Bachelorarbeiten (abgeschlossen)
-
Evaluierung verschiedener Klassifikatoren zur Detektion von Objekten in PunktwolkenDiese Bachelorarbeit behandelt die Klassifikation von Objekten in Punktwolken. Die zu klassifizierenden Objekte sind Verkehrsteilnehmer in Form von LiDAR- (Light Detection and Ranging) Punktwolken und stammen aus dem waymo-Datensatz. Die Objekte sind hierbei bereits aus den Punktwolken segmentiert. Die hier vorkommenden Klassen sind Kraftfahrzeuge, Fußgänger, Verkehrsschilder und Fahrradfahrer, wobei die Anzahl der Fahrradfahrer weit unter der Anzahl der anderen Klassen liegt. Ein wesentlicher Aspekt in dieser Arbeit stellt das Implementieren von geeigneten Merkmalen dar, mithilfe derer die verschiedenen Objekte möglichst genau klassifiziert werden können. Die Klassifikation wird letztendlich mit insgesamt 49 Merkmalen durchgeführt. Verwendet werden die beiden überwachten Klassifikatoren Random Forest und Support Vector Machine. Es werden mit beiden Klassifikatoren jeweils ungewichtete und gewichtete Klassifikationen durchgeführt, wobei die gewichteten Klassifikationen erwartungsgemäß bessere Genauigkeiten erzielen. Die Gesamtgenauigkeit liegt bei der gewichteten Klassifikation bei Random Forest bei 97.83% und bei der Support Vector Machine bei 96.73%. Die Klassen ‘Kraftfahrzeuge’, ‘Fußgänger’ und ‘Verkehrsschilder’ werden bei beiden Klassifikatoren zu einem hohen Anteil korrekt klassifiziert. Oft werden Objekte fehlklassifiziert, welche in geringer Auflösung vorliegen oder von anderen Objekten verdeckt werden. Bei beiden Klassifikatoren gab es die prozentual häufigsten Fehlklassfikationen bei den Fahrradfahrern. Für höhere Klassifikationsgenauigkeiten bei dieser Klasse könnten ein ausgeglichener Datensatz verwendet werden. Außerdem könnte die Implementierung von Merkmalen, welche Fahrradfahrer besser charakterisieren, ebenfalls für höhere Genauigkeiten sorgen.Leitung: BuschTeam:Jahr: 2021
Masterarbeiten (abgeschlossen)
-
Design, calibration and synchronization of a bicycle mapping platformIn this master thesis, we focused on the preparation of a low-budget mobile mapping system suitable for mounting on a bicycle. This topic formed since the mapping systems are mostly made from expensive sensors which makes it unaffordable for many applications. After having the hardware parts mounted on a model-designed platform we continue to make the system ready for data acquisition. Followed by multiple experiments to justify the system and its limitations. Later on, we did system calibration which in our case consists of camera calibration and extrinsic LIDAR-camera calibration, using this, we did a couple of outdoor data acquisitions and repetition of the system calibration. The results from the experiments are discussed afterwards from which we observed that the camera calibration parameters are oscillating significantly, besides, the transformation parameters estimated by the extrinsic calibration was not constant. These points brought us to the conclusion that the stability of the calibration parameters is needed to be studied in depth in order to find the accuracy of the system. Nevertheless, we managed to colourize the point cloud with the obtained calibration parameters and they were visually correct.Leitung: Feuerhake, BuschTeam:Jahr: 2021
-
Robustes Multi-Objekt Tracking mittels Re-Identifizierung für Verkehrsteilnehmerinnen und VerkehrsteilnehmerThema dieser Masterarbeit ist das Tracking von Verkehrsteilnehmerinnen und Verkehrsteilnehmern auf Kamerabildern. Hierfür wird das Multi-Object Tracking nach dem Tracking by Detection Prinzip durchgeführt. Bei diesem Prinzip werden die Detektionen von Objekten verschiedener Zeitschritte einander zugeordnet, sodass nur Detektionen einander zugeordnet werden, die dasselbe Objekt zeigen. Die Erstellung dieser Zuordnung wird hier mit einem Netzwerkfluss in einem Graphen gelöst. Die Gewichte der Kanten werden über die Ähnlichkeiten der Objekte bestimmt, welche mittels einem Siames-Net berechnet werden. Durch das Tracking lassen sich Trajektorien beweglicher Objekte bestimmen, welche wiederum für Anwendungen, wie etwa dem autonomen Fahren oder der Verkehrsüberwachung, verwendet werden können.Leitung: BuschTeam:Jahr: 2021
-
Range and FoV Estimation of Pedestrian Detection in a Helmet Mapping SystemWhile LIDAR based mobile mapping systems have been used to map the indoor spaces to create indoor maps, such LIDAR based systems can also be used observe motion information while mapping the environment. This motion information can be used to understand the footfall and useful to businesses and also civil engineers for better planning. The objective of the work would be to achieve a Helmet mounted mapping system (HMS) using a Velodyne and IMU and its range estimation in detecting dynamic pedestrians. The HMS is an apparatus consisting the Velodyne and IMU mounted on an industry grade Helmet. Two kinds of existing learning methods, the Complex-YOLO with optimized parameters and PointPillars are applied by training a low-resolution simulated KITTI dataset.Leitung: Kamalasanan, Busch, SesterTeam:Jahr: 2021
