
A 1.5-Approximation Route Finding for a Ride-sharing
considering Movement of Passengers

Yonghwan Kim
Nagoya Institute of Technology

Nagoya, Aichi, Japan
kim@nitech.ac.jp

Masato Amano
Nagoya Institute of Technology

Nagoya, Aichi, Japan
m.amano.460@nitech.jp

Daisuke Yamamoto
Nagoya Institute of Technology

Nagoya, Aichi, Japan
daisuke@nitech.ac.jp

ABSTRACT
MaaS (stands for Mobility as a Service) is a concept that aims to
integrate different transportation services into a unified and seam-
less mobility solution. It encourages a shift away from personally
owned modes of transportation, such as private cars, towards a
more comprehensive approach that combines public transportation,
such as ride-sharing, bike-sharing, carpooling, and other modes
of transport into a single and user-centric service. One of the ser-
vices offered within MaaS is a ride-sharing, which provides several
advantages such as cost savings, reduced traffic congestion, or en-
vironmental benefits. However, to make a ride-sharing efficient, a
sophisticated route finding (i.e., planning) is required to avoid re-
dundantly long routes when picking up or dropping off passengers.

In this paper, we consider an efficient ride-sharing route finding
for large-vehicles such as buses that starts at the determined loca-
tion and returns after visiting all the locations, when a set of the
locations of the passengers is given. Moreover, we allow passengers
to move within a short distance to find more efficient traversal plan.
Note that this problem can be reduced to the traveling salesperson
problem (with some constraints) which is a well-known NP-hard
problem. Hence, we employ a 1.5-approximation algorithm to find
an efficient route within a reasonable computational time, more-
over, use the Viterbi algorithm to improve the efficiency of the route
when allowing each passenger to move.

CCS CONCEPTS
•Theory of computation→Discrete optimization; • Information
systems→ Geographic information systems.

KEYWORDS
ride-sharing, route finding, approximation algorithm, TSP

ACM Reference Format:
YonghwanKim,MasatoAmano, andDaisuke Yamamoto. 2023. A 1.5-Approximation
Route Finding for a Ride-sharing considering Movement of Passengers. In
1st ACM SIGSPATIAL International Workshop on Sustainable Mobility (SuMob
’23), November 13, 2023, Hamburg, Germany. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3615899.3627933

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SuMob ’23, November 13, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0361-4/23/11. . . $15.00
https://doi.org/10.1145/3615899.3627933

1 INTRODUCTION
Recently, MaaS, which stands for "Mobility as a Service", attracts
much attention of researchers. It is a concept that refers to the
integration and provision of various transportation services as a
unified and seamless mobility solution.MaaS aims to shift the focus
from personally owned modes of transportation, such as a private
car, to a more comprehensive approach that combines public trans-
portation, such as ride-sharing, bike-sharing, carpooling, and many
other modes of transport into a single and user-centric service. A
ride-sharing is one aspect of MaaS, which shares a transportation
with two or more individuals who travel in the same direction or
route. A ride-sharing has many advantages including the follow-
ing: cost savings; passengers can reduce their expense by splitting
the cost of transportation, reduce the traffic congestion; it helps
decrease the number of vehicles, and environmental benefits.

A ride-sharing can take various forms such as carpooling (i.e., in-
dividuals who live or work in close proximity share the transporta-
tion), application-based ride-sharing (i.e., connects passengers to
drivers), or a community bus (also known as a shuttle bus; public
transportation service for specific communities or areas within a
city or town). Here we mainly consider a ride-sharing for large-
vehicles such as buses which have some different features including
the following: (1) higher capacity; buses have the advantage of car-
rying more passengers in a single trip (e.g., a private car usually
accommodates less than 10 people, a bus can transport more than
40). This results in better cost sharing and a more positive environ-
mental impact on a per-passenger basis. (2) lower flexibility: a bus
ride-sharing comes with less flexibility. Bus routes and schedules
are usually predetermined and fixed, which means passengers have
limited options for pick-up and drop-off locations as well as travel
times. Due to the higher capacity of a bus ride-sharing, applying
the existing methods has many challenges in terms of computation
time and route efficiency. When we consider the optimal route for
all the locations of many passengers that starts at a certain location
and return to there after visiting all the locations, the total route
forms a cycle and this implies that the problem can be reduced to
traveling salesperson problem (TSP) [7, 10] which is a well-known
NP-hard problem. This means that to find the optimal one requires
an unacceptable computational cost. Therefore, in many situations,
a heuristic or approximate approach is utilized to obtain satisfying
(good enough) results, especially from the practical viewpoint. The
hill climbing [25] is a local search method commonly used to solve
an optimization problem such as TSP, which iteratively improves
the current solution from an initial one; however, this approach can
get stuck in a local optimum, where no further improvements can
be made. The Simulated annealing [19] is an enhancement to over-
come the limitation of being trapped in local optima by allowing for

https://orcid.org/0002-5437-7626
https://doi.org/10.1145/3615899.3627933
https://doi.org/10.1145/3615899.3627933

SuMob ’23, November 13, 2023, Hamburg, Germany Y. Kim, M. Amano, and D. Yamamoto

occasional moves to other solutions to avoid getting trapped in local
optima. However, the simulated annealing has several drawbacks
including the following: (1) unstable output; it provides different
results on each execution, (2) high computational cost; it requires
a significant number of iterations to get an acceptable result, and
(3) unable to guarantee its performance; even if it executes a huge
number of iterations (i.e., high computational cost), it cannot guar-
antee the efficiency of the result. In buses ride-sharing, a set of
passengers is usually fixed due to its lower flexibility, hence we find
a near-optimal (i.e., approximate) solution.

Moreover, in buses ride-sharing, it can be beneficial to allow
passengers to move to nearby desired locations. This can signifi-
cantly reduce the overall length of the route. Therefore, we allow
passengers to move to the location within a short distance to im-
prove the efficiency of the result (i.e., find a shorter route). However,
finding an efficient route while considering passenger movement
makes the problem more challenging. It involves determining the
visiting points among many possible candidate points in the TSP,
leading to a large number of combinations. Solving such a problem
requires a considerable amount of computational cost, even when
using heuristic algorithms. In particular, the simulated annealing
algorithm requires a large number of iterations and increases the
complexity of each iteration. This makes it even more computa-
tionally expensive to obtain an acceptable result. In conclusion,
allowing passenger movement in a ride-sharing route planning
introduces additional complexity to the problem, therefore, a so-
phisticated algorithm is necessary to obtain an acceptable result
within a reasonable computational time in this problem setting.

Contribution
In this paper, we present an algorithm to find a ride-sharing route
traversing all passengers’ locations with allowing passenger move-
ment within a small distance.

Our proposed method has the following key features:
(1)We adopt a 1.5-approximation algorithm to obtain an effec-

tive traversal order of the passengers’ locations within a reasonable
computational time. The algorithm guarantees a result within 1.5
times the optimal solution. Moreover, an approximation algorithm
is deterministic, thus it always provides the same result for the
same input, whereas the simulated annealing algorithm produces
the different result on each execution even for the same input.

(2) We consider the movement of the passengers; for each pas-
senger, the proposed method identifies all the candidate locations
where a passenger can move. To determine the most suitable lo-
cation for each passenger, our method employs the Viterbi algo-
rithm. This allows for a swift selection of the appropriate location
among all the candidate locations. Therefore, the proposed method
effectively generates a ride-sharing route, providing the traversal
order for all passengers along with their respective locations.

