Brenner - Abschlussarbeiten

Bachelorarbeiten (abgeschlossen)

  • Klassifikation von Mobile Mapping LiDAR Punktwolken
    In vielen Anwendungsgebieten der Geodäsie, beispielsweise dem des autonomen Fahrens, gewinnt die automatische Erkennung von Objekten in (urbanen) Regionen an Relevanz. Eingesetzt werden dafür verschiedene Aufnahmesysteme, dessen Daten in Echtzeit analysiert werden müssen. Besonders gut geeignet sind dafür Light Detection and Ranging (LiDAR) Punktwolken. In dieser Arbeit wird die Klassifikation von LiDAR Punktwolken verschiedener Methoden analysiert und bewertet. Als Datengrundlage dienten Scanstreifen aus einer Messkampagne des Instituts für Kartographie und Geoinformatik der Leibniz Universität Hannover. Mit Hilfe der Klassifikatoren Random Forests und Support Vector Machines konnten die einzelnen LiDAR Punkte 16 verschiedenen Klassen zugeordnet werden.
    Leitung: Brenner, Schachtschneider
    Team: Anat Schaper
    Jahr: 2020

Masterarbeiten (abgeschlossen)

  • Investigation of Maximum Consensus Techniques for Robust Localization
    High integrity localization is a fundamental task for an autonomous driving system. Standard localization approaches are usually accomplished by point cloud registration, which is often based on (recursive) least squares estimation, for example, using Kalman filters. However, due to the susceptibility of least squares minimization to outliers, it is not robust. This thesis focuses on robust localization and aims at the investigation of maximum consensus techniques using LiDAR data. The state-of-the-art maximum consensus approach is evaluated from various perspectives and its shortcomings with respect to straight street scenarios are revealed. Against that, a methodologically optimized normal vector based formulation of maximum consensus is proposed, which uses the distribution of the normal vectors to formulate the accumulator of consensus sets. With doing so, the system is able to achieve a robust localization on all common road conditions. The performances of both approaches are tested and analyzed on a data set containing 1915 epochs. The influence of search parameters is examined with respect to localization accuracy and run time. Results show a considerable improvement of the robustness using the normal vector based formulation.
    Leitung: Axmann, Brenner
    Team: Yimin Zhang
    Jahr: 2021
  • Using Dynamic Objects for Probabilistic Multi-View Point Cloud Registration and Localization
    Registering two point clouds involves finding the optimal rigid transformation that aligns those two point clouds. For a connected autonomous vehicle (CAV), an accurate localization for an `ego’ vehicle can be achieved by registering its point cloud to LiDAR data from other connected `cooperative’ vehicles. This paper utilizes an advanced object detection algorithm to select observation points that are on detected vehicles. As a prerequisite, a general probability distribution (cf. left figure) based on the observation points from all detected vehicles is established. For the registration, in the first step, observation points from a cooperative vehicle are assigned to detected bounding boxes. Then, each set of points belonging to one bounding box is registered to the general probability distribution resulting in a `probability map’. In the second step, the probability map is used as shared information and the point cloud of the ego vehicle is registered to it. Different from the Euclidean distance metric of the Iterative Closest Point (ICP) algorithm and the consensus count metric of the maximum consensus method, a new probability-related metric is proposed for a coarse registration. It is used to provide an initial transformation, which is used afterwards in a registration refinement by ICP. The registration is completely based on the vehicle information in the scene. The algorithm is evaluated on the collective perception data set COMAP. Especially for some scenes that are challenging to existing registration algorithms such as scenes in a traffic jam or in an open space where no efficient overlaps of observed static objects exists. For those scenarios, from the perspective of accuracy and robustness, the algorithm has shown good performance. The left figure shows the general distribution of observation points, while the figure on the right shows the registration result between 'probability map' of cooperative vehicle and Lidar points of ego vehicle.
