Sester - Completed projects

Big Data and Machine Learning

  • RainCars
    This idea would be easily technically feasible if the cars are provided with GPS and a small memory chip for recording the coordinates, car speed and wiper frequency. This initial research will explore theoretically the benefits of such an approach. For that valid relationships between wiper speed and rainfall rate (W-R relationship) are assumed and derived from laboratory and field experiments. Different traffic models are developed to generate motorcars on roads in a river basin. Radar data are used as reference truth rainfall fields. Rainfall from these fields is sampled from the conventional rain gauge and dynamic car networks. Areal rainfall is calculated from these networks for different scales using geostatistical interpolation methods and compared against truth radar data. The car sensors can be considered as a geosensor network. It allows to measure and process information locally in a decentralized way and thus has benefits with respect to scalability, which is crucial when large areas have to be covered with large amounts of measurement units.
    Team: Fitzner, Sester
    Year: 2017