We implement a prototype system based on proposed method to
find a ride-sharing route and visually displays the resultant route on
amap to help to verify its result.We also implement another method
which is heuristic based on the simulated annealing technique [19]
to find a ride-sharing route for the evaluation of the proposed
method. As a result of experimental evaluations, we show that
the proposed system outperforms the one based on the simulated
annealing approach. Furthermore, we also present that the proposed

system efficiently finds a ride-sharing route within a reasonable
computational time, even with an increasing number of passengers
or larger allowable distances for passenger movement.

2 RELATEDWORKS
Recently, various studies on route planning for ride-sharing are
introduced. Many studies focus on the dynamic determination of
ride-sharing routes in real-time. J. Alonso-Mora et al. [2] propose a
system that dynamically assigns passengers to several vehicles with
varying passenger capacities and allows for reassignment based
on demand. Additionally, Y. Yoshizuka et al. [29] evaluate the per-
formance of an algorithm that assigns passengers with individual
destinations to Smart Access Vehicles (SAV s) used for ride-sharing
services in real-time. K. Bathla et al. [5] propose a new distributed
taxi ride-sharing algorithm to address dynamic scheduling of ride-
sharing requests, and S. Ma et al. [20] propose a large-scale taxi
ride-sharing service handling real-time requests from passengers
in the dynamic ride-sharing problem which significantly reduces
the total travel distance. Mohammad Asghari et al. [3] addresses
the real-time ride-sharing problem and emphasizes the importance
of designing a scalable framework that matches riders and drivers
while considering their constraints and maximizing the platform’s
profit, and introduce a distributed auction-based framework. The
authors show that the proposed framework achieves higher ser-
vice rates, shorter trips for riders, and increased overall profit for
ride-sharing platforms, based on the comparisons with state-of-the-
art approaches using real data from New York City’s taxi dataset.
They also focuses on the evaluation of ride-sharing platforms and
addresses the challenge of preventing manipulation for personal
gain in [4]. The authors propose a latent space transition model
that allows drivers to predict the future availability of drivers.

There are some studies specifically focusing on ride-sharing
with a single destination. T. Yoshida et al. [28] propose an algo-
rithm to minimize the total travel distance of passengers while
ensuring that the total distance traveled by taxis does not increase
significantly in the context of shared taxi usage with a common des-
tination. Additionally, R. Massobrio et al. [22] and H. E. Ben-Smida
et al. [8] conduct research on taxi ride-sharing problems with a
single origin. C. Tao et al. [26] handle the ride-sharing problemwith
a single origin, considering time constraints, in an online setting.
As a ride-sharing planning including multiple destinations, A. K. M.
Mustafizur Rahman Khan et al. [18] present a ride-sharing plan so
that all users visit the destinations where they agree on when a set
of points of interest (POIs) and a set of users are given. The authors
resolve this ride-sharing route planning problem as a construction
of minimum Steiner tree problem (a well-known NP-hard problem).

In addition, there are studies on delivery planning problems
using quantum annealing. H. Irie et al. [17] and K. Saito et al. [23]
have conducted research on optimization problems that determine
the order in which vehicles visit customers in a general delivery
planning problem.

Furthermore, research has been conducted on route exploration
for ride-sharing that takes passenger movement into account. M.
Stiglic et al. [24] investigated the benefits of introducing meeting
points in ride-sharing, where drivers and passengers with indi-
vidual destinations are matched. Meeting points refer to locations

A 1.5-Approximation Route Finding for a Ride-sharing considering Movement of Passengers SuMob ’23, November 13, 2023, Hamburg, Germany

within a certain distance from the departure or destination points,
where passengers can get on or off. In this approach, they use a 𝑘−𝑑
tree, which supports Euclidean distance nearest neighbor search,
𝑛 nearest neighbors search, and fixed-radius near neighbor search
in logarithmic time [9], to store meeting points and determined
the optimal meeting points through nearest neighbor searches.
Additionally, K. Aissat et al. [1] proposed exact and heuristic ap-
proaches for matching a single driver with multiple passengers in
ride-sharing, aiming to minimize the total travel distance of the
driver and passengers while identifying meeting points. The ex-
act approach employed enumeration, while the heuristic approach
differentiated meeting points as candidate boarding and alighting
positions and then searched for routes. Based on the aforementioned
research, it was found that utilizing meeting points significantly
increases the matching rate of passengers and reduces travel dis-
tances. It was also observed that when using meeting points, it is
important to secure as many meeting points as possible and choose
them carefully.

The problem addressed in this paper is closely related to the trav-
eling salesperson problem (TSP) [7, 10], which finds the shortest
path visiting all cities exactly once and returning to the starting city.
TSP is known as anNP-hard problem thus an unacceptable computa-
tional cost is required for the optimal solution. Various approaches
have been introduced to tackle the TSP problem. The Held-Karp
algorithm [6], based on the dynamic programming, breaks down
the problem into smaller sub-problems and recursively solves them.
However, this approach requires an exponential time Θ(𝑛22𝑛) and
significant space Θ(

√
𝑛2𝑛). Despite this, it is much faster than a

brute-force algorithm that requires a superexponential time Θ(𝑛!).
The nearest neighbor [16] repeatedly selects the closest unvisited
city, forming a cycle. Although simple and fast, it does not guaran-
tee an optimal solution. The random search [21] generates random
solutions by permuting the order of visited points and evaluates
the total distance for each solution. Hill climbing [25] is a local
search method that iteratively improves a solution until it reaches
a local optimum. However, it can get stuck in local optima without
further improvements. Simulated annealing [19]is an enhancement
that allows occasional moves to solutions with higher distances,
avoiding being trapped in local optima and exploring a broader
solution space. The 𝑘-approximation algorithm provides a solution
guaranteed to be within 𝑘 times the optimal solution for TSP in-
stances. The Christofides’ algorithm [11, 15] is a 1.5-approximation
algorithm for TSP which terminates within 𝑂 (𝑛3) time.

3 PROPOSED METHOD
In this section, we introduce the proposed method to find a ride-
sharing route that visit all the locations of passengers. The proposed
method consists of four steps; finding all shortest paths, determining
the traversal order of the passengers, finding all the candidate
locations, and determining the final location of each passenger.
Figure 1 illustrates the flow of the proposed method consisting of
four steps.

3.1 Find All Shortest Paths
As we mentioned in the previous section, our goal is to find a ride-
sharing route that covers all the locations of the passengers. We

YAMAMOTO LABORATORY

INPUT
road network
set of passengers
distance 𝝈

OUTPUT
ride-sharing
route

Find all
shortest

paths

1
Find all
shortest

paths

1

3
Find

candidate
locations

3
Find

candidate
locations

Determine
traversal

order

2
Determine
traversal

order

2

Determine
the location

of each passenger

4
Determine
the location

of each passenger

4

Figure 1: Flow of the proposed method consisting four steps

YAMAMOTO LABORATORY

𝟐

𝟏

𝟑
passenger

passenger

passenger

starting
point

Figure 2: Example of road network and passengers

begin by considering the starting point, denoted by S, from where
the transportation starts and returns after visiting all the locations
of the passengers. We consider a set of points P, which includes
all the passenger locations P1,P2,P3, Figure 2 illustrates an
example of a road network with starting point S and the locations
of the passengers.