    Leitung: Brenner, Yuan, Axmann
    Team: Peng Chang
    Jahr: 2021
  • Kalibrierung von Crowd Sourced Messungen der Oberflächenrauigkeit mittels LiDAR Daten
    Smartphones als kompakte Multisensorplattformen ermöglichen es zum Beispiel beim Fahrradfahren die Oberflächenrauigkeit anhand von Positions- und Beschleunigungsmessungen zu erfassen und Aussagen über die Qualität des Untergrundes zu treffen. Die erfassten Beschleunigungen des am Fahrradlenkers befestigten Smartphones können allerdings ebenso durch den Luftdruck der Reifen, das Gewicht des Fahrers oder die gefahrene Geschwindigkeit beeinflusst werden, sodass sich die von verschiedenen Personen erfassten Daten nicht direkt miteinander vergleichen lassen. In der Arbeit wurde die Eignung von LiDAR Mobile Mapping Punktwolken als unabhängige Referenz für die Erfassung von Oberflächenrauigkeiten und die Modellierung möglicher Einflussgrößen untersucht. Grundlage der Untersuchung dieser Arbeit sind LiDAR Mobile Mapping Punktwolken eines Messgebietes im Georgengarten, für das zusätzlich Beschleunigungs- und GPS-Beobachtungen von 17 Testpersonen zur Verfügung gestellt wurden.
    Leitung: Feuerhake, Wage, Brenner
    Team: L. Peter
    Jahr: 2021
    © L. Peter
  • Optimale Zuordnung von Punktwolken mittels Deep Learning
    In dieser Arbeit wurde untersucht, ob sich luftgestützte 3D Punktwolken unterschiedlicher Herkunft registrieren lassen. Bei den Punktwolken handelt es sich um Punktwolken, die aus Airborne Laser Scanning (ALS) und aus Dense Image Matching (DIM) abgeleitet wurden. Sie enthalten zwar dieselbe Oberfläche, besitzen jedoch unterschiedliche Eigenschaften. Dabei stellt vor allem Vegetation ein Problem dar. In ALS kann diese durchdrungen werden, wodurch ALS Punktwolken sowohl die Vegetation als auch den darunterliegenden Boden enthält.
    Leitung: Brenner, Politz
    Team: Stephan Niehaus
    Jahr: 2019
  • Development of a Client-Server Module for Cooperative Multi-Robot Longterm Map Registration
    Nowadays a big amount of robots are used in production and logistic. Due to the large working environment, dynamic objects (e.g. humans or other robots), and semi-static objects (e.g.machine and furniture), a high performance navigation system is required. But only focus on the high performance long term SLAM on single robot is not enough to guarantee the flexible and accurate performance of whole robot fleet in large changing environment.
    Leitung: Tobias Ortmaier (IMES), Claus Brenner, Steffen Busch (IKG), Philipp Schnattinger (FraunhoferIPA)
    Team: Jiang Liwei
    Jahr: 2019
  • Klassifizieren und Detektieren von Verkehrsteilnehmern mittels Neuronalen Netzen und Active Shape Modellen
    Autonome Fahrzeuge interpretieren ihre Umgebung auf Grundlage ihrer Sensordaten. 360° Laserscanner bieten dabei umfassende und hoch genau Informationen über die Entfernung von Objekten. Die Vorhersage des Verhaltens von Verkehrsteilnehmern unterscheidet sich zwischen PKW, LKW/Bussen, Radfahrern und Fußgängern. Die exakte Position der verschiedenen Verkehrsteilnehmer ist dabei abhängig von ihrer Ausrichtung und ihren geometrischen Ausmaßen. Active Shape Modelle bieten die Möglichkeit den Mittelpunkt der Objekte durch die Schätzung von deformierbaren Modellen, auf der Basis von CAD-Plänen und unter Berücksichtigung ihrer Ausrichtung, zu schätzen.
    Leitung: Bodo Rosenhahn (TNT), Claus Brenner, Steffen Busch (IKG)
    Team: Xiaoyu Jiang
    Jahr: 2019
  • Laserscanner-basierte Prädiktion von Passantenbewegungen durch Filterung und Klassifikation der Körperhaltung
    Vor dem Hintergrund der Sicherheit im Straßenverkehr wird im Folgenden ein Algorithmus vorgestellt, der auf Basis von Punktwolken eine möglichst genaue Vorhersage über die zukünftige Position von Fußgängern trifft. Ein Kernelement ist dabei den aktuellen Bewegungszustand der Fußgänger über einen Random Forest zu klassieren. Dabei steht vor allem eine frühe Detektion von Wechseln zwischen einzelnen Zuständen im Fokus.