-
Spatiotemporal Calibration between a Helmet Mapping System and the HoloLens Augmented Reality SystemMobile mapping systems are used to map indoor environments by utilising LIDAR sensors. These sensors when worn with a helmet via the Helmet mapping system (HMS) can also be integrated with Augmented reality (AR) devices like the HoloLens 2. Such integration can be beneficial for real-time 3D visualisation of sensor data. To achieve an integrated system, the HMS and AR device needs to be precisely time synchronized matching the different sensors rates running on different operating systems. The objective of this thesis is to achieve time synchronization and rigid body transformation between a helmet-mounted mapping systems (HMS) equipped with an Xsens IMU module and an Augmented Reality (AR) system HoloLens 2. Pedestrian motion was tested to find patterns for data synchronization using human movement only.Leitung: Kamalasanan, Busch, SesterTeam:Jahr: 2021
-
Development of a Client-Server Module for Cooperative Multi-Robot Longterm Map RegistrationNowadays a big amount of robots are used in production and logistic. Due to the large working environment, dynamic objects (e.g. humans or other robots), and semi-static objects (e.g.machine and furniture), a high performance navigation system is required. But only focus on the high performance long term SLAM on single robot is not enough to guarantee the flexible and accurate performance of whole robot fleet in large changing environment.Leitung: Tobias Ortmaier (IMES), Claus Brenner, Steffen Busch (IKG), Philipp Schnattinger (FraunhoferIPA)Team:Jahr: 2019
-
Klassifizieren und Detektieren von Verkehrsteilnehmern mittels Neuronalen Netzen und Active Shape ModellenAutonome Fahrzeuge interpretieren ihre Umgebung auf Grundlage ihrer Sensordaten. 360° Laserscanner bieten dabei umfassende und hoch genau Informationen über die Entfernung von Objekten. Die Vorhersage des Verhaltens von Verkehrsteilnehmern unterscheidet sich zwischen PKW, LKW/Bussen, Radfahrern und Fußgängern. Die exakte Position der verschiedenen Verkehrsteilnehmer ist dabei abhängig von ihrer Ausrichtung und ihren geometrischen Ausmaßen. Active Shape Modelle bieten die Möglichkeit den Mittelpunkt der Objekte durch die Schätzung von deformierbaren Modellen, auf der Basis von CAD-Plänen und unter Berücksichtigung ihrer Ausrichtung, zu schätzen.Leitung: Bodo Rosenhahn (TNT), Claus Brenner, Steffen Busch (IKG)Team:Jahr: 2019
-
Laserscanner-basierte Prädiktion von Passantenbewegungen durch Filterung und Klassifikation der KörperhaltungVor dem Hintergrund der Sicherheit im Straßenverkehr wird im Folgenden ein Algorithmus vorgestellt, der auf Basis von Punktwolken eine möglichst genaue Vorhersage über die zukünftige Position von Fußgängern trifft. Ein Kernelement ist dabei den aktuellen Bewegungszustand der Fußgänger über einen Random Forest zu klassieren. Dabei steht vor allem eine frühe Detektion von Wechseln zwischen einzelnen Zuständen im Fokus.Leitung: Claus Brenner, Steffen BuschTeam:Jahr: 2019
-
Tracking von Verkehrsteilnehmern mit LiDARAutonome Fahrzeuge navigieren auf der Basis von spurgenauen Karten. Diese Karten zu erstellen und zu pflegen ist mit einem hohen Aufwand verbunden. Diese Arbeit ist Teil des Automatisierungsprozesses, um aus Daten des täglichen Verkehrs spurgenaue Karten zu erstellen. Im Rahmen der Arbeit wird das Verhalten der Verkehrsteilnehmer in einem komplexen Kreuzungsszenario verfolgt. Es wurden sechs Kreuzungen in Hannover mittels statischen 3D LiDAR-Scans mit 10Hz vermessen, um Trainingsdaten für ein neuronales Netzt zu erstellen.Leitung: Steffen BuschTeam:Jahr: 2018
Offene Bachelorarbeiten
-
Laserscanning und Mobile Mapping: Evaluierung verschiedener Klassifikatoren zur Detektion von Objekten in PunktwolkenViele Gebiete unseres Lebens werden rasant mit Hilfe von Maschinen automatisiert. Nicht nur für die Kartographie ist dabei essenziell, dass Computer Beobachtungen ihrer Sensoren korrekt zuordnen und interpretieren. Für diese Aufgabe stehen bereits verschiedenste Klassifizierungsalgorithmen zur Verfügung. Ziel der Bachelorarbeit ist die Analyse verschiedener Klassifikationsansätze mit Fokus auf deren Eignung zur Bestimmung von Objekten aus Punktwolken.Leitung: BuschJahr: 2020