We find all the shortest paths between every pair of nodes (in-
cluding all locations in P). To find all these paths, we use the Floyd-
Warshall algorithm [13] which is a dynamic programming algorithm
used to find the shortest paths between all pairs of vertices in a
weighted graph. In our case, the weight of each edge represents
the distance. The algorithm terminates in 𝑂 (𝑉 3) time, where 𝑉
is the number of vertices. Algorithm 1 shows the Floyd-Warshall
algorithm for a weighted graph 𝐺 = (𝑉 , 𝐸).

3.2 Determine the Traversal Order
In the previous step introduced above, we have the shortest paths
between all pairs of vertices. This implies that every pair of points
in P, therefore we can consider the complete weighted graph 𝐾P =
(P, 𝐸P), where the set of edges 𝐸P consists of the shortest path
between two points in P: 𝐸P = {(𝑖, 𝑗) |∀𝑖 ∈ P,∀𝑗 ∈ P, 𝑖 ≠ 𝑗}, and
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒 = (𝑖, 𝑗)) is defined by the length of the shortest path from
𝑖 to 𝑗 (∈ P). To find an efficient traversal (i.e., visiting) order, now

SuMob ’23, November 13, 2023, Hamburg, Germany Y. Kim, M. Amano, and D. Yamamoto

Algorithm 1 The Floyd-Warshall algorithm

1: for ∀𝑖 ∈ 𝑉 do
2: for ∀𝑗 ∈ 𝑉 do

3: 𝑑 [𝑖] [𝑗] ←

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) edge 𝑒 = (𝑖, 𝑗) exists
0 𝑖 = 𝑗

∞ edge 𝑒 = (𝑖, 𝑗) does not exist
4: for ∀𝑘 ∈ 𝑉 do
5: for ∀𝑗 ∈ 𝑉 do
6: for ∀𝑗 ∈ 𝑉 do
7: if 𝑑 [𝑖] [𝑗] > 𝑑 [𝑖] [𝑘] + 𝑑 [𝑘] [𝑗] then
8: 𝑑 [𝑖] [𝑗] ← 𝑑 [𝑖] [𝑘] + 𝑑 [𝑘] [𝑗]

YAMAMOTO LABORATORY

S

𝑷𝟐

𝑷𝟏

𝑷𝟑

S

𝑷𝟐

𝑷𝟏

𝑷𝟑

S

𝑷𝟐

𝑷𝟏

𝑷𝟑

Complete graph
𝑲𝑷 𝑷,𝑬𝑷

Minimum spanning
tree 𝑴𝑺𝑻𝑷

Road network
(Input)

S

𝑷𝟐

𝑷𝟏

𝑷𝟑

S

𝑷𝟐

𝑷𝟏

𝑷𝟑

S

𝑷𝟐

𝑷𝟏

𝑷𝟑

Minimum weighted
perfect matching Eulerian Circuit Sequence of Passenger

matching Traversal order

Figure 3: Flow for finding a Hamiltonian circuit

we find a cyclic path that visits all the points in P as short as possi-
ble. This problem setting is the same as the traveling salesperson
problem (TSP), therefore, we use the Christofides’ algorithm which
is a 1.5-approximation algorithm for TSP.

3.2.1 Christofides’ 1.5-Approximation Algorithm. Here we intro-
duce the 1.5-approximation algorithm, called Christofides’ algorithm
[11, 15], we used in this work as follows.

(1) Construct a minimum spanning tree (MST) on a given graph
𝐺 .

(2) Find odd-degree vertices and create a minimum weight per-
fect matchingM of these vertices.

(3) CombineMST andM to form a connected multigraph H and
find an Eulerian circuit in H.

(4) Shortcut the Eulerian circuit by skipping any repeated ver-
tices, resulting in a Hamiltonian circuit.

The resultant Hamiltonian circuit created by Christofides’ algo-
rithm is guaranteed to be at most 1.5 times the optimal solution for
TSP instances. This algorithm requires𝑂 (𝑛3) where𝑛 is the number
of vertices because𝑂 (𝑛3) time is necessary for perfect matching. It
is important to note that the Christofides’ algorithm does not han-
dle asymetric TSP instances or instances with triangular inequality
violations. However, we deal with the actual geographic map data
that satisfy all the above conditions.

3.2.2 How to Apply the Christofides’ algorithm. Here we describe
how to apply the Christofides’ algorithm to find a traversal order.

YAMAMOTO LABORATORY

𝟐
𝟏

𝟏
𝟏

𝟑
𝟏

𝟏
𝟑

𝟏
𝟐

𝟏
𝟒

𝟐
𝟑

𝟐
𝟐

𝟑
𝟒

𝟑
𝟑

𝟑
𝟐

𝟏
𝟏

𝟏
𝟐

𝟏
𝟑

𝟏
𝟒

𝟐
𝟏

𝟐
𝟐

𝟐
𝟑

𝟑
𝟏

𝟑
𝟐

𝟑
𝟑

𝟑
𝟒

Candidate
Locations

𝑷𝟏 𝑷𝟐 𝑷𝟑

𝟐

𝟏

starting
point

𝟑

Passengers

Figure 4: Example of candidate locations for each passenger

(1) Construct completeweighted graph𝐾P = (P, 𝐸P). Theweight
of each edge 𝑒 = (𝑖, 𝑗) in 𝐸P is set by the shortest distance
between 𝑖 and 𝑗 which is calculated by Floyd-Warshall algo-
rithm in the previous step.

(2) Construct a minimum spanning tree (MSTP) on P using the
Prim’s algorithm.

(3) Find all odd-degree points (called P𝑜𝑑𝑑) onMSTP, and find
the minimum weighted complete matching MP on the in-
duced subgraph by P𝑜𝑑𝑑 on𝐾P using the Edmonds’ algorithm
[12].

(4) Construct a multigraph HP by combining MSTP and MP
and find a Eulerian cycle on HP. A Hamiltonian circuit is
determined by skipping any repeatedly visited points in the
Eulerian cycle.

As a result of these above steps, we can obtain the sequence of
points started at S from the resultant Hamiltonian circuit. Figure 3
shows the flow of finding a cyclic path.

3.3 Find the Candidate Locations
We allow each passenger to move to the different location within
some (pre-determined) short distance 𝜎 . Here we find all locations
that exist within distance 𝜎 from any passenger. The details are
given in the following.

(1) Obtain the distance of all points with respect to each pas-
senger. Note that the shortest distance from each passenger
to every point is already calculated by the Floyd-Warshall
algorithm in the first step.

(2) Find all points located within distance 𝜎 from any passenger.
(3) Store all points located within distance 𝜎 from one passenger

as the set of its candidate locations. Note that the current
location of the passenger is also stored because 0 ≤ 𝜎 always
holds.

Figure 4 shows an example of the candidate locations of each
passenger.