    Leitung: Claus Brenner, Steffen Busch
    Team: Matthias Fahrland
    Jahr: 2019
  • Klassifikation und Änderungsdetektion in Mobile Mapping LiDAR Punktwolken
    3D-Modelle der statischen Umgebung zu erstellen ist eine wichtige Aufgabe für das Voranbringen von Fahrerassistenzsystemen und dem autonomen Fahren. Hierzu stehen in dieser Arbeit Mobile Mapping LiDAR Punktwolken aus 14 Messepochen zur Verfügung, die mithilfe eines Voxel Grids zu einer Referenzkarte weiterverarbeitet werden. Ein Voxel Grid ist eine Datenstruktur, die den realen Raum in volumenhafte Elemente unterteilt und die Punktdichte der Punktwolken reduziert. Zusätzlich werden Daten aus einer Strahlverfolgung bereitgestellt, sodass zwischen durchschossenen und unbekannten Voxeln unterschieden werden kann, wodurch sich Verdeckungen erkennen lassen.
    Leitung: Brenner, Schachtschneider
    Team: Mirjana Voelsen
    Jahr: 2019
  • Robuste Registrierung von luftgestützten Punktwolken
    Ziel der Arbeit ist die robuste Registrierung von luftgestützten Punktwolken, die aus Airborne Laser Scanning (ALS) und Dense Image Matching (DIM) ab-geleitet wurden. Dafür wurde eine grobe, translative Registrierung mittels Ma-ximum Consensus Schätzers entwickelt und mit einem Standard-ICP vergli-chen. Des Weiteren wurden verschiedene Methoden zur Ausdünnung der Punktwolken untersucht, die besonders die Punkte von Objekten, die in den beiden Punktwolken unterschiedlich dargestellt sind, reduzieren soll.
    Leitung: Politz, Brenner
    Team: Jannik Busse
    Jahr: 2019
  • Tracking von Verkehrsteilnehmern mit LiDAR
    Autonome Fahrzeuge navigieren auf der Basis von spurgenauen Karten. Diese Karten zu erstellen und zu pflegen ist mit einem hohen Aufwand verbunden. Diese Arbeit ist Teil des Automatisierungsprozesses, um aus Daten des täglichen Verkehrs spurgenaue Karten zu erstellen. Im Rahmen der Arbeit wird das Verhalten der Verkehrsteilnehmer in einem komplexen Kreuzungsszenario verfolgt. Es wurden sechs Kreuzungen in Hannover mittels statischen 3D LiDAR-Scans mit 10Hz vermessen, um Trainingsdaten für ein neuronales Netzt zu erstellen.
    Leitung: Steffen Busch
    Team: Tim Flasbarth
    Jahr: 2018
  • Verwendung eines Automotive-Laserscanners zur globalen Positionsbestimmung
    Vor dem Hintergrund der globalen Lokalisierung wird in der Arbeit eine Möglichkeit vorgestellt, eine Positionsbestimmung anhand der Umgebungsmerkmale durchzuführen. Es werden Punktwolken von Straßenabschnitten in urbanem Gebiet verwendet. Dabei werden unter Anwendung eines neuronalen Netzes Merkmale aus der Umgebung extrahiert. Mit Hilfe einer Einteilung der Merkmale in verschiedene Klassen wird ein Streckenabschnitt als Sequenz von Merkmalen dargestellt. Durch den Vergleich mit einer Referenztrajektorie, welche ebenfalls über klassi zierte Merkmale verfügt, wird die aktuelle Position anhand der größten Übereinstimmung gefunden.
    Leitung: Dr. Alexander Schlichting, Prof. Brenner
    Team: Felix Matthes
    Jahr: 2018
    Laufzeit: 2018
  • Adding landmarks to maps using a graph-based approach
    Die zunehmende Automatisierung von Fahrfunktionen und erweiterte Komfortfunktionen sind aktueller Bestandteil der Automobilforschung. Eine der wesentlichen Voraussetzungen für viele zukünftige Funktionen, wie das automatisierte Fahren, ist die genaue Kenntnis der aktuellen Fahrzeugpose. Hierfür gibt es unterschiedliche Lokalisierungsmethoden. Wird eine Karte benutzt, welche auf Landmarken basiert, so stellt sich die Aufgabe, diese Landmarken auf Grundlage der Messungen zu aktualisieren.
