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ABSTRACT
Transportation causes several adverse environmental e�ects, in-
cluding the emissions of air pollutants and greenhouse gases. Thus,
shifting global mobility towards novel and more sustainable solu-
tions is needed, for instance by enhancing public transports, pro-
moting active modes, or adopting more sustainable technologies.
In this context, simulators of urban mobility o�er a valuable tool
for assessing the impact of new policies, by providing support in
designing tra�c circulation plans and assessing the e�ectiveness
of new transportation modes. However, building realistic scenarios
is challenging due to data reliability issues.

In this paper, we present some lessons learned on the use of the
SUMO simulator for sustainable mobility. Through a case study in
the city of Genoa, Italy, we described the challenges we faced, which
lead us to a signi�cant discrepancy between simulated and real data.
Despite manual data cleansing/re�nement improved the accuracy,
data quality remains still a concern. Thus, in this paper we highlight
to the ITS community the need for improving data reliability to
preliminary assess eco-friendly transportation solutions.
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1 INTRODUCTION
It is widely recognized that transportation can have adverse environ-
mental e�ects, such as releasing greenhouse gases and generating
noise pollution. For this reason, there is an urgent need to shift
global mobility systems toward more sustainable solutions. Among
others, a well-known strategy is to improve public transport sys-
tems, making them more attractive and convenient w.r.t private
modes, thus reducing tra�c congestion, decreasing emissions, and
improving overall urban mobility [7, 13]. In this direction, several
researches are for example focusing on improving predicting the
arrival times of metros and buses (e.g. [3, 12, 14]), or the passen-
ger demand, such as [8] and [15]. The aim of these researches is
to proactively adapt public services to the dynamic needs of the
citizens, also by exploiting the predictions of both the arrival times
and the passenger demand.

Evaluating the impact of these new solutions and assessing their
sustainability at a city-wide scale is another crucial aspect of urban
planning and policy-making. Still, there is a lack of tools for support-
ing decision-makers in these tasks. Simulators of urban mobility
are valuable instruments for conducting comprehensive analyses
and performing what-if scenarios, to make informed decisions.

For instance, urban mobility simulators can be employed to en-
hance public transportation systems and reduce reliance on private
modes of transportation [2, 9]. They allow to assess the impact of
various modi�cations, such as changes to bus routes, adjustments to
train schedules, or the introduction of new modes of transportation
like light rail or electric scooters. By simulating di�erent scenar-
ios and analyzing the outcomes, it is possible to identify the most
e�ective strategies for improving the e�ciency, reliability, and ac-
cessibility of public transportation networks, while minimizing
congestion and emissions.

To this purpose, SUMO (Simulation of Urban Mobility) simulator1
has been widely adopted in thousands of ITS researches, being an
open source, highly portable tra�c simulation package, designed to
handle also large networks [10]. For instance, in [4] the simulator is
employed for supporting the design of tra�c circulation plans in a
smart city. More in detail, the scenario of Kuala Lumpur is analyzed,
investigating whether one-way roads are more or less e�ective
than two-way roads. According to this work, the best solution
1https://sumo.dlr.de/docs/index.html/introduction
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highly depends on the tra�c conditions. Similarly, in [16] SUMO
is used for discussing the e�ectiveness of the penetration rates
of cooperatively controlled vehicles in mixed tra�c, by explicitly
considering also the emissions. However, both of these works do
not consider real mobility demand, which is randomly generated.
Instead, in [6], the potential performance of personal rapid transit
is examined, in a medium-sized German city, namely Bad Hersfeld.
The travel demand for this case study is based on realistic works
by Deutsches Zentrum fur Luft-und Raumfahrt (DLR). As shown,
a �eet of just 30 vehicles is able to properly serve the mobility
demand of the city, guaranteeing passenger wait times below 3
minutes. However, the results of the simulation are not compared
to real-world �ows, which may be di�erent.

Indeed, as highlighted in [11], building a realistic scenario is
not a trivial task. Indeed, in this work, a large-scale agent-based
scenario is built and validated for the city of Bologna (Italy), proving
that a time-consuming calibration step is needed to obtain realistic
simulations. More in detail, the authors run the simulation based on
an OD matrix obtained from the 14th population census, conducted
by the Italian Institute for statistics (ISTAT) in 2001. Then, they
validated the results of the simulation by exploiting observed �ows
from road-side detectors, showing that several systematic error
sources are still present, hindering the accuracy of the results.