3.4 Determine the Location of Each Passenger
Here we determine the final location of each passenger among
the candidate locations to obtain the ride-sharing route as a result
(refer to Figure 5). We use the Viterbi algorithm [27], which is a
dynamic programming algorithm to find the most likely sequence
of hidden states in a hidden Markov model (HMM). In an HMM,

A 1.5-Approximation Route Finding for a Ride-sharing considering Movement of Passengers SuMob ’23, November 13, 2023, Hamburg, Germany

YAMAMOTO LABORATORY

𝟐

𝟏

starting
point

𝟑

𝟏
𝟏

𝟑
𝟏

𝟏
𝟐

𝟏
𝟒

𝟐
𝟑

𝟐
𝟐

𝟑
𝟒

𝟑
𝟑

𝟐
𝟏

𝟏
𝟑

𝟑
𝟐

Figure 5: Example of a ride-sharing route

YAMAMOTO LABORATORY

S S

P1 P2 P3 Pn
𝐶

・
・
・

𝐶

𝐶

𝐶

・
・
・

𝐶

𝐶

𝐶

・
・
・

𝐶

𝐶

𝐶

・
・
・

𝐶

𝐶

・・・

Figure 6: Graphical representation of Viterbi algorithm

we have a sequence of observations, but the underlying states that
generated these observations are hidden. The Viterbi algorithm
aims to determine the most probable sequence of hidden states that
could have generated the given observations. When this technique
is applied to find a cyclic path, we can find a more effective path
based on the costs between two consecutive visit points among
many possible paths. In particular, we find a more effective path by
minimizing the objective function 1.

argmin(
𝑘1,𝑘2,𝑘3,...,𝑘𝑛

) {𝐿 (𝑆 → C𝑘11)
+

𝑛∑︁
𝑖=2

𝐿

(
C𝑘𝑖−1
𝑖−1 → C

𝑘𝑖
𝑖

)
+𝐿

(
C𝑘𝑛𝑛 → 𝑆

)}
(1)

In function 1, 𝐿
(
𝑢 → 𝑣

)
means the shortest distance from 𝑢 to

𝑣 , 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑛 denote each passenger, and C𝑘1 , C
𝑘
2 , C

𝑘
3 , . . . , C

𝑘
𝑛

represent the set of candidate locations of passenger 𝑖 . Figure 6
gives an overview of the Viterbi algorithm; here we determine from
𝑘1 to 𝑘𝑛 so that minimize the total length of the path, which implies
that the location of every passenger is determined.

Algorithm 2 represents the Viterbi algorithm to determine the
location of each passenger in the proposed method, where C𝑖 =

{C1
𝑖
, C2

𝑖
, C3

𝑖
, . . .} is the set of candidate locations of 𝑖-th passenger

appeared in the Hamiltonian circuit in Step 2. In Algorithm 2, we
use some variables as follows: matrix variable 𝐸 [𝑢] [𝑣] stores the
shortest distance from 𝑢 to 𝑣 obtained by the Floyd-Warshall algo-
rithm, and array variable 𝐿[𝑢] is the total distance of the path from
S to 𝑢. As an exception, 𝐿[S] means the total distance of the cyclic
path started at S visiting one candidate location of every passenger
and returning to S. This implies that 𝐿[S] becomes the output of
the proposed method.

Algorithm 2 The Viterbi algorithm

1: for 𝑖 ∈ {1, 2, 3, . . . , 𝑛} do
2: 𝐿[𝑖] ← ∞
3: for C𝑖1 ∈ C1 do
4: 𝐿[C𝑖1] ← 𝐸 [S] [C𝑖1]
5: for 𝑖 ∈ {2, 3, . . . , 𝑛} do
6: for C 𝑗

𝑖−1 ∈ C𝑖−1 do
7: for C𝑘

𝑖
∈ C𝑖 do

8: if 𝐿[C𝑘
𝑖
] > 𝐿[C 𝑗

𝑖−1] + 𝐸 [C
𝑗

𝑖−1] [C
𝑘
𝑖
] then

9: 𝐿[C𝑘
𝑖
] ← 𝐿[C 𝑗

𝑖−1] + 𝐸 [C
𝑗

𝑖−1] [C
𝑘
𝑖
]

10: for C𝑖𝑛 ∈ C𝑛 do
11: if 𝐿[S] > 𝐿[C𝑖𝑛] + 𝐸 [C𝑖𝑛] [S] then
12: 𝐿[S] ← 𝐿[C𝑖𝑛] + 𝐸 [C𝑖𝑛] [S]

4 PROTOTYPE SYSTEM
To evaluate the proposed method introduced in Section 3, we im-
plement a prototype system that executes the proposed algorithm.
Moreover, for an evaluation the proposed method by comparing
another algorithm, the system also includes another heuristic algo-
rithm (simulated annealing) in the system for a comparison with
the proposed method.

4.1 Overview of the Prototype System
Figure 7 shows the overview of the prototype system.

As a preprocess of the system, we find all the shortest paths
between every pair of nodes within a given area (by the method
given in Section 3.1) using a Road DB which contains road data
obtained from OpenStreetMap [14]. The result is maintained in the
shortest path DataBase (DB).

When the required input, the starting point, set of the passengers’
locations, and the maximum distance each passenger can move, are
given, the system executes two methods presented in Section 3.2
and 3.3 respectively. First, it finds a Hamiltonian circuit that visits
all the locations exactly once to determine the traversal order of
the passengers. And the system also finds all candidate locations of
every passenger. These two results are then used to determine the

YAMAMOTO LABORATORY

Input

17

提案システムの流れ

2. Determine Traversal Order

4. Determine the Location of Each Passenger

Print out the resultant ride-sharing route on the map

1. Shortest Path

3. Find Candidate Locations

sequence of passengers set of candidate locations

ride-sharing route

Preprocess

Route Finding

Shortest
Path DB

User

- Set of passenger’s
locations

- Moving distance 𝜎

- Starting point
- Set of passenger’s

locationsFind all shortest path
between every pair

Road DB

Figure 7: Overview of the prototype system

SuMob ’23, November 13, 2023, Hamburg, Germany Y. Kim, M. Amano, and D. Yamamoto

YAMAMOTO LABORATORY

node arc

point

node

point

arc

Figure 8: Structure of road data

location of each passenger and find a ride-sharing route. Finally,
the system displays the resultant route on a map as the final output.

4.2 Data of the Prototype System
We use OpenStreetMap [14] to obtain the actual road data. Figure
8 illustrates the structure of the road data; each road data consists
of nodes, points, and arcs. A point is a point on the road having
location information presented by a coodinates of latitude and lon-
gitude. A node is a special point which is located on the intersection
of the roads. Ar arc is a sequence of the points from one node to
another. A shape of each road can be approximately illustrated by
connecting of every two adjacent points on the road. When an area
is determined, we construct a road network by obtaining necessary
road data, nodes, points, and arcs, from OpenStreetMap, and store
them in DataBase as Road DataBase (DB). When we draw the resul-
tant ride-sharing route on the map, we also use OpenStreetMap to
display a map.

4.3 Functions of the System
The prototype system includes the following features:
• Change properties of map. A user can change the scale of
the map and the displayed area by moving the map.

Figure 9: The prototype system

• Set the points on the map. A user can set the starting
point S and the locations of the passengers by clicking any
location on the map. We prepare an option so that all points
are set on arbitrary locations on the map (only the number
of points is required as an input).
• Set the distance 𝜎 . A user can set the distance that each
passenger can move. In the system, a user can set this dis-
tance from 0 meters to 800 meters, with increments of 100
meters.
• Method selecting. We implement the proposed method
to find a ride-sharing route in the system. Moreover, we
also implement another heuristic algorithm based on the
simulated annealing for comparison.

