated dataset is limited in the number of
exogenous variables that it considers. For example, the weather is
not implemented in the SUMO simulator, even though it is known
to have a big impact on traffic. For the real-world dataset, another
limitation is the resolution of the data. The data used comes from
PEMS, one of the most comprehensive traffic sensor systems in the
world. However, the distance between sensors and the 5-minute
sampling rate still limits the precision with which congestion can
be measured accurately. This problem also gets bigger when ap-
plying the proposed framework to areas with even lower spatial
and temporal resolution. Analyzing how exogenous variables and
spatio-temporal resolution affects the congestion predictions are
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both interesting directions for future work. The two datasets were
used to do an empirical study of the congestion propagation pre-
dictions from uninformed, informed, and historical average models.
The results showed that including incident reports in the framework
leads to significantly more accurate predictions both on simulated
and real-world data and how including an upstream indicator vari-
able can be sufficient to get otherwise spatially unaware models
to perform as well as models based on advanced graph neural net-
works. However, the results also showed that spatial awareness of
the upstream structure is necessary. By training models that predict
at various points in time after the incident, we demonstrated that
the immediate predictions from models utilizing incident reports
are superior to predictions from uninformed models, even when
the uninformed models have observed the following congestion.
Lastly, we analyzed the impact of dataset sizes on the prediction
performance, thus highlighting the importance of the creation of
large-scale open benchmark datasets, such as the ones that we devel-
oped and released, for traffic incident prediction research. Moreover,
our analysis also showed that NRI requires more data than DCRNN
to get good performance, thus indicating that relying on simpler
models can be beneficial for real-world applications where incident
data is scarce.
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