In this paper, we are willing to share with the ITS community
the positive and negative experiences we gathered in a real-world
scenario, where, in an academic-industrial collaboration, we applied
a well-known urban simulator, namely SUMO, for the evaluation
of di�erent policies, towards proactive public transport demand
management.

In particular, we used SUMO to simulate the urbanmobility of the
city of Genoa, Italy, leveraging the Open Street Map (OSM) road net-
work, the GTFS �les reporting public transport schedules, and two
datasets about local urban mobility, i.e. some Origin-Destination
matrices, and real data collected from Genoa buses over more than
a year, about passenger load and time of arrival at each stop. From
our experience, we found signi�cant discrepancies between simu-
lated and real data, mainly due to a lack of reliability in the open
data sources, making results useless. After signi�cant manual data
cleansing operations, we were able to obtain simulated data with
an accuracy more comparable to the real data.

In the rest of the paper we detail and quantify the issues we
found, and we highlight the e�orts that the ITS community should
carry on to improve the quality of data sources, so that mobility
simulations, especially for green-house emission estimation, can
be more e�ective.

2 THE INVESTIGATED REAL-WORLD
SCENARIO

The objective of our investigation was to set up a simulator of
mobility in the city of Genoa, Italy, considering both the private
and public transportation modes. Clearly, the usefulness of such a
simulator highly depends on its adherence to the reality. For this
reason, we validated the accuracy of the simulator by comparing
the results of the simulation with real-world data, acquired through
sensors installed on board public vehicles. In the following, our
deployment experience is described in detail.

2.1 Eclipse SUMO
For our experimental project, we employed the SUMO simulator,
an open source, highly portable, and widely documented tra�c
simulation tool, designed to handle also large networks. More in
details, SUMO allows two di�erent kinds of simulations, namely mi-
croscopic and mesoscopic. The former models each vehicle and its
dynamic separately, with a �xed sampling rate, by solving underly-
ing di�erential equations. For this reason, microscopic simulations
are highly time and computational consuming. Moreover, work-
ing at a �ne-grained resolution, small modeling errors can lead to
signi�cant errors in the simulation results [11].

On the other hand, in the mesoscopic view is also provided by
SUMO. In this case, the tra�c �ow is represented as a dynamic
queue, where each road-link acts as a FIFO queue. This implemen-
tation involves the following speci�c restrictions:

• Every agent (vehicle or person) must remain on the link for
a speci�c duration, corresponding to the travel time at free
�ow speed;

• The out�ow rate of a link is limited by its capacity, ensuring
a controlled �ow of agents;

• A link storage capacity is de�ned, which restricts the max-
imum number of agents allowed on the link. When this
capacity is reached, no additional agents can enter, possibly
leading to spillback e�ects.

In this way, the mesoscopic simulation is a compromise between
the aforementioned microscopic and the macroscopic one, which
aggregates tra�c �ow between an origin zone and the destina-
tion one, but it is not supported by SUMO as-is. Compared to the
microscopic simulation, the mesoscopic one is faster and more ro-
bust to network model errors, while being more accurate than the
macroscopic simulation. For this reason, in this work we applied
the mesoscopic mode.

2.2 The Considered Data Sources
In order to simulate urban mobility, considering both private and
public transportation modes, we leveraged di�erent datasets, ob-
tained from di�erent data sources:

• network data;
• public transport routes and scheduling;
• urban mobility demand

2.2.1 Network data. Such data contain information about roads,
footpaths, junctions, tra�c lights, and so on. Network data can be
freely downloaded by OpenStreetMap (OSM), and then must be
converted into the SUMO format. To this purpose, we used the OSM
Web Wizard tool2, which allows users to select an OSM excerpt and
generate the SUMO networks, based on it. The resulting network,
for the city of Genoa, is depicted in Figure 1.