Figure 9 presents the prototype system we implemented display-
ing the resultant ride-sharing route on the map.

5 EXPERIMENTAL EVALUATION
In this section, we give the experimental results by comparing the
proposed method with a heuristic method (simulated annealing)
using the prototype system.

5.1 Preparation
We consider a rectangular area of Nagoya city in Japan; with each
side measuring approximately 5.4km. To simulate the locations of
the passengers, We randomly select a set of points within this area.
Moreover, we also choose one point as the starting point S.

We implement the following two algorithms.
(1) 1.5-approximation algorithm (1.5AA) is our proposed

method, which provides a ride-sharing route that is guaran-
teed to be within 1.5 times the optimal solution. This algo-
rithm is deterministic, which means that it always gives the
same output for the same input set. Therefore, we execute
the method only once for each input set.

(2) Simulated annealing (SA) is a general heuristic algorithm
commonly used in optimization problems. This method in-
volves a randomized approach, which provides different re-
sults on each execution. To account for this randomness, we
execute the algorithm 20 times and calculate the average
overall distance of the resultant ride-sharing routes.

It is important to note that the simulated annealing algorithm
produces more efficient results when the number of iterations in-
creases, meaning more time is spent on computation. This suggests
that if we allocate a significant amount of computational time to
the simulated annealing algorithm, it will yield much more efficient
result compared to the proposed method. Consequently, we explore
two approaches for executing the simulated annealing: a fixed-time
execution (denoted by FTSA) and a fixed-iteration execution (de-
noted by FISA). The former executes the algorithm within the same
execution time as the proposed method, while the latter executes
the algorithm with a predetermined number of iterations, which is
determined by the preliminary experiment (will be described later).

Equation 2 is the acceptance probability 𝑃𝑘 used in method SA,
where Δ𝐸 is the difference between the length of the new route
𝑒𝑛𝑒𝑤 and the length of current route 𝑒𝑐𝑢𝑟 ; Δ𝐸 = 𝑒𝑛𝑒𝑤 − 𝑒𝑐𝑢𝑟 . In a
fixed-time execution, we use Equation 3 for 𝑇 in Equation 2, where
TAA is the execution time spent by the proposed method with the

A 1.5-Approximation Route Finding for a Ride-sharing considering Movement of Passengers SuMob ’23, November 13, 2023, Hamburg, Germany

same input and 𝑡𝑘 is it until𝑘-th iterations by SA. In a fixed-iteration
execution, we use Equation 4 for 𝑇 , where L𝑚𝑎𝑥 is the maximum
number of iterations (determined by preliminary experiment) and
𝑘 is the current number of iterations.

𝑃𝑘 = exp (−Δ𝐸
𝑇
) (2)

𝑇 =
TAA − 𝑡𝑘
TAA

× 100 (3)

𝑇 =
L𝑚𝑎𝑥 − 𝑘
L𝑚𝑎𝑥

× 100 (4)

5.2 Comparison with a Fixed-time Simulated
Annealing

In this experiment, we evaluate two algorithms with varying num-
bers of passengers: 5, 10, 20, 30, 40, 50, 75, and 100. For each case, we
randomly generated 20 sets of locations for the passengers. Addi-
tionally, we adjusted the distance (denoted by 𝜎) that the passengers
could move. The value of 𝜎 is set from 100 meters to 500 meters,
with increments of 100 meters. In each experiment, we first execute
the proposed algorithm 1.5AA and measure the time TAA required
in 1.5AA for each execution. Afterward, we execute the method SA
within the same time frame TAA (we call this execution FTSA).

Figure 10 shows the total lengths of the routes obtained from
the two algorithms when the number of passengers varies from 5
to 100. Note that we exclude the result for 𝜎 = 400 due to space
constraints. However, the same pattern can be observed in the
results. The results also include the maximum and minimum route
lengths provided by FTSA for reference.

When the number of passengers is 5 or 10, the two algorithms
produce very similar results. However, when the number of pas-
sengers is 20 or more, algorithm 1.5AA yields shorter ride-sharing

YAMAMOTO LABORATORY

0

20

40

60

80

100

120

140

0 20 40 60 80 100

to
ta

l l
en

gt
h

of
 r

ou
te

 [k
m

]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(a) Result when 𝜎 = 100

YAMAMOTO LABORATORY

200

0

20

40

60

80

100

120

140

0 20 40 60 80 100

to
ta

l l
en

gt
h

of
 r

ou
te

 [k
m

]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(b) Result when 𝜎 = 200

YAMAMOTO LABORATORY

300

0

20

40

60

80

100

120

140

0 20 40 60 80 100

to
ta

l l
en

gt
h

of
 r

ou
te

 [k
m

]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(c) Result when 𝜎 = 300

YAMAMOTO LABORATORY

500

0

20

40

60

80

100

120

140

0 20 40 60 80 100

to
ta

l l
en

gt
h

of
 r

ou
te

 [k
m

]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(d) Result when 𝜎 = 500

Figure 10: Total length of ride-sharing routes by FTSA

Table 1: Standard deviations of fixed-time SA (FTSA)

Passengers 5 10 20 30 50 100
𝜎 = 100 0.152 0.959 2.418 3.093 4.937 6.936
𝜎 = 200 0.137 0.954 2.680 3.082 4.708 6.927
𝜎 = 300 0.137 0.909 2.379 3.213 4.660 6.957
𝜎 = 400 0.143 0.792 2.320 2.897 4.491 7.038
𝜎 = 500 0.122 0.859 2.467 2.999 4.282 6.453
Average 0.138 0.895 2.453 3.057 4.616 6.862

routes compared to algorithm FTSA. In particular, when 𝜎 is set
to 300, with 20 passengers, there is a reduction of approximately
15% in the length of the route. With 30 passengers, the reduction
is around 24%; with 40 passengers, it is approximately 31%; and
with 50 passengers, it is about 39%. Overall, algorithm 1.5AA con-
sistently produces shorter routes than the average route length
obtained by FTSA. Moreover, for cases with 30 or more passengers,
algorithm 1.5AA yields shorter routes than the minimum route
length obtained by FTSA. This implies that even if FTSA occasion-
ally produce shorter route lengths, the ride-sharing route length
tends to be longer compared to those produced by 1.5AA. Similar
results are obtained even when 𝜎 ≠ 300, although there may be
slight variations.

Next, we focus on the variability (i.e., unevenness) of the resultant
routes obtained by FTSA. Table 1 shows the standard deviations of
FTSA for each passenger count. It is obvious that as the number of
passengers increases, the standard deviation also increases. This in-
dicates that the accuracy of algorithm FTSA becomes more unstable
as the number of passengers grows. For instance, with 5 passen-
gers, the standard deviation is 0.138 km, while with 10 passengers,
it is 0.895 km. These values suggest relatively low variability but
unstable solution accuracy. Furthermore, with 20 passengers, the
standard deviation jumps to 2.453 km, indicating a significant dif-
ference between good and poor solutions. Examining the results in
Figure 10(c), we can see that the difference between the maximum
and minimum values increases as the number of passengers rises,
pointing to unstable solution accuracy. Based on these findings, it
can be concluded that the proposed algorithm 1.5AA outperforms
FTSA in terms of both result efficiency and stability.