    Leitung: Daniel Wilbers (VW), Prof. Ortmaier, Prof. Brenner
    Team: Lars Rumberg
    Jahr: 2018
  • Deep Learning for Flood Relevant Images and Texts from Social Media
    Überschwemmungen gehören zu den häufigsten und zerstörerischsten Naturgefahren der Erde. Diese Arbeit untersucht die Idee, nutzergenerierte Informationen aus Social Media zu nutzen, um frühe Anzeichen hochwasserrelevanter Ereignisse zu erkennen. Das Ziel dieser Arbeit liegt in der Entwicklung und Implementierung einer Deep Learning Lösung mit der Fähigkeit, das Vorhandensein von hochwasserrelevanten Ereignissen aus benutzergenerierten Bildern und Texten zu erkennen.
    Leitung: Yu Feng, Prof. Brenner
    Team: Sergiy Shebotnov
    Jahr: 2018
  • Lernen typischer Parkplatzbelegungsmuster anhand von Kartendaten
    Zur Vorhersage zukünftiger Informationen über verfügbare Parkplätze werden in intelligenten Transportsystemen, wie beispielsweise Navigationsgeräten, unter anderem historische Daten über den Verlauf der Parkplatzbelegung verwendet. In dieser Arbeit wird untersucht, inwieweit solche Tagesverläufe mit der Hilfe von Kartendaten, wie z. B. Points of Interest, und der Verwendung von Methoden des Maschinellen Lernens vorhergesagt werden können. Dazu werden tatsächliche Belegungsdaten aus Hannover und aus San Francisco verwendet. Die Kartendaten werden sowohl aus OpenStreetMap, als auch aus Yelp gewonnen. Weiterhin werden unterschiedliche Varianten zur Implementierung der Kartendaten in das Maschinelle Lernen getestet, als auch die Relevanz der einzelnen Merkmale untersucht. Die hier verwendeten Methoden des Maschinellen Lernens sind ein Neuronales Netz, ein Regressionsbaum und eine Support Vector Machine.
    Leitung: Fabian Bock, Prof. Brenner
    Team: Lukas Hynek
    Jahr: 2018
  • Laserscanner basierte Kartierung und Lokalisierung in dynamischen Umgebungen
    Stand der heutigen Technik bei den in Industrieanlagen eingesetzten fahrerlosen Transportfahrzeugen ist eine Eigenlokalisierung auf Basis von Reflektoren. Da die Installation und Vermessung der benötigten Reflektoren zeitaufwändig und teuer ist, verlangen Anlagenbetreiber ein Lokalisierungsverfahren, das ohne Reflektoren funktioniert und ausschließlich die vorhandene Umgebungskontur zur Lokalisierung verwendet.
    Leitung: Brenner, Schlichting
    Team: Hauke Kuban
    Jahr: 2015
    Laufzeit: 2015
  • Kombination und Homogenisierung von Landmarkenkarten zur Steigerung der Positionierungsgüte beim automatischen Fahren
    In dieser Arbeit werden Karten zur landmarkenbasierten Lokalisierung aus detektierten Objekten erzeugt, die mit einem Versuchsträger (PKW) erfasst wurden. Als Datengrundlage stehen die Positionen detektierter Objekte sowie die Fahrzeugtrajektorien der Messfahrten zur Verfügung. Die Erstellung einer Landmarkenkarte erfordert die Zuordnung einzelner Detektionen zu Objekten sowie eine Bereinigung systematischer Fehler. Die auftretenden systematischen Fehler äußern sich z.B. in Form von fehlerhaften Beobachtungswinkeln und zeitlicher Latenz.