2.2.2 Public Transport Routes and Scheduling. Public transport
information is commonly distributed in GTFS (General Transit
Feed Speci�cation) format. De�ned by Google in the early 2000s,
it consists of a set of text �les, containing information about the
locations of stops/stations, the routes and the scheduling. The GTFS

2https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html
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Figure 1: The road network of Genoa, generated throughOSM
Web Wizard

�les for the city of Genoa are freely available3 and can be imported
into SUMO via the tool gtfs2pt.py4.

2.2.3 Mobility Demand. As for mobility demand data, we lever-
aged two di�erent datasets, provided by di�erent sources. On one
hand, we employed data collected through a smartphone applica-
tion for public mobility, synthesized in Origin-Destination (OD)
matrices. These matrices enable to capture, in a table form, tra�c
�ow information in a region of interest, over a speci�c time interval.
Each value of an OD matrix indicates the number of rides from the
origin area to the destination one, in the considered time interval
[1].

More in detail, in our experiments, each matrix covers a time
slot of 2 hours (leading to 12 matrices a day), where the data are
averaged on the months of March, April, and May 2022. Weekdays
and weekends, as well as di�erent modes of transport (i.e. public
transport, private transport, or pedestrian) are summarized by dif-
ferent matrices, resulting in a total of 72 matrices. Let us note that,
for the simulation, an OD matrix must be converted to a standard
suitable for SUMO. In this work, we employed the O-Format 5.

On the other hand, we employed data acquired directly on public
buses, about both bus occupancy and its arrival time at each stop.
Such data were used for evaluating the accuracy of the simulator.
Indeed, at the end of the simulation, the simulated occupancy and
arrival time of each bus at each stop were compared with the same
data, acquired through the sensors.

2.3 Trips Generation
The aforementioned data are used within SUMO for generating the
trips made by the citizens, with both private and public transporta-
tion modes. To this purpose, the duarouter tool6 was employed.
In order to implement the shortest path for each trip, the tool im-
plements Dijkstra’s Algorithm. However, the main problem with
duarouter is that it basically considers each vehicle in isolation,
leading to unnatural road congestion. For this reason, we adopted
the automatic routing approach 7, namely a rerouting strategy that
allows some, or all, vehicles to periodically recompile their route. It

3https://openmobilitydata.org/p/amt-genova/1011?p=5
4https://sumo.dlr.de/docs/Tools/Import/GTFS.html
5https://sumo.dlr.de/docs/Demand/Importing_O/D_Matrices.html/the_o-
format_visumvissim
6https://sumo.dlr.de/docs/duarouter.html
7https://sumo.dlr.de/docs/Demand/Automatic_Routing.html

also considers the current and recent state of tra�c in the network,
thus preventing tra�c jams.

3 RUNNING THE SIMULATION AS-IS
Once the map, public transport and transport demand have been
de�ned, it is possible to run the mesoscopic simulation. Let us
note that during the simulation many parameter are randomly
generated. For instance, each cell of the OD matrix indicates how
many people move from the origin zone to the destination one,
but the precise origin and destination positions, within the zones,
are randomly calculated, by SUMO. Thus, it is crucial to simulate
each scenario a number of times, in order to obtain statistically
signi�cant conclusions.

In our experiments, we simulated all the weekdays from the 1st
of March to the 31st of May, 2022. For each scenario, 5 repetitions
were made.

3.1 The Simulation Flow
Figure 2 depicts the simulation �ow we employed. More in details,
the GTFS �les, the OSM network and the OD matrices are given as
input to the simulator in order to model, respectively, the public
transports, the road network and the mobility demand. Moreover,
several con�guration �les are provided to properly con�gure and
guide the simulation. For instance, in such �les the mesoscopic
mode is set. The accuracy of the simulator has been validated by
leveraging data acquired through sensors installed on real buses. In
particular, we compared these real-world data with the simulated
results.

Figure 2: Simulation Flow.

3.2 Results
Running the simulations as-is (namely without modifying the maps
or the OD matrices) produced mobility results far from the real
ones, especially in terms of journey time. For instance, Figure 3
depicts the simulated and real average delay of the buses of line 3,
for each stop. The real average delay, acquired from GPS sensors
installed on board the vehicles, is at most 50 seconds. Instead, the
simulated average delay reaches signi�cantly higher values, up to
1500 seconds.