Figure 11 shows the difference of the execution time (i.e., the
time taken from receiving the input data until the completion of
the ride-sharing route search) between 1.5AA and FTSA using the
ratio calculated as the execution time of FTSA dividing by it of
1.5AA. This means that when the ratio is larger (resp. smaller) than
100%, FTSA spent more (resp. less) execution time than 1.5AA. Even
the difference of the execution time between two algorithms is at
most approximately 7.64% (when the number of passengers is 30
and 𝜎 = 500), these results shows that our method for adjusting
the execution time (TAA) of these two algorithms, 1.5AA and FTSA,
equal operates correctly.

Now we check the average number of iterations in algorithm
FTSA when it spent similar execution time to 1.5AA. Figure 12 il-
lustrates the number of iterations in FTSA when its execution time
is restricted by time TAA spent in 1.5AA. The result shows that
the number of iterations decreases for up to 40 passengers. This is

SuMob ’23, November 13, 2023, Hamburg, Germany Y. Kim, M. Amano, and D. Yamamoto

YAMAMOTO LABORATORY

92%

94%

96%

98%

100%

102%

104%

5 10 20 30 40 50 75 100ex
ec

ut
io

n
tim

e
ra

tio
 (F
TS
A/
1.
5A
A)

the number of passengers
σ=100 σ=200 σ=300 σ=400 σ=500

Figure 11: Execution time of FTSA compared to 1.5AA

YAMAMOTO LABORATORY

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

th
e

nu
m

be
r

of
 it

er
at

io
ns

the number of passengers
SA法（平均）

Figure 12: Number of iterations in fixed-time SA

because that the computational complexity per iteration of FTSA
increases with the growing number of passengers. In other words,
although the execution times are similar, the increased computa-
tional complexity per iteration leads to a decrease in the overall iter-
ation count. However, the number of iterations gradually increases
for more than 40 passengers; When the number of passengers be-
comes larger, even algorithm 1.5AA requires a significant execution
time. As a result, FTSA has ample execution time to execute more
iterations, even with the increased complexity per iteration.

In this experiment, since the number of iterations depends on
the restricted execution time TAA, the number of iterations may be
insufficient for a certain number of passengers, leading to inefficient
ride-sharing routes. Therefore, investigating the appropriate itera-
tion count for FTSA through preliminary experiments is important
to improve its efficiency.

5.3 Preliminary Experiment for a
Fixed-iteration Execution

For the comparison with a fixed-iteration SA, here we conduct a
preliminary experiment to find an appropriate number of iterations
in SA when 20 sets of the locations of 50 passengers are given.

Table 2 presents the results of the experiment showing the aver-
age length of the resultant routes and the average of the execution
time when the number of iterations varies from 100 to 200,000. We

Table 2: Average length of routes and average execution times
in various number of iterations (from 100 to 200K)

iterations 100 1K 10K 100K 200K
length (km) 59.125 71.905 66.831 52.880 55.375
time (ms) 39.1 235.4 2172.8 21542.4 43055.0

Table 3: t-test result for the experiment in Table 2

100 1K 10K 100K 200K
100 - 2.938e-4 0.002 0.009 0.024
1K - - 0.016 3.107e-8 1.681e-9
10K - - - 6.134e-8 1.315e-11
100K - - - - 0.605

also provide the corresponding t-test results as Table 3. In each re-
sult, if the calculated 𝑝-value is below the threshold (we assume 0.05
generally used), then it indicates a significant difference (i.e., the
null hypothesis is rejected in favor of the alternative hypothesis).

From the result presented in Table 2, the total length of the routes
becomes the minimum when the number of iterations is 100,000.
And from the t-test result in Table 3, the 𝑝-value between 100K and
200K is 0.605 which is larger than the threshold 0.05, which means
that the difference between 100K and 200K is not significant. Hence,
we limit the number of iterations to around 100,000. Considering
the execution time becomes about 21.5 seconds when the number
of iterations is 100,000, the less number of iterations is desired to
find a ride-sharing route within a reasonable execution time.

Next, we present the experimental results as Table 4 when the
number of iterations varies from 10,000 to 100,000. And the cor-
responding t-test result is presented in Table 5 (as the above, the
threshold level for the t-test is set at 0.05).

From the result in Table 4, the minimum length is achieved when
the number of iterations is 100,000, however, from the t-test result
in Table 5, the difference between 70K and 100K is not significant
because the 𝑝-value is less than the threshold. This implies that
there is no significant difference between the results obtained at

Table 4: Average length of routes and average execution times
in various number of iterations (from 10K to 100K)

iterations 10K 30K 50K 70K 100K
length (km) 65.800 59.795 57.090 54.611 53.123
time (ms) 2434.1 7244.7 12063.0 16883.2 24125.1

Table 5: t-test result for the experiment in Table 4

10K 30K 50K 70K 100K
10K - 1.994e-4 4.884e-6 3.549e-10 3.858e-9
30K - - 0.030 1.035e-4 3.017e-6
50K - - - 0.045 4.569e-4
70K - - - - 0.193

A 1.5-Approximation Route Finding for a Ride-sharing considering Movement of Passengers SuMob ’23, November 13, 2023, Hamburg, Germany

70,000 and 100,000 iterations. Therefore, we conclude that the ap-
propriate number of iterations for the simulated annealing method
in this experiment is 70,000.

5.4 Comparison with a Fixed-iteration
Simulated Annealing

Now we compare the proposed method with a fixed-iteration SA,
when the number of iterations is fixed to 70,000 obtained by the
preliminary experiment in Section 5.3. All the other settings are the
same as them in the previous experiments presented in Section 5.2.

Figure 13 presents the total length of the routes obtained by two
algorithms; 1.5AA and a fixed-iteration SA. Note that also in these
results, we exclude the result for 𝜎 = 400 due to space constraints as
Section 5.2. In every result, the difference between two algorithms
become smaller than the previous experiment, because the number
of iterations is enough to obtain an effective ride-sharing route
regardless its execution time. When the number of passengers is
10 or less, the results of two algorithms are similar, however, in
the case of 20 or more passengers, the proposed method 1.5AA
provides more efficient routes than SA’s. In particular, at 20 passen-
gers, it is about 4% shorter, at 30 passengers about 13% shorter, at
40 passengers about 17% shorter, and at 50 passengers about 24%
shorter. Note that when the number of passengers is 40 or more,
the results obtained by 1.5AA yields shorter length of ride-sharing
route compared to the minimum case of SA.

Table 6 shows the standard deviations of fixed-iteration SA. As
the same as the previous experiments, the result present that as
the number of passengers increases, the standard deviation val-
ues become larger even the values become smaller compared to
fixed-time SA. However, although the stability of the result is im-
proved compared to the previous experiment, SA still exhibits some
variability.