    Leitung: Brenner, Hofmann
    Team: Ugur Kekec
    Jahr: 2015
    Laufzeit: 2015
  • Robust visual navigation for autonomous underwater track vehicles
    Underwater track vehicles, also known as crawler, are universal carrier platforms for many different applications. Crawler having an autonomous navigation would enable the possibility of executing long-term observations without a connection to a base station. This thesis presents approaches that use previous knowledge about the scene that is integrated into motion estimation step by replacing RANSAC with PROSAC to make the motion estimation more robust.
    Leitung: Brenner, Kirchner
    Team: Lewin Probst
    Jahr: 2015
    Laufzeit: 2015
  • Entwicklung eines Echtzeit-Planers für die lokale Navigation auf holonomen mobilen Service-Robotern
    Ein grundlegendes Problem der Navigation ist die zuverlässige Vermeidung von Kollisionen mit Hindernissen in Echtzeit. Ein dafür genutzter lokaler Planer muss daher den Anforderungen der Echtzeitfähigkeit genügen, was bedeutet, dass die Planung innerhalb einer maximalen Laufzeit garantiert abgeschlossen werden muss. Die maximale Laufzeit kann dabei vom Rechner abhängen. Im Rahmen dieser Arbeit wurde ein lokaler Planer in der Software-Umgebung ROS (Robot Operating System) erstellt, welcher die Anforderung der Echtzeitfähigkeit erfüllt.
    Leitung: Brenner, Wagner
    Team: Sven Krause
    Jahr: 2015
    Laufzeit: 2015
  • Extraktion von Fahrspurgeometrie und -topologie auf der Basis von Fahrzeugtrajektorien
    Digitale Weg- und Transportkarten sind heutzutage die Grundlage moderner Navigation und finden in Disziplinen von der Ethologie bis zur Nautik unterschiedlichste Anwendungen. Der für diese Arbeit interessante Anwendungsfall ist die Abbildung von Verkehrswegen für Fahrzeuge als Straßenkarte. Eine Straßenkarte bildet hierbei mindestens die geometrische Struktur eines Verkehrsnetzes unter Erhalt der Konnektivität ab.
    Leitung: Brenner
    Team: Oliver Röth
    Jahr: 2014
    Laufzeit: 2014
  • Robotic exploration for mapping and change detection
    Autonomous systems and mobile robots become more and more part of our daily life. Examples are cutting the grass in the garden, helping us to get into a parking lot or cleaning the floor. The problems of localization, perception and automatic model building (e.g. maps) are central questions in mobile robotics. How to determine the absolute pose of a robot? What is the best way to explore an a priori unknown environment? Can changes be detected?
    Leitung: Brenner, Paffenholz
    Team: Sebastian Gangl
    Jahr: 2014
    Laufzeit: 2014
  • Bewertung von inertialen Messsystemen mittels Laserscannern und bekannter Landmarken
    Leitung: Brenner
    Team: Alexander Schlichting
    Jahr: 2012
    Laufzeit: 2012
  • Aufbau eines Laserscanner-Erfassungssystems zur Positionsbestimmung von Fahrzeugen
    Sowohl in der Forschung als auch in der Technik sind Fahrerassistenzsysteme für den Automobilbe­reich ein sehr aktuelles Thema. Neue Systeme unterstützen den Fahrer in unterschiedlichen Situationen, indem sie nicht nur den Fahrkomfort, sondern vor allem auch die Sicherheit im Stra­ßenverkehr erhöhen. Viele dieser Systeme setzten eine sehr genaue Kenntnis über den eigenen Aufenthaltsort des Fahrzeuges voraus. Gerade in Gebieten mit dichter Bebauung ist dabei die mit dem Global Positioning System (GPS) erlangte Ortungsgenauigkeit in der Größenordnung mehrerer Meter unzureichend. Aus diesem Grund ist die Entwicklung eines genauen und zuverlässigen Verfahrens zur Positionsbestimmung für Fahrzeuge von großer Bedeutung.
    Leitung: Brenner
    Team: Joachim Niemeyer
    Jahr: 2009
    Laufzeit: 2009
  • Zielführung in der Fahrzeug-Navigation mittels Mixed Reality
    Leitung: Brenner, Paelke
    Team: Sascha Tönnies
    Jahr: 2006
    Laufzeit: 2006