On the other hand, the discrepancy between the simulated and
real occupancy of the buses is limited, as shown in Figure 4.
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Figure 3: Average delay for Route 003

Figure 4: Average occupancy for Route 003

4 RUNNING THE SIMULATION AFTER
CALIBRATION

By carefully analyzing the simulation via the SUMO GUI, we re-
alized that several tra�c jams occurred at certain points on the
map, leading to an excessive accumulation of travel delays. Broadly
speaking, there are several aspects causing unrealistic behaviors
that should be taken into account, when using SUMO. In the fol-
lowing, some of them are discussed.

4.1 OSM Quality
It is well-established that the quality of OSM data is not guaranteed.
Indeed, the map provided by OSM is created and editable by thou-
sands of contributors, with no required level of experience [5]. In
our experimental campaign, we noticed some inconsistencies, e.g.
disrupted roads or tracks, missing lanes and stops/stations, and so
on. To mitigate these issues, several manual re�nements of the im-
ported network were applied with the graphical editor NETEDIT8

[10]. For instance, Figure 5 and 6 depict, respectively, the manual
adjustment applied to a disrupted road and track, created in this
way by SUMO, probably due to some errors in the OSM network.

4.2 Default SUMO Assumptions
By default, SUMO makes some assumptions which negatively im-
pact the results of the simulation. For instance, since no information
8https://sumo.dlr.de/docs/Netedit/index.html

(a) A road before manual editing with one lane

(b) A road after adding another lane

Figure 5: An example of road before and after manual re�ne-
ment.

on the management of tra�c lights was available, SUMO used its
default model, in terms of locations and cycle (duration of green
and red light). The latter was the same for each tra�c light, while it
should depend on the criticality of the intersection where the light
is located. To solve these issues, several manual re�nements were
needed, applied again through the NETEDIT tool (see Figure 7).

The precedence model was not realistic either. According to
the latter, a priority level is assigned to each road. In the case of
junctions between roads with di�erent priorities, all the vehicles on
the lower priority road are stopped until the higher priority road
is completely free. This means that, if a long tra�c jam occurs on
the highest-priority road, the cars on the lower priority roads are
completely stopped, until the problem is solved. To mitigate this
problem, the ignore junction blocker attribute of the con�guration
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(a) A track before manual editing.

(b) A track after manual editing.

Figure 6: An example of track before and after manual re-
�nement.

�le was set to 60 seconds. In this way, the vehicles that are blocking
the intersection are ignored, by �nding a way around to continue
the route.

In addition, by default, the size of the buses and the stops was
set to excessively small values. For instance, Figure 8(a) depicts
a bus stop as de�ned by SUMO. Due to the limited length of the
stops, passengers were not able to wait at the stops, while for the
bus length, they were not allowed to board the bus. To solve these
issues, we manually modi�ed the length of the bus stops through
NETEDIT (see Figure 8(b)), while the dimension of the vehicles was
modi�ed in the con�guration options.

4.3 The Simulation Flow
When the accuracy obtained by simulating the scenario as-is is
not su�cient, a calibration step is needed. As a consequence, the
simulation �ow shown in Figure 2 evolves into the one depicted
in Figure 9. Here, based on the discrepancy between the simulated

(a) Tra�c lights generated by SUMO

(b) Tra�c lights adjusted through NETEDIT

Figure 7: An example of tra�c lights before and after manual
re�nement.

and the observed data, several additional re�nements have to be
performed, during the calibration step. Thus, in this step, both the
input data and the con�guration �les may be modi�ed, also through
speci�c tools (e.g. NETEDIT).

4.4 Results
The calibration step ended after 41 simulations. At the end of each
simulation, according to Figure 9, the results were compared with
data acquired on buses, and based on this comparison further re-
�nements were made to the network or to the con�guration �les.

Figure 10 depicts the delay obtained for line 003, after the cali-
bration step, w.r.t the delay obtain without calibration (Figure 10(a))
and to the delay acquired from sensors (Figure 10(b)). It can be
observed that the calibration step signi�cantly reduced the delays.
Indeed, through the manual re�nements made on the network with
NETEDIT, the unrealistic tra�c jams were avoided. However, the
results are still not so similar to the real ones. Indeed, while the
simulated delay reach peaks of -200 seconds, the real acquired delay
ranges from -80 to 80 seconds at most.
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(a) Stop automatically generated by SUMO

(b) Stop adjusted through NETEDIT

Figure 8: An example of bus stop before and after manual
re�nement.