YAMAMOTO LABORATORY

100

0

10

20

30

40

50

60

70

0 10 20 30 40 50

to
ta

l l
en

gh
 o

f r
ou

te
 [k

m
]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(a) Result when 𝜎 = 100

YAMAMOTO LABORATORY

200

0

10

20

30

40

50

60

70

0 10 20 30 40 50

to
ta

l l
en

gh
 o

f r
ou

te
 [k

m
]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(b) Result when 𝜎 = 200

YAMAMOTO LABORATORY

300

0

10

20

30

40

50

60

70

0 10 20 30 40 50

to
ta

l l
en

gh
 o

f r
ou

te
 [k

m
]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(c) Result when 𝜎 = 300

YAMAMOTO LABORATORY

500

0

10

20

30

40

50

60

70

0 10 20 30 40 50

to
ta

l l
en

gh
 o

f r
ou

te
 [k

m
]

the number of passengers
1.5AA SA(Avr) SA(Max) SA(Min)

(d) Result when 𝜎 = 500

Figure 13: Total length of ride-sharing routes by FISA

Table 6: Standard deviations of fixed-iteration SA

Passengers 5 10 20 30 50 100
𝜎 = 100 0.210 0.881 1.793 2.435 2.806 3.116
𝜎 = 200 0.171 0.801 1.872 2.362 2.855 3.252
𝜎 = 300 0.188 0.807 1.973 2.543 3.035 3.369
𝜎 = 400 0.175 0.777 1.872 2.406 2.883 3.109
𝜎 = 500 0.139 0.809 2.006 2.371 2.717 3.369
Average 0.176 0.815 1.903 2.423 2.859 3.243

YAMAMOTO LABORATORY

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

ex
ec

ut
io

n
tim

e
[s

]

the number of passengers

1.5AA(σ=100)
1.5AA(σ=300)
1.5AA(σ=500)
FISA(σ=100)
FISA(σ=300)
FISA(σ=500)

Figure 14: Time comparing with fixed-iteration SA

Figure 14 shows the execution time of the proposed method
(1.5AA) compared to the fixed-iteration simulated annealing (SA);
solid lines present the execution times of 1.5AA, and dotted lines
show them of SA. Note that we omit the results when 𝜎 = 200
and 𝜎 = 400 for the readability of the results (they show the same
patterns as the other results). Obviously, SA requires a huge execu-
tion time compared to 1.5AA, because the number of iterations is
fixed to 70,000 to obtain good results regardless its execution time.
However, as the results depicted in Figure 13, the total length of
the route by 1.5AA becomes shorter than it obtained by SA, even
the difference between their computational costs is significant.

6 CONCLUSION
In this study, we proposed an approximation algorithm to find a ride-
sharing route considering the movement of passengers. Moreover,
we have implemented the proposed system that finds and visually
displays the ride-sharing route obtained by the proposed method
(1.5AA) and evaluated the proposed algorithm comparing with a
heuristic algorithm based on simulated annealing (SA).

In the evaluation experiments, we examined two variations of
the execution of algorithm SA; a fixed-time execution (denoted by
FTSA) and a fixed-iteration execution (denoted by FISA). As a result
of the comparison with algorithm FTSA, even the two algorithm
spent similar execution time, the proposed algorithm 1.5AA out-
performed FTSA. Specifically, the total length of the ride-sharing
route generated by 1.5AA was less than 40% of the average route
length obtained by FTSA. The result also represented a significant
improvement compared to both the worst case (about 65% reduc-
tion) and even the best case (about 54% reduction) of FTSA. Next
we conducted the preliminary experiments to find the appropriate

SuMob ’23, November 13, 2023, Hamburg, Germany Y. Kim, M. Amano, and D. Yamamoto

number of iterations in SA for getting a good result within a rea-
sonable computational time, and we found that 70,000 is the best
balanced value between efficiency and computational time. Thus
we fixed the number of iterations to 70,000 for algorithm FISA, and
compared 1.5AA with FISA. As a result, even the execution time of
FISA is at most about 11 times longer than it of 1.5AA, the resultant
route length is reduced more than 20%. Compared to the best case
of FISA, the ride-sharing route generated by 1.5AA is more than
10% shorter than it obtained by FISA.

In conclusion, our proposed method outperforms a heuristic
algorithm in terms of both the efficiency (i.e., the length of the
resultant ride-sharing route) and the computational time. In par-
ticular, even when a large instance, 50 passengers who can move
to the other locations within 500m, is given as an input set, the
proposed method generates a efficient ride-sharing route within
approximately 4 seconds. This execution time is fast enough from
the practical viewpoint.

Our future works include an improvement by integrating nearby
boarding positions of the passengers and consideration of the exis-
tence of one-way roads. Since pick-up and drop-off require a certain
amount of time in ride-sharing, integrating nearby passenger board-
ing positions could reduce the total amount of time spent on these
activities. Moreover, the proposed method consider a road network
as a simple undirected graph. Hence, it is necessary to consider
one-way roads (i.e., arc) to realize more practical application.

As the many previous works, we can also consider the dynamic
changes of passengers. This means that even in bus ride-sharing,
unexpected situations can arise, like some passengers not being
able to board or new passengers joining. Our proposed algorithm
can rapidly recalculate the entire route from the current state in
a short time by some revision; one valid approach is to change
the bus’s starting point to its current location and exclude places
where passengers are already on board. This allows us to swiftly
recalculate a new solution that’s almost optimal for the current
scenario.

ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI Grant Numbers 21K
19766 and 23H03403.

REFERENCES
[1] Kamel Aissat and Ammar Oulamara. 2014. A Priori Approach Of Real-Time

Ridesharing Problem With Intermediate Meeting Locations. J. Artif. Intell. Soft
Comput. Res. 4, 4 (2014), 287–299. https://doi.org/10.1515/jaiscr-2015-0015

[2] Javier Alonso-Mora et al. 2017. On-demand high-capacity ride-sharing via dy-
namic trip-vehicle assignment. Proc. Natl. Acad. Sci. USA 114, 3 (2017), 462–467.
https://doi.org/10.1073/pnas.1611675114

[3] Mohammad Asghari et al. 2016. Price-aware real-time ride-sharing at scale: an
auction-based approach. In Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS 2016. ACM, 3:1–
3:10. https://doi.org/10.1145/2996913.2996974

[4] Mohammad Asghari and Cyrus Shahabi. 2017. An On-line Truthful and Individ-
ually Rational Pricing Mechanism for Ride-sharing. In Proceedings of the 25th
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS 2017. ACM, 7:1–7:10. https://doi.org/10.1145/3139958.3139991

[5] Kanika Bathla et al. 2018. Real-Time Distributed Taxi Ride Sharing. In 21st
International Conference on Intelligent Transportation Systems, ITSC 2018, Maui,
HI, USA, November 4-7, 2018. IEEE, 2044–2051. https://doi.org/10.1109/ITSC.2018.
8569315

[6] Richard Bellman. 1962. Dynamic Programming Treatment of the Travelling
Salesman Problem. J. ACM 9, 1 (1962), 61–63. https://doi.org/10.1145/321105.
321111

[7] Mandell Bellmore and George L. Nemhauser. 1968. The Traveling Salesman
Problem: A Survey. Oper. Res. 16, 3 (1968), 538–558. https://doi.org/10.1287/opre.
16.3.538

[8] Houssem E. Ben-Smida et al. 2016. Mixed Integer Linear Programming Formula-
tion for the Taxi Sharing Problem. In Smart Cities - First International Conference,
Smart-CT 2016 (Lecture Notes in Computer Science, Vol. 9704). Springer, 106–117.
https://doi.org/10.1007/978-3-319-39595-1_11

[9] Jon Louis Bentley. 1990. K-d Trees for Semidynamic Point Sets. In Proceedings
of the Sixth Annual Symposium on Computational Geometry, Berkeley, CA, USA,
June 6-8, 1990. ACM, 187–197. https://doi.org/10.1145/98524.98564

[10] Rainer E. Burkard et al. 1998. Well-Solvable Special Cases of the Traveling
Salesman Problem: A Survey. SIAM Rev. 40, 3 (1998), 496–546. https://doi.org/10.
1137/S0036144596297514

[11] Nicos Christofides. 2022. Worst-Case Analysis of a New Heuristic for the Trav-
elling Salesman Problem. Oper. Res. Forum 3, 1 (2022). https://doi.org/10.1007/
s43069-021-00101-z

[12] Jack Edmonds. 1965. Paths, Trees, and Flowers. Canadian Journal of Mathematics
17 (1965), 449–467. https://doi.org/10.4153/CJM-1965-045-4

[13] Robert W. Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6 (1962),
345. https://doi.org/10.1145/367766.368168

[14] OpenStreetMap Foundation. 2004-2023. OpenStreetMap. https://openstreetmap.
jp/map.

[15] Michael T. Goodrich and Roberto Tamassia. 2014. Algorithm Design and Ap-
plications. Wiley. https://www.wiley.com/en-us/Algorithm+Design+and+
Applications-p-9781118335918

[16] Gregory Z. Gutin, Anders Yeo, and Alexey Zverovich. 2002. Traveling salesman
should not be greedy: domination analysis of greedy-type heuristics for the
TSP. Discret. Appl. Math. 117, 1-3 (2002), 81–86. https://doi.org/10.1016/S0166-
218X(01)00195-0

[17] Hirotaka Irie et al. 2017. Quantum Annealing of Vehicle Routing Problem with
Time, State and Capacity. In Quantum Technology and Optimization Problems
- First International Workshop, QTOP@NetSys 2019 (Lecture Notes in Computer
Science, Vol. 11413). Springer, 145–156. https://doi.org/10.1007/978-3-030-14082-
3_13

[18] A. K. M.Mustafizur Rahman Khan et al. 2017. Ride-sharing is About Agreeing on a
Destination. In Proceedings of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, GIS 2017. ACM, 6:1–6:10. https:
//doi.org/10.1145/3139958.3139972

[19] P. J. M. Laarhoven and E. H. L. Aarts. 1987. Simulated Annealing: Theory and
Applications. Kluwer Academic Publishers, USA.

[20] Shuo Ma et al. 2013. T-share: A large-scale dynamic taxi ridesharing service. In
29th IEEE International Conference on Data Engineering, ICDE 2013. IEEE Computer
Society, 410–421. https://doi.org/10.1109/ICDE.2013.6544843

[21] L.A. Rastrigin. 1963. The Convergence of the Random Search Method in the
External Control of Many-Parameter System. Automation and Remote Control 24
(1963), 1337–1342.

[22] Massobrio Renzo et al. 2014. A parallel micro evolutionary algorithm for taxi
sharing optimization. In VIII ALIO/EURO Workshop on Applied Combinatorial
Optimization. https://doi.org/10.13140/RG.2.1.3047.7925

[23] Kazuhiro Saito et al. 2021. Evaluation of Quantum Annealing for Vehicle Routing
Problem (in Japanese). IPSJ-TOD 14, 1 (03 2021), 8–17.

[24] Mitja Stiglic et al. 2015. The benefits of meeting points in ride-sharing systems.
Transportation Research Part B: Methodological 82 (2015), 36–53. https://doi.org/
10.1016/j.trb.2015.07.025

[25] C. Storey. 1962. Applications of a hill climbing method of optimization. Chemical
Engineering Science 17, 1 (1962), 45–52. https://doi.org/10.1016/0009-2509(62)
80005-0

[26] Chi-Chung Tao andChun-Ying Chen. 2007. Heuristic Algorithms for the Dynamic
Taxipooling Problem Based on Intelligent Transportation System Technologies.
In Fourth International Conference on Fuzzy Systems and Knowledge Discovery,
FSKD 2007, Volume 3. IEEE Computer Society, 590–595. https://doi.org/10.1109/
FSKD.2007.346

[27] Andrew J. Viterbi. 1967. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 2 (1967), 260–269.
https://doi.org/10.1109/TIT.1967.1054010

[28] Takato Yoshida et al. 2019. Modeling and evaluating taxi ride-sharing for event
trips (in Japanese). Transaction on Mathematical Modeling and its Applications:
TOM 12, 2 (07 2019), 1–11. https://cir.nii.ac.jp/crid/1050845763318147456

[29] Yuki Yoshizuka et al. 2018. Performance Evaluation of Path Finding Algorithm for
Ride-sharing Service (in Japanese). The 32nd Annual Conference of the Japanese
Society for Artificial Intelligence JSAI2018 (2018), 4F1OS11c02–4F1OS11c02. https:
//doi.org/10.11517/pjsai.JSAI2018.0_4F1OS11c02

https://doi.org/10.1515/jaiscr-2015-0015
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1145/2996913.2996974
https://doi.org/10.1145/3139958.3139991
https://doi.org/10.1109/ITSC.2018.8569315
https://doi.org/10.1109/ITSC.2018.8569315
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/321105.321111
https://doi.org/10.1287/opre.16.3.538
https://doi.org/10.1287/opre.16.3.538
https://doi.org/10.1007/978-3-319-39595-1_11
https://doi.org/10.1145/98524.98564
https://doi.org/10.1137/S0036144596297514
https://doi.org/10.1137/S0036144596297514
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1145/367766.368168
https://openstreetmap.jp/map
https://openstreetmap.jp/map
https://www.wiley.com/en-us/Algorithm+Design+and+Applications-p-9781118335918
https://www.wiley.com/en-us/Algorithm+Design+and+Applications-p-9781118335918
https://doi.org/10.1016/S0166-218X(01)00195-0
https://doi.org/10.1016/S0166-218X(01)00195-0
https://doi.org/10.1007/978-3-030-14082-3_13
https://doi.org/10.1007/978-3-030-14082-3_13
https://doi.org/10.1145/3139958.3139972
https://doi.org/10.1145/3139958.3139972
https://doi.org/10.1109/ICDE.2013.6544843
https://doi.org/10.13140/RG.2.1.3047.7925
https://doi.org/10.1016/j.trb.2015.07.025
https://doi.org/10.1016/j.trb.2015.07.025
https://doi.org/10.1016/0009-2509(62)80005-0
https://doi.org/10.1016/0009-2509(62)80005-0
https://doi.org/10.1109/FSKD.2007.346
https://doi.org/10.1109/FSKD.2007.346
https://doi.org/10.1109/TIT.1967.1054010
https://cir.nii.ac.jp/crid/1050845763318147456
https://doi.org/10.11517/pjsai.JSAI2018.0_4F1OS11c02
https://doi.org/10.11517/pjsai.JSAI2018.0_4F1OS11c02

	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Find All Shortest Paths
	3.2 Determine the Traversal Order
	3.3 Find the Candidate Locations
	3.4 Determine the Location of Each Passenger

	4 Prototype System
	4.1 Overview of the Prototype System
	4.2 Data of the Prototype System
	4.3 Functions of the System

	5 Experimental Evaluation
	5.1 Preparation
	5.2 Comparison with a Fixed-time Simulated Annealing
	5.3 Preliminary Experiment for a Fixed-iteration Execution
	5.4 Comparison with a Fixed-iteration Simulated Annealing

	6 Conclusion
	References