5 DISCUSSION
Running the simulation as-is does not provide completely accurate
results, due to both the well-known limitations of OSM and the
default assumptions of SUMO. Tomitigate these issues, a calibration
step is needed. In detail, through the NETEDIT tool, it is possible to
makemanual re�nements to the network obtained fromOSM, to the
positions of the tra�c lights, and to the locations and/or dimensions
of the bus stops. Instead, by modifying the con�guration �les of
SUMO, it is possible to adjust the dimensions of the buses, the
precedence model, and so on.

The calibration step is de�nitely not trivial. It requires the execu-
tion of several simulation scenarios, a detailed analysis of the results,
an accurate manual inspection of the map, and a deep knowledge of
the urban scenario under consideration. Nevertheless, despite the
improvement of the results obtained after the calibration, several
discrepancies, w.r.t the real values, are still present.

Indeed, by further analyzing the simulation, other unexpected
behaviors were noticed. For instance, buses do not take always the
same route between subsequent stops, since the shapes.txt �le is
not given with the open GTFS of the city of Genoa. As a result, the
routing of the buses is not static, but it is dynamically calculated
by the gtfs2pt.py tool 9.

9https://sumo.dlr.de/docs/Tools/Import/GTFS.html

Moreover, let us note that, as mentioned in Section 2.2.3, the OD
matrices capture data at coarse-grain. Indeed, since the single move-
ments and trajectories of the citizens are extremely sensitive data,
in order to preserve the privacy of the people and meet the GDPR
requirements, data aggregation is used as a way for anonymizing
this information.

Indeed, in order to preserve the privacy of the citizens mobility
data are aggregated in order to anonymize single trajectories. More
in detail, in the considered matrices data were aggregated over 3
months, weekdays and bi-hourly time slots, and over large zones.
As a result, such aggregation introduces a bias in the data, and thus
in the simulation results.

In our opinion, other anonymization techniques should be con-
sidered, in order to mitigate the unreliability of data.

6 CONCLUSIONS
Nowadays, the urgency to shift global mobility systems towards
more sustainable solutions is evident. Among others, improving
public transport systems stands out as a promising approach to
make them more attractive and convenient w.r.t. private modes. By
achieving this shift, the bene�ts of reduced tra�c congestion and
lowered emissions can be realized.

Within this context, urban mobility simulators, such as the
widely adopted SUMO (Simulation of Urban Mobility) simulator,
play a signi�cant role in assessing the impact of new solutions,
ranging from adjustment in bus routes to the introduction of new
transportation modes. Still, the e�ectiveness of these tools is strictly
tied to their adherence to reality.

In this paper, we described our experience in employing the
SUMO simulator within the urban landscape of Genoa, Italy, con-
sidering both private and public transportation modes. More in
detail, leveraging the OSM road network, the open GTFS �les for
public transport, and the OD matrices for mobility demand, we
�rst tried to run a simulation as-is, which did not provide accurate
results. Hence, we introduced a calibration step, aimed at re�ning
both the input data and the con�guration �les of SUMO, with the
aim of obtaining more realistic simulations. Due to the well-known
limitations of OSM and the default assumptions of SUMO, such
a step was challenging, time-consuming, and required iterative
adjustments.

In the end, we obtained more accurate results w.r.t the simulation
as-is, but still there are some discrepancies between the simulated
outcomes and the empirical data collected from real-world obser-
vations.

We believe that the insights gained from our research hold con-
siderable value for the Intelligent Transportation Systems (ITS)
community, for understanding the bene�ts and drawbacks of using
SUMO as a tool for assessing urban mobility scenarios. This would
also help ITS researchers in making informed decisions about when
and how to deploy simulation tools like SUMO.

Finally, our research highlights the importance of continued
exploration within the ITS community into alternative methods
and tools that can enhance the accuracy and reliability of simulation
outcomes.
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Figure 9: Simulation Flow with the Calibration Step.

(a) Delay of line 003, before and after the calibration step

(b) Simulated delay and real one, for line 003

Figure 10: Delay of line 003 after the calibration step.
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